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Synopsis There have been a number of attempts to explain how crocodylian bite-force performance covaries with cranial

form and diet. However, the mechanics and morphologies of crocodylian jaws have thus far remained incongruent with

data on their performance and evolution. For example, it is largely assumed that the functional anatomy and performance

of adults tightly fits the adult niche. At odds with this precept are groups with resource-dependent growth, whose juvenile

stages undergo shifts in mass, morphology, and resource usage to overcome strong selection related to issues of small

body size, as compared to adults. Crocodylians are an example of such a group. As living suchians, they also have a long

and fossil-rich evolutionary history, characterized by analogous increases in body size, diversifications in rostrodental

form, and shifts in diet. Here we use biomechanical and evolutionary modeling techniques to study the development and

evolution of the suchian feeding apparatus and to formally assess the impact of potential ontogenetic-evolutionary

parallels on clade dynamics. We show that patterns of ontogenetic and evolutionary bite-force changes exhibit inverted

patterns of heterochrony, indicating that early ontogenetic trends are established as macroevolutionary patterns within

Neosuchia, prior to the origin of Eusuchia. Although selection can act on any life-history stage, our findings suggest that

selection on neonates and juveniles, in particular, can contribute to functionally important morphologies that aid indi-

vidual and clade success without being strongly tied to their adult niche.

Introduction

Suchia (Reptilia: Archosauria; sensu Butler et al.

2011; Nesbitt 2011) is a 240-million-year-old clade

primarily comprised of predatory taxa, represented

today by the crown clade Crocodylia (alligators, cai-

mans, crocodiles, and the Indian and Malay [‘‘false’’]

gharials; Gatesy et al. 2004). Crocodylians stand out

among living vertebrates for their exceptional abso-

lute bite forces, which can reach higher than 16,000

N in the largest forms (Crocodylus porosus; Erickson

et al. 2012). There have been a number of attempts

to explain how crocodylian performance covaries

with cranial form and diet (Busbey 1995; McHenry

et al. 2006; Pierce et al. 2008); however, the mechan-

ics and morphologies of their jaws have remained

incongruent with data on performance and evolution

(Erickson et al. 2012, 2014).

Extant adult crocodylian rostrodental morphotypes

are commonly considered ecomorphs (Brochu 2001),

broadly divisible into four categories: taxa with rostra

that are (1) slender (e.g., Crocodylus johnsoni, Gavialis

gangeticus), (2) intermediate (e.g., Alligator mississip-

piensis, C. crocodylus), (3) blunt (e.g., Caiman latiros-

tris, Osteolaemus tetraspis), or (4) dorsoventrally

vaulted (e.g., Paleosuchus palpebrosus, P. trigonatus).

As ecomorphs, the functional arrangement of the

adult feeding system is thought to directly facilitate

performance metrics that tightly fit the adult niche

(Wainwright 1988; Norton et al. 1995). Based on

this paradigm, attributes for niche-specific prey
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capture, such as skull strength, rostral bending, and

maximum bite-force capacity, have long been ex-

pected to covary (Busbey 1995; McHenry et al.

2006; Pierce et al. 2008; see Erickson et al. 2012 for

elaboration). This covariation is thought to be central

to an understanding of crocodylian ecology, as ros-

trodental performance should physically dictate the

range of food resources available to each ecomorph

(sensu Arnold 1983). In general, this is consistent with

adult prey preferences: slender-snouted forms typically

feed on small, compliant prey (Pooley 1989; Webb

and Manolis 1989; Thorbjarnarson 1990); forms

with intermediate rostra take nearly any available in-

vertebrate and vertebrate taxon (Pooley 1989; Webb

and Manolis 1989); blunted-rostrum ecomorphs con-

sume durable food resources like mollusks (Pooley

1989; Webb and Manolis 1989; Borteiro et al. 2009);

and the paleosuchids, with the dorsoventrally deepest

rostra, hunt primarily terrestrial prey (e.g., porcu-

pines, snakes; Pooley 1989; Webb and Manolis 1989;

Magnusson and Lima 1991).

Surprisingly, however, recent experimental work

by Erickson et al. (2012, 2014) has challenged this

ecomorphological paradigm by documenting that

crocodylian bite-forces do not vary according to ros-

tral phenotype. Instead, measured performance re-

flects only differences in body size, even after

accounting for phylogenetic relatedness. This pattern

suggests that many species—particularly those with

smaller adult body sizes or slender rostra—are over-

performers (sensu Carrier 1996), capable of generat-

ing (1) kilogram-for-kilogram bite forces that are

comparable to those of morphologically robust

taxa, which secure vastly different prey items

(Grenard 1991; Erickson et al. 2014), and (2) adult

tooth pressures far in excess of the ultimate shear

strength of cortical bone (the most durable prey tis-

sues processed by crocodylians; Erickson et al. 2012;

Gignac and Erickson 2015). Although these results

are non-intuitive when considering rostrodental

morphology, their clade-wide ubiquity may result

from two factors. First, there is strong conservation

in the size and anatomical configuration of the jaw-

closing musculature, which is relatively invariant

across nearly all species examined to date

(Iordansky 1964; Schumacher 1973; Sinclair and

Alexander 1987; Busbey 1989; Cleuren et al. 1995;

Endo et al. 2002; Holliday and Witmer 2007; Bona

and Desojo 2011). Second, because crocodylians un-

dergo resource-dependent growth, the majority of

selection on the feeding apparatus is unlikely to be

concentrated on adult phenotypes. Instead, homoge-

neous performance across adult ecomorphs may, in

fact, be shaped by selective pressures placed on

juveniles. Even in cases of male mate competition,

in which jaw clapping, mock biting, and forceful

biting act as a signals of social dominance (Garrick

and Lang 1977), the highest bite forces of competing

adults are already established through trajectories of

ontogeny.

Outside of Crocodylia, it is also largely assumed

that adult forms tightly fit their adult niche

(L’Héritier and Teissier 1935; Carrier 1996; Loreau

2000; Pocheville 2014). However, once morphology

and performance are quantified, this assumption can

appear inconsistent, especially in taxa with resource-

dependent growth (e.g., reptiles, fishes) that pass

through significant selective filters during ontogeny

(Vincent et al. 2007; Erickson et al. 2014; Herrel et

al. 2016). For these taxa, the functional morphology

of adults may better reflect selection for juvenile per-

formance, rendering functional extremes in mature

ecomorphs that do not couple with their preferred

niche (i.e., due to ontogenetic inertia; Gignac and

Santana 2016). This incongruence is well-exemplified

by extant suchians, which have extreme performance

capacities (for generating bite-forces) and strong se-

lection winnowing early ontogenetic stages. Although

crocodylians are long-lived species (425 years;

Grenard 1991; Erickson and Brochu 1999), they

have type III survivorship curves (Webb and

Manolis 1989; Abercrombie et al. 2001). This equates

to an incredibly small percentage of each cohort sur-

viving to successful reproduction, with most small-

sized individuals succumbing to environmental fac-

tors (e.g., flooding, drought, exposure), competition

for food resources, or predation by larger animals

(Abercrombie 1989; Abercrombie et al. 2001).

Survivorship beyond the first year is limited to

20% of a hatching cohort. Only about 5% of the

original generation survives to sexual maturity, and

that value is halved again for those few individuals

that reproduce successfully (Webb and Manolis 1989;

Abercrombie et al. 2001). Survivorship is ultimately

achieved by those that reach larger body sizes faster.

Against this backdrop of strong selection, neonate

and juvenile crocodylians must undergo several

major dietary transitions in their efforts to reach

the safety of large body sizes. All species begin life

as opportunistic feeders, foraging largely on insects

(Grenard 1991). During their first year of life, how-

ever, juveniles rapidly gain access to a wider range of

small prey items such as fish, frogs, small reptiles,

and crustaceans. As the jaws and teeth approach

the adult configuration (at �� 90 cm total length;

Gignac and Erickson 2015), individuals become

able to consume more robust prey such as birds,

small mammals, and mollusks. With increasing
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body sizes brings the additional capability of sub-

duing large game (e.g., deer, wild boar). Finally,

the most massive individuals are able to feed

on the most durable prey, capable of crushing even

the thick, bony armor of turtles (Dodson 1975;

Grenard 1991; Abercrombie et al. 2001; also see

Fig. 5 in Erickson et al. 2003). Thus, not only does

racing to a larger body size put an individual at a

selective advantage, but the very race itself is won

via an exponential increase in bite forces, rendering

mature adult jaws that are more forceful than

necessary.

However, when the evolution of suchia is consid-

ered, repeated convergence of rostrodental pheno-

types throughout the history of the clade would

appear to support the hypothesis that selection has

acted on adult rostrodental patterns. The conspicu-

ousness of rostral convergence has been a major

focus of evolutionary biomechanists, who tend to

test hypotheses about how selection has targeted

adult ecomorphologies specifically (Daniel and

McHenry 2001; McHenry et al. 2006; Pierce et al.

2008; Erickson et al. 2012; Walmsley et al. 2013).

Nevertheless, some aspects of suchian evolution

seem to mirror ontogeny. For example, there is sub-

stantial overlap in ontogenetic and evolutionary body-

size trends. Living crocodylians are unique among

extant tetrapods for undergoing several-thousand-fold

increases in body size during ontogeny (Webb et al.

1983; Britton et al. 2012). A similar size increase is also

seen spanning adults of the earliest fossil suchians, like

the diminutive Gracilisuchus of the Early Triassic, to

the gigantic salt water crocodile of today (C. porosus;

Webb et al. 1983; Britton et al. 2012). This ontoge-

netic-evolutionary overlap extends to shifts in cranio-

facial robustness, reconstructions of the jaw-closing

musculature, tooth form, and diet. Since we now

know that bite force is demonstrably independent of

snout shape in modern crocodylians, which pattern—

adult ecomorphology or ontogenetic inertia—is sup-

ported when only the mechanical drivers of bite

force are examined evolutionarily?

In this study, we seek to formally compare onto-

genetic and evolutionary allometry of bite-force cor-

relates to help resolve this apparent discrepancy

between performance data and ecomorphological

convergence. We used only bite-force-relevant osteo-

logical proxies that were derived from models of how

bite forces are generated in living suchians. This

allowed us to evaluate shifts in performance along

both evolutionary and ontogenetic progressions. If

adult over-performance reflects heavy selection on

juvenile performance, then this should appear in

the fossil record as more rapid evolutionary rates

for bite force when compared to rates of body-size

evolution (Klingenberg 1998; Bonduriansky and Day

2003). A pronounced establishment of such evolu-

tionary heterochrony would signal the importance

of positive bite-force allometry in suchian evolution,

irrespective of repeated segregation of skull shapes

into well-defined ecomorphologies. Using phyloge-

netic comparative methods, we tested the hypothesis

that ontogenetic allometry of bite forces in living

suchians mirrors patterns of evolutionary rate

changes across their long diversification. We identi-

fied the onset of evolutionary heterochrony near the

origin of Eusuchia, suggesting that modern patterns

of ontogeny can be dated to within Neosuchia. Our

findings inform how historical changes in develop-

ment can manifest as shifts in performance when

framed in the context of functional heterochrony,

ontogenetic inertia, and evolutionary legacy.

Materials and methods

To examine trends in suchian bite-force evolution,

we combined pre-existing biomechanical analyses

with phylogenetic comparative methods. We identi-

fied osteological proxies for bite-force capacity and

documented the developmental and evolutionary his-

tories of these structures. We used these to model the

strength of evolutionary patterns of bite-force

changes, which were then compared to bite-force al-

lometry during ontogeny.

Phylogenetic analysis

We generated a Bayesian, time-calibrated phylogeny

of Suchia to serve as a basis for comparative analysis.

We used the character matrix of Turner and Sertich

(2010), which contains 81 taxa and 301 discrete mor-

phological characters. Time calibration was per-

formed using first-and-last occurrence data

downloaded from the Fossilworks Database (see

Fossilworks References in Supplementary Material).

This analysis is intended to provide meaningful

branch lengths calibrated by both time and character

change. For consideration of interspecies relation-

ships, see Turner and Sertich (2010), Pol et al.

(2014), and Turner (2015). For further details re-

garding our phylogeny-building protocol, see

Supplementary Material.

Osteological proxies of bite-force performance and

body size

Identification of osteological proxies for bite-force

performance involved developing a functional-ana-

tomical model of bite-force generation in A. missis-

sippiensis (Gignac and Erickson 2016, forthcoming).
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To ensure ontogenetic applicability, this model was

tested against measured maximum bite-forces for a

developmental series of the same taxon (Gignac and

Erickson 2016, forthcoming). Of the osteological el-

ements involved in bite-force generation, the ante-

rior–posterior length of the retroarticular process

(RAP) was identified as correlating strongly to mea-

sured maximum bite forces in living crocodylians,

regardless of ontogenetic stage (Pearson’s product

moment correlation¼ 0.97; Supplementary Table

S5). Within the crocodylian jaw adductor system,

the RAP is the insertion for the two most massive

muscles (Musculus pterygoideus dorsalis and ventralis;

Lakjer 1926; Holliday and Witmer 2007), such that

RAP length acts as the anatomical in-lever through

which 60–70% of bite-force generation is transmitted

(see Table 6 in Gignac and Erickson 2016, forthcom-

ing). RAP length, therefore, was selected as the focal

osteological proxy of our models. To account for

body size, we measured head width (HW) across

the quadrate-articular joint, as this measurement

correlates strongly to body mass among extant cro-

codylians (Pearson’s product moment correla-

tion¼ 0.99; Supplementary Table S6). To account

for large differences in body size among suchians,

the natural logs of all measurements were used for

subsequent evolutionary and ontogenetic modeling.

For complete details on measurement protocols and

criteria, see Supplementary Material.

Specimen sampling

We measured RAP and HW in a developmental

series of wild A. mississippiensis (28–364 cm total

length; n¼ 34). Each specimen was captured alive

either by nuisance alligator hunters licensed through

the Florida Fish and Wildlife Conservation

Commission (FWC) in Leon and Jackson Counties,

FL, by FWC researchers in Alachua and Marion

Counties, FL, or by research staff of the Louisiana

Department of Wildlife and Fisheries in Cameron

Parish, LA. Animal protocols were approved by the

Animal Care and Use Committees of the Florida

State University, Tallahassee, FL, USA (Permit

Number: 0011) and Stony Brook University, Stony

Brook, NY, USA (Permit Number: 236370-1). For

details on measuring RAP length in living animals,

see Supplementary Material. No animals were injured

during this research.

We identified fossil taxa from across our suchian

phylogeny that were complete enough for evolution-

ary analysis (n¼ 36). These specimens have fully pre-

served RAP lengths and HWs. Specimens were

sourced from museum collections (Supplementary

Table S7) or figures available in the literature

(Supplementary Table S8). The diversity of suchians

with available RAP and HW data is spread evenly

across the phylogeny (early Suchia n¼ 4/12;

Notosuchia n¼ 13/29; Neosuchia n¼ 18 [Neosuchia

A n¼ 8/15; Neosuchia B n¼ 10/22]) and represents

the full range of known suchian feeding ecologies,

including piscivores, generalist predators, hypercarni-

vores, omnivores, and herbivores. Species not repre-

sented in the morphological dataset were pruned from

the original phylogeny (see Supplementary Fig. S1).

Modeling evolutionary tradeoffs

To identify shifts in evolutionary rates, we modeled

the changes in RAP length relative to body size

throughout the evolution of Suchia. All calculations

were performed in R, using the packages ‘‘evomap,’’

‘‘phytools,’’ ‘‘ape,’’ ‘‘diversitree,’’ and ‘‘geiger’’ (respec-

tively: Smaers 2014; Revell 2012; Paradis et al. 2004;

FitzJohn 2012; Harmon et al. 2008). This first involved

assessing the fit of standard models for continuous

phenotypic character change and identifying the pres-

ence and probability of shifts in the adaptive landscape

of RAP length and bite forces. These preliminary anal-

yses are described in detail in the Supplementary

Material. According to the best-fit model of character

change (Supplementary Table S1), we derived ancestral

character states and evolutionary rates for both RAP

and HW, using an adaptive peak, multiple variance

Brownian motion (mvBM) model (adaptive peak:

Smaers and Vinicius 2009; mvBM: Smaers et al.

2016). This model allows variable rate estimation on

individual branches, which renders it well suited for

modeling evolution of traits that are subject to multi-

ple selective pressures (Smaers and Vinicius 2009;

Smaers et al. 2012; Smaers and Soligo 2013;

Goswami et al. 2014; Smaers et al. 2016). The flexibil-

ity offered by a model that infers variable evolutionary

rates helps mitigate the inaccurate tracing of character

history inherent in methods that rely on a single evo-

lutionary model (e.g., directional, Brownian motion or

single-optimum Ornstein-Uhlenbeck; Schluter et al.

1997; Garland et al. 1999; Oakley and Cunningham

2000; Webster and Purvis 2002; Finarelli and Flynn

2006). The mvBM model uses a Bayesian Markov

chain Monte Carlo resampling protocol (10,000,000

iterations) to estimate ancestral states at internal

nodes and to quantify rates of morphological change

along each branch (Smaers et al. 2012, 2016). For

complete details of evolutionary model fitting and se-

lection, see Supplementary Material.

Following rate and character value estimations, we

conducted reduced major axis regression of RAP
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length and HW evolutionary rates (Smaers et al.

2012). The residuals of these rates were then plotted

against each other to create a plot of relative evolu-

tionary rate space (Fig. 1; Smaers et al. 2012).

This rate space represents tradeoffs encapsulated

by six possible evolutionary scenarios (Fig. 1).

Disproportionately higher bite forces (when com-

pared to body size) can be achieved under three sce-

narios: (1) accelerated increase (AI), whereby the

RAP increases faster than body size; (2) decelerated

decrease, whereby the RAP decreases slower than

body size; and (3) complete separation of the

traits, such that pure RAP elongation is achieved.

Conversely, a relatively lower bite forces can be

achieved under inverse scenarios—a pattern not

identified for direct ancestors of extant suchians.

These relative changes for each trait are then

mapped onto each branch in the phylogeny (Fig. 2;

Smaers and Vinicius 2009). For this study, only AI is

considered, as this scenario represents the most

rapid, positive bite-force changes (i.e., the scenario

that most closely mirrors bite-force allometry

throughout development).

Ontogenetic versus evolutionary heterochrony

Heterochrony in an evolutionary context manifests as

divergent trends in trait comparisons across evolution-

ary and ontogenetic scales (Gould 1977, 1992;

Klingenberg 1998; McKinney and McNamara 1991).

Ontogenetic inertia stands to unite proximate develop-

mental patterns of heterochrony with evolutionary

shifts that occur in deep time using a framework

that promotes the impacts of the former on outcomes

the latter. In this study, evolutionary heterochrony was

modeled using the values for RAP length and HW

calculated from ancestral character estimation (de-

scribed above). We considered each direct ances-

tral node for Alligator (indicated by asterisks in our

phylogeny, Fig. 2; labeled by node number in

Supplementary Fig. S2). Including measurements for

Alligator, 15 ancestral values were derived (Supplemen-

tary Table S9). For comparison between ontogenetic

and evolutionary heterochrony, ratios for average

RAP:HW (each as natural log values to account for

orders-of-magnitude differences in size) were plotted

across 10 sequential stages (Supplementary Table

S10). These stages are arbitrary to a degree for the

ontogeny dataset, due to the indeterminate growth of

crocodylians. For the evolutionary dataset, each pro-

gressive stage represents stepwise transitions within

the suchian phylogeny, with the earliest ancestral

nodes in bin 1 and extant Alligator in bin 10 (Supple-

mentary Table S9). We used a ratio of two linear mea-

surements to facilitate more direct comparisons of

heterochrony between our ontogenetic and evolution-

ary datasets, and because any increase in the value of

RAP:HW is indicative of a relatively longer RAP, and,

therefore, relatively higher bite-force capacities.

Results

In terms of bite-force evolutionary rates, there are

taxa that fall into each tradeoff category (Fig. 2A).

Lineage-specific evolutionary rates prior to and

within Eusuchia, in particular, were dominated by

AIs in RAP length (Fig. 2B). We found that

RAP:HW ratios can be characterized by heterochro-

nic patterns on both developmental and evolu-

tionary timescales although the pattern is inverted

(Fig. 3). For ontogenetic heterochrony, RAP allom-

etry rapidly increases during early developmental

stages, followed by decelerated RAP growth into ma-

turity. The direct ancestors of Alligator demonstrate

conservation of relative RAP growth along most

FIG. 1 Evolutionary rate-space diagram, illustrating evolutionary

tradeoffs between RAP length and body size (using HW as a

proxy) change. The top left half of the plot indicates relative

increase in RAP length, and, therefore, higher bite-forces. The

bottom right half indicates relative decrease in RAP length, and

therefore lower bite-forces. Because this study investigated the

drivers of bite-force increase, negative shifts in RAP length are

not considered here. There are three scenarios that indicate a

positive departure from allometry: decelerated decrease (DD),

whereby RAP length is decreasing more slowly than body size;

separation, whereby the RAP elongates while body size de-

creases; and AI, whereby RAP length is increasing faster than

body size. Of these, AI most closely mirrors the strongly positive

changes seen in bite-force across ontogeny. Schematic redrawn

from Smaers et al. (2012).
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ancestral stages, with a pronounced acceleration

starting in advance of the basal node for Eusuchia

(see Supplementary Material for prior probabilities;

Supplementary Table S4).

Discussion

The results of our analyses suggest that two major

trends describe the evolution of suchian bite-forces

along the lineages leading to extant Alligator: (1) sta-

bilization of RAP length during the group’s early

diversification until, (2) after the origin of

Neosuchia, which demonstrates a period of AI in

RAP length from prior to Eusuchia up to, and in-

cluding, crown Crocodylia. When mapped together,

our findings do not support the hypothesis that on-

togenetic and evolutionary allometries mirror each

other. Instead, we see broad support for positive al-

lometry only within Neosuchia, indicating that RAP

heterochrony appears fairly late within the evolution-

ary progression of taxa.

Evolutionary rate tradeoffs

In any evolutionary study it is important to consider

morphological tradeoffs to ensure that erroneous

conclusions are not drawn from apparent trait

changes. In this case, variation in relative RAP

length could be interpreted as the result of selection

acting on bite forces specifically. However, RAP

length is also tightly related to body size, another

highly adaptive variable, particularly when it comes

to predation. It was, therefore, essential to our inter-

pretations of bite-force change that we addressed

how RAP length changes over time while also ac-

counting for body size. To parse out the effects of

body size on our interpretations of bite-force evolu-

tion, we employed a model that quantified all possi-

ble evolutionary scenarios between these two traits

(Smaers et al. 2012). Within Suchia, each scenario

is represented. Here, we focus on taxa with acceler-

ated RAP-length increase (‘‘AI’’ in Fig. 2) because

this hemisphere represents the strongest positive

RAP elongation—essentially an evolutionary scenario

FIG. 2 (A) Evolutionary tradeoffs in RAP lengths and HW for Suchia, with species falling into each evolutionary scenario. The AI (hot

pink points [darkest points in grayscale]) quadrant has the highest density of data points (n¼ 17) and represents branches across which

RAP-length increases are faster than body-size increases. In the context of suchian bite-force evolution, this quadrant houses instances

of disproportionately positive bite-force increase—an evolutionary scenario that broadly mirrors the underlying ontogenetic allometry

of bite-force increase. (B) Phylogeny of Suchia pruned to include fossil taxa with complete RAP length and HW data (n¼ 36). Extant

representatives of crown Crocodylia include Alligator, Crocodylus, and Gavialis. Gracilisuchus is the most basal suchian in the phylogeny.

Branch colors correspond to the evolutionary rate tradeoff scenarios described in the ‘‘Materials and Methods’’ section and figured in

(A), with blue indicating a smaller RAP for a given body size and pink indicating a larger RAP for a given body size. The hot pink

branches (darkest lines in grayscale) represent AI of RAP length relative to body size, indicating evolutionary stages characterized by

strongly positive RAP allometry. The arrow represents the onset of a continuous AI trend from the most recent common ancestor of

Alligatorium and Alligator (node no. 65 in Supplementary Fig. S2), leading to extant Crocodylia (node no. 69 in Supplementary Fig. S2).

The asterisks (*) along the backbone of the tree represent the series of nodes ancestral to extant Alligator. RAP length and HW were

estimated for all nodes, and values indicated by an asterisk (*) were divided into 10 progressive stages, which are presented in Fig. 3

and Supplementary Table S9.
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that mimics the ontogenetic allometry of crocodylian

bite force. When considered along the phylogeny,

isolated instances of accelerated RAP-length increase

are seen for the branches that lead to hypercarnivor-

ous taxa and marine piscivores. Within Neosuchia,

these instances of AI are not isolated, however. There

is a pronounced trend of strongly positive evolution-

ary allometry along the entire lineage leading to

living Crocodylia (Fig. 2).

Ontogenetic and evolutionary heterochrony

Ontogenetic and evolutionary trait changes exist on

substantially different timescales. To overcome this

obstacle, we plotted mean RAP:HW ratios on the

Y-axis, against progressive stages of ontogeny and

evolution along the same X-axis. The X-axis was

subdivided into 10 successive stages determined by

either body size (ontogeny) or phylogenetic node

depth (evolution).

Ontogenetically, much of the relative change in

RAP length occurs early in development, with a pro-

nounced increase up to Stage 3 (solid line, Fig. 3).

The magnitude of this shift is likely concentrated in

early ontogeny because selection on juveniles for

increasing bite-force is strong, and Stage 3 is approx-

imately the point at which A. mississippiensis is able

to access robust prey (e.g., birds, mammals) for the

first time (Gignac and Erickson 2015). Subsequently,

there is a deceleration in RAP growth for the remain-

der of ontogeny. For evolutionary changes (dashed

line, Fig. 3), we see an inverted pattern, showing

conservation of relative RAP length during much of

the clade’s diversification. As with the ontogeny data,

there is a strong inflection point, which occurs evo-

lutionarily late at Stage 8. This stage corresponds to

node no. 66 (Supplementary Fig. S2), which is the

node immediately prior to Eusuchia.

Taken together, these two different patterns imply

that AI in bite-force capacity relative to body size is a

heterochronic process that may be an effect of early

ontogenetic pressures established near the emergence

of Eusuchia. This reveals that directional shifts in

evolutionary and ontogenetic bite-force maximiza-

tion began more than 150 million years ago

(Turner 2015), suggesting that strongly positive

bite-force allometry is a distinctive, if not defining,

feature of the clade. Contemporaneous to the emer-

gence of this modern performance ontogeny is the

origin of the ‘‘eusuchian palate,’’ in which the inter-

nal choanae are enclosed within the ventral lamina of

the bony pterygoids, isolating the oral and nasal cav-

ities by means of a fully ossified secondary palate

(Turner and Buckley 2008). Such functional parti-

tioning is thought to have strengthened the rostrum

(Busbey 1995) and indicates eusuchian commitment

to a semi-aquatic, ambush-predator lifestyle that

would have necessarily included multiple dietary

transitions during ontogeny (Brochu 2003). In addi-

tion, selection in most taxa against small body sizes,

such as those typical of extinct adults and extant

juveniles, may have driven developmental patterns

that now distinguish eusuchians from their suchian

ancestors. The resultant effect of this bite-force het-

erochrony with simultaneous cranial reinforcement

appears to be the unapologetic over-performance of

modern adults.

Ontogenetic inertia

Our results indicate that selection on early life-his-

tory stages may be the factor that has most-impacted

the evolution of eusuchian bite force. As RAP length

was enhanced, descendent juveniles gained the ad-

vantage of outperforming their precursors at earlier

life stages. Eusuchians, however, are long-lived (e.g.,

Erickson and Brochu 1999). They continue to grow

throughout their lives, and as much as 70% of

growth can occur after sexual maturity (Webb and

FIG. 3 Values for RAP length as a ratio of HW plotted across 10

progressive stages. The dashed line represents the evolutionary

trajectory of RAP change, derived from ancestral character esti-

mations for RAP length and HW. The solid line represents the

ontogenetic trajectory of RAP length in Alligator mississippiensis (a

representative crocodylian; Erickson et al. 2014). A ratio of

RAP:HW was utilized to facilitate comparisons between fossil

adults and the developmental series of extant neonates, juveniles,

and adults, which may not be directly comparable based on size

alone. Both evolutionary and ontogenetic bite-force trends can

be characterized as heterochronic processes.
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Manolis 1989). Thus, adults become bite-force over-

performers due, in part, to ontogenetic trends that

are established in early life. When paired with growth

beyond sexual maturity, the subsequent body-size in-

creases of normal development effectively carry adult

performance capabilities well beyond what would be

expected or needed to occupy the adult niche. Thus,

evolution seems to have promoted neonate and ju-

venile morphologies that, in this case, aided in indi-

vidual and clade success without being strongly tied

to an adult niche.

As a result of this work, we recommend that re-

searchers be aware of potential means for identifying

ontogenetic inertia in their own study systems. In the

case of Crocodylia, resource-dependent growth and a

type III survivorship curve set up conditions for se-

lection to play a disproportionate role in early on-

togeny. Simultaneously, it may be possible to identify

critical performance thresholds that put unique de-

mands on the success of early ontogenetic stages

(Herrel and Gibb 2006; Herrel et al. 2016), such as

tooth-pressure thresholds for failing prey tissues

(Gignac and Erickson 2015) or endurance levels

during tetanic muscle contraction (Gignac 2010). If

such barriers are strong enough, they may act as

selective filters for neonates and juveniles. Finally,

over-performers—as originally conceived by Carrier

(1996)—may be more indicative of stronger selection

on early ontogenetic stages than for such factors

acting directly on adults.
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