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Abstract

Recent research has shown relationships between health outcomes and residence proxim-

ity to unconventional oil and natural gas development (UOGD). The challenge of connecting

health outcomes to environmental stressors requires ongoing research with new methodo-

logical approaches. We investigated UOGD density and well emissions and their associa-

tion with symptom reporting by residents of southwest Pennsylvania. A retrospective

analysis was conducted on 104 unique, de-identified health assessments completed from

2012–2017 by residents living in proximity to UOGD. A novel approach to comparing esti-

mates of exposure was taken. Generalized linear modeling was used to ascertain the rela-

tionship between symptom counts and estimated UOGD exposure, while Threshold

Indicator Taxa Analysis (TITAN) was used to identify associations between individual symp-

toms and estimated UOGD exposure. We used three estimates of exposure: cumulative

well density (CWD), inverse distance weighting (IDW) of wells, and annual emission con-

centrations (AEC) from wells within 5 km of respondents’ homes. Taking well emissions

reported to the Pennsylvania Department of Environmental Protection, an air dispersion and

screening model was used to estimate an emissions concentration at residences. When

controlling for age, sex, and smoker status, each exposure estimate predicted total number

of reported symptoms (CWD, p<0.001; IDW, p<0.001; AEC, p<0.05). Akaike information cri-

terion values revealed that CWD was the better predictor of adverse health symptoms in our

sample. Two groups of symptoms (i.e., eyes, ears, nose, throat; neurological and muscular)

constituted 50% of reported symptoms across exposures, suggesting these groupings of

symptoms may be more likely reported by respondents when UOGD intensity increases.

Our results do not confirm that UOGD was the direct cause of the reported symptoms but

raise concern about the growing number of wells around residential areas. Our approach

presents a novel method of quantifying exposures and relating them to reported health

symptoms.
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Introduction

Unconventional oil and natural gas development (UOGD) may represent a health risk due to

exposure to chemicals used during the hydraulic fracturing process, on-site emissions, and/or

a lack of strict regulations [1–4]. The UOGD process involves a combination of horizontal dril-

ling across shale formations and the use of a heterogeneous fracturing fluid injected into wells

at high pressure to fracture shale and release trapped oil and gas. Evidence suggesting associa-

tions between UOGD activity and adverse health effects has emerged from multiple studies.

UOGD activity has been associated with adverse birth outcomes [5–7], increased rates of hos-

pital use [8–10], asthma [11,12], and upper respiratory and neurologic symptoms [13–15].

These studies have used a variety of approaches to estimate exposure to UOGD, including

inverse distance weighting (IDW), cumulative well count, cumulative well density (CWD),

well activity metrics, spatiotemporal models, and direct water sampling [6–8,13,16,17].

Given the associations between UOGD development and adverse health outcomes, but lack

of resolution on questions pertaining to safe proximity of residency to wells, we sought to

determine which variables related to UOGD are associated with a higher number of reported

symptoms. For this study, two proximity metrics and one exposure variable constitute our

exposure estimates and are referred to as exposure measures throughout this paper. This study

was conducted to address the following questions: 1) Which exposure measure(s) best predicts

the of number of symptoms reported? and 2) Which individual symptoms are associated with

increasing exposure as estimated by each exposure measure? Unlike prior studies, this analysis

compares three estimates of exposure: CWD, an IDW measure, and annual emission concen-

trations (AEC) derived from estimated well emissions within 5 km of a residence. CWD is

defined as the count of wells divided by a spatial scale in km2 [8], while IDW, a similar mea-

sure, weights wells according to distance from a residence [6,7]. The AEC measure used pub-

licly available data on wells to estimate concentrations of emission pollution at a residence.

Bamber at al. [18] notes that exposure to UOGD is poorly characterized, and this analysis–

comparing three estimates of exposure–attempts to address this concern. Though frequently

used proximity and density metrics are included in this analysis, the methodological approach

taken here has not been used to model emission concentrations at the home nor to predict

symptom outcomes associated with increasing levels of exposure. The use of two methodolo-

gies applied here (i.e., statistical modeling to analyze the influence of different exposures on

symptom reporting, and a technique to identify specific symptoms that might be indicative of

exposure) suggests new techniques for studying relationships between health and exposure.

Materials and methods

Study sites & health outcomes

The Southwest Pennsylvania Environmental Health Project (hereafter referred to as EHP) is a

nonprofit public health organization in Washington County, Pennsylvania (PA). Between Feb-

ruary 1, 2012 and December 31, 2017, 135 children and adults completed health assessments at

EHP. Individuals self-selected and approached EHP because of their concerns about exposure

to UOGD. Health data were abstracted as described in Weinberger et al. [19] and the same

data were used in this analysis.

As described by Weinberger et al. [19] the 135 de-identified health assessments were

reviewed retrospectively by a team of health-care providers, including a board-certified occu-

pational-health physician and at least one nurse practitioner. Records were excluded if the

respondent was under 18 years old, worked in the oil-and-gas industry, lived outside of PA, or

did not fully complete the assessment form (17 excluded). The remaining 118 health
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assessments were reviewed. Each symptom recorded in the assessment was reviewed and those

symptoms that could be plausibly explained by co-occurring medical conditions, medical his-

tory, or work and/or social history were excluded. For this analysis, symptoms that remained

were grouped into nine categories: general; lung and heart; skin; eyes, ears, nose, and throat

(EENT); gastrointestinal (GI); nerves and muscle; reproductive; blood system; and psychologi-

cal. For this analysis, we restricted the sample to residents of southwest PA with known latitude

and longitude data for their residence (14 individuals excluded). The study population

included individuals from eight counties: Washington, Greene, Beaver, Butler, Allegheny, Bed-

ford, Fayette, and Westmoreland (Fig 1). This resulted in a convenience sample of 104 adults.

This study was approved by the New England Institutional Review Board and the Chatham

University Institutional Review Board.

Exposure measures

Cumulative well density and inverse distance weighting. Home address was collected at

the time of the health assessment. For this analysis, the address was used to determine the lati-

tude and longitude coordinate of the residence of each respondent [21].

The PA Department of Environmental Protection (PA DEP) publishes active well locations

and reported emissions on an open-access online portal [22]. The emissions inventory pro-

vides well location data in latitude and longitude coordinates and emissions data by pollutant

Fig 1. Study area and active well locations. Southwestern PA study location and active wells in 2016. No respondents lived in

Lawrence County; however, a respondent in Butler County lived near the county border. Map was made with ArcGIS Desktop [20].

https://doi.org/10.1371/journal.pone.0237325.g001
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type for each well. For assessments completed between February 1, 2012 and December 31,

2017, ArcGIS ArcMap 10.3 [20] was used to plot the latitude and longitude of each respon-

dent’s residence alongside all active, unconventional wells within a 5-km radius around the

residence during that year. A CWD was calculated for each respondent by dividing the num-

ber of wells in a 5-km radius around the home by the area of the radius.

An IDW calculation was also applied as a second method for quantifying exposure inten-

sity. This measure applies more weight to wells located closer to a residence than to those

located farther away. The inverse distance of each well within a 5-km radius of a residence was

calculated, and those values were summed into one IDW score per residence as shown in the

following equation:

IDW density ¼
Pn

i¼1

1=di ð1Þ

where distance (d) is kilometers between the well (i) and respondent’s residence, and n is the

number of wells within the 5-km radius [5,13]. For this analysis, only wells located within PA

state lines were included in the calculations due to a lack of data availability from neighboring

states. Four residences’ 5-km radius crossed into neighboring West Virginia. For these sites,

the radius percentages outside of Pennsylvania were 0.6%, 4.4%, 10.7%, and 14.3%.

Annual emissions concentration. Annual emissions inventories for 2012 through 2017

were exported from the PA DEP’s database. Sources reported on the emissions inventory

included venting and blowdown, dehydration units, drill rigs, stationary engines, pneumatic

pumps, fugitive emissions, and emissions produced during the well completion stage. Sources

of emissions that are not represented in the inventory include flaring, off-gassing from con-

taminated water, and truck traffic. A review of the PA DEP’s emissions-inventory data

revealed six compounds had the highest reported volume expressed in tons/year: carbon mon-

oxide, nitrogen oxides, particulate matter (PM2.5), aggregated volatile organic compounds

(VOCs), methane, and carbon dioxide [22]. To estimate emissions at the residence, we used

carbon monoxide, nitrogen oxides, PM2.5, and VOCs because they had known health effects at

the expected level of exposure; methane and carbon dioxide did not so were not included

despite being two of the top six compounds emitted. For this study, tons/year was converted to

grams/hour.

A complete explanation of how concentrations at a residence were estimated can be found

in Brown et al. [23] and will briefly be described here. To estimate emissions concentration at

a respondent’s residence, an atmospheric dispersion box model was used to determine air dilu-

tion downwind from emission sources (wells) and estimate the concentration of compounds

at a residence. The model assumes a theoretical box, or volume, of air carries emissions down-

wind from a well. As the box moves away from the source, the size of the box increases, and

the concentration of pollutants is proportionally diluted. The initial concentration is inversely

proportional to the rate of speed with which the box moves over the source. The vertical and

lateral expansion of the box as it moves downwind is determined by weather and wind speed.

This screening model estimates the level of air dilution during dispersion using three parame-

ters: 1) cloud cover, 2) wind speed, and 3) time of day. These parameters are taken from Pas-

quill [24]. His report identifies six stability classes and five wind speeds that characterize the

meteorological conditions that define these classes [25,26]. Using these conditions, we applied

hourly cloud cover and wind speed data retrieved from the National Oceanic and Atmospheric

Administration (NOAA) for the years 2012 through 2017. To ensure a complete set of weather

data for each year of the study, we chose to use data from one major airport in southwest PA,

the Pittsburgh Allegheny County Airport in West Mifflin, PA, in the model [27]. We were able

to establish hourly conditions over a year and apply the estimates to each residence in our
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sample, to determine an annual level of exposure for each residence. Estimates of annual aver-

age exposures were based on weather patterns for each year over the entire region.

After our screening model was established, we used the weather data to calculate hourly

concentrations from a reference well, estimated to emit 300 grams of a compound per hour, to

standardize the formula when calculating how other wells deviate from a given reference [23].

Once hourly concentrations were computed for the reference case, we calculated a 90th percen-

tile emissions concentration value (μg/m3) for distances of 0.5 km, 1 km, 2 km, 3 km, and 5

km in the four directional quadrants around the reference well. The resulting values represent

varying exposure levels experienced at a given residence living between 0.5–5 km from the ref-

erence well. The hourly emissions are assumed proportional to the 300 grams/hour reference.

Using the PA DEP data for the year corresponding to the respondent’s health assessment, the

emissions of carbon monoxide, nitrogen oxides, PM2.5, and VOCs in grams/hour were

summed into one total for each well.

Well sites are ubiquitous around residences in these counties, so we used the model to first

calculate a residence’s exposure for the four directional quadrants. Within a quadrant, the dis-

tance of each well from the residence was determined and, depending on the distance, the 90th

percentile concentration value was assigned to that well. Then, the total emissions from the

well, in grams/hour, was multiplied by the 90th percentile concentration value and divided by

300 grams/hour to derive the deviance from the reference in each quadrant. The outputs

give μg/m3 per well for each directional quadrant in a 5-km radius. The estimated emission

concentrations from each well, across all quadrants, were added together into an annual total

exposure value per residence. The total exposure value was used as the AEC measure in the

analysis.

Statistical analysis

All statistical analyses were executed in the R Project for Statistical Computing [28]. Model

comparisons were made using glmutli version 1.0.7.1 [29], and TITAN analyses with TITAN2

version 2.1 [30].

The analysis consisted of two approaches to address the research questions: generalized lin-

ear models (GLMs) to test the association between the number of symptoms reported and the

intensity of each exposure, and Threshold Indicator Taxa Analysis (TITAN) to predict which

specific symptoms were most likely to be reported with increasing intensity of each exposure

measure. Each individual symptom reported in the health assessment was binomially coded

per respondent with 1/0 for yes/no. An alpha level of< = 0.05 was used as a threshold for sig-

nificance in both tests.

Because the dependent variable followed a Poisson distribution, GLMs were used for

modeling. For each exposure GLM, a tool was used to automate statistical model selection by

generating all possible unique combinations of our demographic variables with each exposure

measure to identify the best-fit statistical model for each exposure measure against total num-

ber of symptoms. Our demographic variables included: age, sex, smoking status, and water

source. All demographic variables were included in the selection tool and, by default, 100

potential models were generated a priori to determine the best fitting models. To choose our

model, Akaike information criterion (AIC) values, with a correction for small sample sizes,

and number of terms for each output model were compared [31]. Lower AIC values are associ-

ated with simpler models that exclude irrelevant terms, so when comparing models, the model

with the lowest AIC is considered optimal [32,33]. The best model is the one with the lowest or

second-lowest AIC score and then statistically assessed for each exposure variable [34]. Inter-

actions between variables were excluded from the best model to increase model parsimony
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and only explore main effects. Zero-inflation was not required for our data as only 15% of the

sample reported no symptoms. To determine our radius distance around the home, we applied

GLM analyses using three spatial scales of cumulative well density: 1, 2, and 5 km. AIC crite-

rion was used to determine which scale to study.

To assess how individual symptoms were related to changing density (CWD and IDW) and

AEC, we applied the TITAN methodology. TITAN is a non-parametric analysis traditionally

applied in the ecological sciences, but increasingly applied in environmental science [35],

where the presence/absence of a species (also referred to as taxon) among different samples of

communities is used to assess nonlinear community-scale responses, both positive and inverse,

to changes in their environment. Environmental gradients are used in this process to express

how an exposure is increasing in the studied environment. The primary goal in TITAN is to

determine if there are levels of exposure along the gradient that influence a statistically signifi-

cant positive or inverse response and are associated with the presence or absence of one or

more specific species. The relationship of each species is assessed via an indicator value that

ranges from 0 to 100, with 100 representing a perfect indication of species-specific association

with the gradient. The TITAN analysis allows for the consideration of species that have low

occurrence frequencies to identify those that possess high sensitivity to the environmental gra-

dient. For example, Khamis et al. used the TITAN methodology to determine how reductions

in glacier melting influence the presence and absence of certain aquatic species in rivers and

lakes [36–38].

For this study, we defined communities as individual respondents and species as the spe-

cific symptoms reported to identify the degree to which each symptom represented a statisti-

cally significant indicator of UOGD exposure (CWD, IDW, and AEC). To remove symptoms

with frequencies too low to detect a pattern, we only included symptoms reported five or more

times into the TITAN analysis (n = 50) [39]. Indicator values were considered statistically sig-

nificant at an α of 0.05, and resulting symptoms were organized by those having a frequency

greater than 10 and a z-score greater than or equal to 1. To our knowledge, this is the first use

of TITAN methodology in public health research (S1 Appendix).

Results

Symptom reporting characteristics

In this convenience sample of 104 adults who presented health concerns about UOGD, 59%

were female with a median age of 57. In this predominantly rural area, only a third reported

using municipal water for household use with the majority relying on private wells, cisterns, or

springs. Smoking status was available for 78 of the 104; of those, 40% reported either current

or former smoking. The number of individual symptoms reported by individuals ranged from

0 symptoms to 36, with mean of 7 symptoms and a standard deviation of ± 7.7 symptoms per

person. Table 1 shows the most frequently reported symptoms.

Generalized linear models: Symptom total

Initial GLMs to test the three spatial scales against symptom total showed that models using 5

km as the radius had the lowest AIC value and were therefore selected in our study (1 km:

AIC = 1095.26, 2 km: AIC = 1039.73, 5 km: AIC = 1027.65). Between the three exposure mea-

sures, Pearson correlation coefficients ranged from 0.03 to 0.60; thus, all three were tested

independently against total reported symptoms. Final GLMs for each exposure measure

included sex and smoker status as statistically significant individual predictors, while age was

not found to be statistically significant. Sex and smoker status were modeled as categorical
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variables, while age was treated as continuous. Water source was excluded during the model

selection process and was not included in the final models.

When controlling for age, sex, and smoker status the exposure measures produced the fol-

lowing results: CWD, IDW, and AEC predicted total reported symptoms (p<0.001, p<0.001,

p<0.05 respectively). Based on comparisons of AIC values, CWD (AIC = 780.91) appeared to

be more closely related to adverse health symptom reporting compared to IDW

(AIC = 803.13) and AEC (AIC = 831.95; Table 2; Fig 2).

Table 2. GLM model results for each exposure variable against total reported symptoms.

Model Variable Estimate Std. Error Z statistic P value

CWD
Intercept 1.339 0.257 5.220 <0.001

Ever Smoked 0.520 0.088 5.921 <0.001

Sex 0.486 0.094 5.156 <0.001

CWD 0.840 0.102 8.267 <0.001

Age -0.002 0.004 -0.605 0.545

Residual degrees of freedom 73

AIC 780.91

IDW Score
Intercept 1.407 0.253 5.563 <0.001

Ever Smoked 0.492 0.088 5.615 <0.001

Sex 0.487 0.094 5.184 <0.001

IDW Score 0.015 0.002 6.245 <0.001

Age -0.002 0.004 -0.461 0.645

Residual degrees of freedom 73

AIC 803.13

AEC
Intercept 1.508 0.250 6.029 <0.001

Ever Smoked 0.544 0.087 6.252 <0.001

Sex 0.550 0.094 5.855 <0.001

AEC 5.74 x10-6 2.35x10-6 2.444 <0.05

Age -0.003 0.004 -0.758 0.449

Residual degrees of freedom 73

AIC 831.95

https://doi.org/10.1371/journal.pone.0237325.t002

Table 1. Ten most frequently reported symptoms by number and percent of respondents (n = 104).

Symptom n n (%)
Sore Throat 34 33

Headache 34 33

Difficulty Speaking 34 33

Cough 32 31

Itchy or Burning Eyes 30 29

Stress 30 29

Shortness of Breath/Difficulty Breathing 26 25

Anxiety/Worry 26 25

Fatigue 21 20

Sinus Infection 20 19

https://doi.org/10.1371/journal.pone.0237325.t001
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TITAN analysis

The TITAN analysis identified multiple statistically significant symptoms along gradients of

CWD, IDW, and AEC (α< = 0.05). The higher the indicator value, the more likely the symp-

tom is to be seen with an increase in exposure. Twenty-wo symptoms were associated with the

gradient of CWD (Fig 3) with itchy or burning eyes as the strongest, positive indicator value

along the gradient (indicator value = 59.31), followed by stress (indicator value = 47.17) and

dry skin (indicator value = 44.44). Headache, difficulty sleeping, sore throat, stress, and itchy

or burning eyes were the five most frequent symptoms in this gradient. Of the twenty-two sta-

tistically significant symptoms, approximately, 27% were categorized as EENT symptoms, fol-

lowed by nerve and muscle symptoms at 27% as well. Four symptoms were inversely

associated with the gradient. Although this is counterintuitive, given that 50 symptoms were

Fig 2. Exposure model plots. Poisson distributed generalized linear model for total symptoms and a) CWD, b) IDW

score, and c) AEC as the exposure measure. A 95% confidence interval was applied around the regression line.

https://doi.org/10.1371/journal.pone.0237325.g002

Fig 3. CWD TITAN results. Individual symptoms by indicator value along the gradient of CWD. Indicator values

range 0–100, with 100 being a perfect association with the gradient. Bar width represents symptom frequency.

https://doi.org/10.1371/journal.pone.0237325.g003
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assessed along each gradient, one would expect a small number of symptoms be statistically

significantly associated with gradients as type-I errors.

Twenty-four symptoms were statistically significantly associated with the gradient of IDW

(Fig 4), with difficulty sleeping as the strongest, positive indicator (indicator value = 46.6), fol-

lowed by stress (indicator value = 45.58), and headache (indicator value = 37.7), though this

particular symptom was inversely associated with the gradient. In addition to headache, diffi-

culty speaking, and rash were also inversely associated with the gradient. The top five most fre-

quent symptoms were the same as those in the gradient of CWD. Of the twenty-four

statistically significant symptoms, approximately 25% were EENT; 25% were nerves and mus-

cle symptoms; 17% were psychological symptoms.

Seventeen symptoms were statistically significantly associated with the gradient of AEC

(Fig 5). Difficulty sleeping represented the strongest, positive indicator value (indicator

Fig 4. IDW TITAN results. Individual symptoms by indicator value along the gradient of IDW. Indicator values

range 0–100, with 100 being a perfect association with the gradient. Bar width represents symptom frequency.

https://doi.org/10.1371/journal.pone.0237325.g004

Fig 5. AEC TITAN results. Individual symptoms by indicator value along gradient of AEC. Indicator values range

0–100, with 100 being a perfect association with the gradient. Bar width represents symptom frequency.

https://doi.org/10.1371/journal.pone.0237325.g005
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value = 61.58), followed by anxiety/worry (indicator value = 44.29), and depressed mood (indi-

cator value = 37.36) which were both positively associated. Two symptoms were significantly

inversely associated with the gradient of AEC. The top five most frequent symptoms of this

gradient were: difficulty sleeping, anxiety/worry, cough, stress, and shortness of breath (diffi-

culty breathing). Of the seventeen significant symptoms, roughly 29% were lung and heart

symptoms; 29% were psychological.

Discussion

Despite a high degree of inherent complexity in associations between health and UOGD, a

growing body of evidence, including our findings, suggests that the impacts of UOGD are het-

erogeneous and consistently detectable even at distances considered safe by some regulations.

Determining the best method for quantifying UOGD intensity from a health standpoint is still

unknown; however, we detected links between each exposure measure and total symptoms

reported, including effects detected at a farther range (5 km) than reported in other studies

[15,19]. Variation in UOGD operations can include the size, operation duration, and heteroge-

neity in chemicals used which adds complexity when attempting to relate operations to health

symptoms. Discerning other influences on health that are not UOGD related or interact with

UOGD in ways that have not yet been studied is an additional challenge. Other environmental

stressors compounded with UOGD, or the inclusion of other UOGD infrastructure like pipe-

lines and compressor stations, further such complexity. The use of amended IDW metrics,

such as employed in Koehler et al. [40], attempts to expand IDW by including well develop-

ment phases to better define exposure. Regardless, the consensus of studies reporting on health

impacts around UOGD infrastructure suggests consistency between variables. The aggregate

of these analyses suggests that regardless of how exposure to UOGD intensity is quantified, the

impacts may occur at broad spatial scales and using distance to just the nearest UOGD facility

may underrepresent risks to health.

The method of estimating UOGD intensity appears to affect the strength of associations

between exposure and health outcomes in our study, but overall, a positive relationship was

found between CWD, IDW, and AEC and total reported health symptoms within a 5-km

radius of respondent homes. Brown et al. [23] did not find an association with the median

AEC. This apparent inconsistency may be explained by their use of the median AEC, rather

than the 90th percentile AEC used in this study.

Our model accounts for variation in the results that may be linked to our demographic vari-

ables. By doing so, our model terms related to exposure can account for the weight of UOGD

after the variability of our demographic variables has been factored out. Relative to AEC and

IDW measures, our findings indicate that CWD in proximity to residences, which constitutes

a more simplistic measure, was more closely linked to total symptom reporting (Fig 2A). Expo-

sure measures like CWD and IDW are considered proximity metrics and do not define an

exact exposure pathway from source to residence; however, we hypothesize that adverse health

symptoms could occur through inhalation of chemicals in UOGD emissions and that an

increase in the density of wells would, together, create an exposure route. Given that both

proximity and a better-defined exposure measure of AEC were significant, future studies

should explore links between these measures on their own.

Our challenge to predict adverse health symptoms may reflect the general challenge of con-

densing well operations into a single, simple metric due to variation in each operation. Studies

often apply only one metric for exposure, which could potentially overlook effects that may be

seen if the measure were more precise and if more detailed UOGD data were readily available.

Regardless of our findings, additional inquiries that compare health outcomes associated with
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exposure magnitude coupled with real-time live air monitoring are needed to determine

which measure best quantifies exposure.

Our results also caution against limiting investigations of UOGD impacts on health

within symptom categories due to the mixed suite of effects reported by respondents. For

example, our model assessing the relationship between total symptoms and IDW, and total

symptoms with AEC, suggested relatively limited predictability (Fig 2B & 2C). However, the

respective TITAN analyses included nearly as many significant symptom associations com-

pared to the CWD model (24 and 17 statistically significant indicators, respectively). Other

studies have limited analyses to symptom categories, which may lead to underreporting of

impacts to health across the literature, as individual symptoms have been classified under

different categories [13,15,41]. A closer look at category composition in other studies

revealed that itchy or burning eyes, sinus pain, fatigue, stress, and anxiety/worry are specific

symptoms reported by individuals, consistent with our findings in the TITANs

[14,15,42,43]. Psychological symptoms, such as stress and anxiety/worry, were included in

the top five symptoms either together or separately in each of our models, with the highest

percentage of psychological symptoms found in the gradient of AEC. Studies have found

that increased air pollution can be linked to psychological distress, while others have found

that increased stress, depression, and anxiety can be experienced by people living in com-

munities with UOGD [14,15,42–44]. Furthermore, Albrecht [45] notes that environmental

change can cause human distress, which is supported by Lai [46] who found that negative

perceptions of UOGD were associated with negative psychological states. The individual

symptom counts increased along exposure gradients (Figs 3–5), suggesting subtler effects

when compared to aggregate symptom total (Fig 2).

Our results also caution against emphasizing a single symptom to represent detrimental

health in association with UOGD. Given the suite of various chemicals applied in UOGD oper-

ations and statistically significant interactions between UOGD exposures and demographic

variables as highlighted by our GLM models, substantial weight of evidence is needed to con-

clude that a single symptom is likely to increase with UOGD intensity. The TITAN analyses

identified four, three, and two symptoms that were statistically inversely related to the gradi-

ents of CWD, IDW, and AEC. Regardless of these anomalies, 18 out of 22, 21 out of 24, and 15

out of 17 statistically significant indictor symptoms were positively associated with the gradi-

ents of CWD, IDW, and AEC which contributes further evidence that UOGD impacts health

in a heterogeneous manner.

Limitations & recommendations

As with any work attempting to relate the severity of health impacts to an environmental

stressor, our study findings must be considered in the context of the study limitations. Our

convenience sample consisted of individuals who presented to EHP because they had concerns

about health effects associated with exposure to UOGD, limiting generalizability. Additionally,

the health records lacked detailed information about symptoms onset, duration, and severity,

or the nature of the symptom (i.e., episodic or chronic). Our lack of detailed information in

our symptom data is a limitation of this study. The health records are also subject to recall

bias, with the potential for over-reporting of symptoms particularly since respondents pre-

sented due to concern about health impacts of UOGD. One mitigating factor is that at the time

of reporting their symptoms the respondents did not know their records would be reviewed

for this study, nor did they know the exposure measures that would be used. Future studies

should collect detailed symptom data and exposure measures in real-time to address these

issues.
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A further limitation of our study concerns available exposure data. Not all sources of emis-

sions are included in data released by regulatory agencies, and activities such as flaring, off-gas-

sing from contaminated water, and truck traffic may contribute to total emission rates, but are

not currently reported [47–49]. In addition, we were limited by available emissions data,

which is reported on an annual basis. Some studies suggest that of the development and pro-

duction stages, the hydraulic fracturing phase of development and the flowback phase of pro-

duction account for the highest levels of emissions [3,40,50] and future work should include

developing exposure measures that capture and isolate these stages.

The air-and-exposure screening model may have also underestimated actual emission con-

centrations because the model assumes emissions are constant over a year for all sources and

does not factor in varying levels of emissions associated with well development phase. Further-

more, our model treats the trajectory of each well’s emissions plume equally when summed

into one AEC value. Future work should factor wind direction into the model to estimate and

correct for the influence wind direction plays on plume movement and concentration to

improve upon the AEC value. Additionally, the box model does not correct for influences of

topography [25], so we could not compare emission concentrations of various elevations.

Regarding weather data, one limitation was that weather data was only taken from one airport

for our sample.

Conclusion

This study was unique in its attempt to use an analytical tool taken from ecological research to

determine specific symptom sensitivity to changes in CWD, IDW, and AEC from UOGD. The

consistency in relationships between UOGD operations, regardless of how UOGD is quantified,

and adverse health outcomes across the literature suggests that increases in symptoms could be

related to higher exposure to emissions or chemicals used on the well pad [3,5,11,50]. The

impact of fracking on health requires ongoing research because of continued industry growth,

the relatively young age of the field, and the potential for chronic or latent illness, like cancer or

developmental health impacts, to result from long-term exposure [1,51]. Our results do not con-

firm direct causal links between UOGD exposure and reported symptoms, but they do suggest

that living in proximity to wells may be associated with health symptoms. Our findings suggest

that an estimation of exposure that relies only on proximity may be simplistic, particularly in

communities with increasing density of wells at 5-km scales, and that a deeper understanding of

emissions composition and potency at the residence level is warranted. Future research should

examine the question of how the aggregation of exposure affects health.

Supporting information

S1 Appendix. TITAN example code and explanation. Lines 7–13 prepare a sample dataset of

twenty potential symptoms and fifty individual respondents to mimic a subset of the data used

in this study. For each respondent, 1s and 0s were used randomly for each symptom. A 1

means they did have that symptom, 0 means they did not. Now we have a dataset of fifty

respondents and what symptoms they did or did not have. Line 16 creates a randomized list of

exposure, one for each of the fifty respondents. In our study, each respondent had a measure

of cumulative well density (CWD), an inverse distance weighting (IDW) score, and a measure

of estimated annual emissions concentration (AEC). Line 16 creates an exposure variable that

ranges from 0 to 50 (no units), with 0 being no exposure and 50 being representative of high

exposure, though in our sample there was no limit to how high an exposure measure could go.

Line 19 uses titan() to run the TITAN analysis, taking the reported symptoms and exposure

values to determine if certain symptoms occur more or less at different levels of exposure. For
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example, when the exposure measure reaches 12, the model is looking for any symptoms that

stand out as occurring more frequently at that exposure level. Indicator values (range 0–100)

are used to score each symptom’s relationship to that exposure level, or gradient. A high indi-

cator value shows a strong relationship with the gradient at a certain level. Then, the model

determines if that relationship is positive or inverse. In ecological studies, one might study

how changes in dissolved oxygen (DO) in a pond ecosystem cause certain species to die off or

thrive as levels of DO change. When we begin to see a certain species appear in the pond, we

can hypothesize that there may also be a change in DO as well since that species is an indicator

of a certain threshold, or level of DO. Lines 22–29 takes information from the TITAN analysis

and creates a table. For this table, the rows each represent the different symptoms, while col-

umns are information pertaining to Indicator Value, the frequency of the symptom, p-values,

whether the symptom is positively or inversely associated with the gradient, and the z-score.

Using these parameters, we begin to filter out symptoms that were infrequent (line 25) and can

also filter out insignificant symptoms or symptoms with low z-scores (lines 40–41). The latter

two were done in our study but did not make sense for this sample data. Lines 34–36 construct

the final plot we used to visualize the results of the TITAN analysis. In the plot, there are ten

symptoms positively associated with the gradient with indicator values ranging from 32 to 71.

The same goes for the inversely associated symptoms. For the plots in our study, we added

additional characteristics like colors to group symptoms into categories and using the width of

each bar to represent the frequency of symptoms being reported.
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