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Currently, cancer is one of the leading causes of death in industrial nations. While conventional cancer treatment usually results
in the patient suffering from severe side effects, immunotherapy is a promising alternative. Nevertheless, some questions remain
unanswered with regard to using immunotherapy to treat cancer hindering it from being widely established. To help rectify this
deficit in knowledge, experimental data, accumulated from a huge number of different studies, can be integrated into theoretical
models of the tumor-immune system interaction. Many complex mechanisms in immunology and oncology cannot be measured
in experiments, but can be analyzed by mathematical simulations. Using theoretical modeling techniques, general principles of
tumor-immune system interactions can be explored and clinical treatment schedules optimized to lower both tumor burden
and side effects. In this paper, we aim to explain the main mathematical and computational modeling techniques used in tumor
immunology to experimental researchers and clinicians. In addition, we review relevant published work and provide an overview

of its impact to the field.

1. Introduction

Biological systems possess a high degree of complexity. The
role a component plays in the organism is not only defined by
its function but also by its interaction network [1]. The field
of systems biology is concerned with that topic and aims at
understanding the interactions between various components
of the living cell, such as genes, proteins, and metabolites
[2]. A huge mass of biological facts has been uncovered by
molecular biology, but understanding biological complexity
on a systems level can only be achieved by a combination of
experimental and computational approaches [3].

The immune response to tumor formation represents
a complex system that can solely be understood by using
several different research strategies. In recent time, it has
been shown that the immune system plays a pivotal role in
the regulation of cancer, enhancing its growth by certain
mechanisms [4, 5] and being capable of recognizing and

eradicating tumors as well [5, 6]. As conventional cancer
therapy usually involves severe side effects, increased research
efforts have been made in order to stimulate the immune
response against the tumor [7, 8]. Various approaches
including vaccination [9, 10] or direct injection of antibodies
[11], lymphocytes [12—14], or cytokines [15, 16] have been
developed.

Complex systems can be analyzed through several math-
ematical and computational approaches. An overview of the
distinct steps in model generation is given in Figure 1. The
available knowledge about a given biological phenomenon
is used to build up a model. Once validated through the
comparison with experimental results or the literature, the
model can be used to perform in silico experiments, which
allow the generation of hypotheses on the behavior of the
biological system. These findings can in turn be verified in
vivo or in vitro and the data acquired this way can be used
to refine the model, hence enhancing its significance. This
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FIGURE 1: Steps in knowledge generation in system biology. Knowledge on a given biological phenomenon is generated in a stepwise manner
by combining modeling and experimental techniques. A model is built up enabling the researcher to perform in silico experiments in order
to predict the behavior of the biological system under given conditions. These predictions have, in turn, to be validated via in vivo or in vitro
systems, leading to further refinement of the model and the underlying hypothesis.

TaBLE 1: Examples of possible data sources for model building and refinement.

Experimental results from the literature or own laboratory

Databases

Experimental results:
(i) Cell division rates
(ii) Expression data
(iii) Growth curves
(iv) Binding affinities

(v) Diffusion coefficients

General databases:
(i) KEGG [17] (http://www.genome.jp/kegg/)
(ii) Reactome [18] (http://www.reactome.org/)
Immunological databases:
(i) AntiJen [21] (http://www.darrenflower.info/antijen/)
(ii) IEDB [19] (http://www.immuneepitope.org/)
(iii) InnateDB [22] (http://www.innatedb.org/)

iterative course of action leads to a better understanding
of biological systems. In this work, we introduce the basic
steps in model generation and present the two most common
methods in simulating the interaction between a growing
tumor and the immune system: differential equations and
rule-based models. We compare them and point out their
impact on the field of tumor immunology in diverse
applications as for example the identification of cancer
mechanisms or tumor therapy.

2. Construction of a Mathematical Model

Constructing a model always starts with the collection of
relevant data in order to define the problem. Afterwards, the
model is built in an iterative process including parameter
fitting and validation steps. In the next paragraph, we
provide an overview of what kind of information is collected
and how it is built into the network. We will then go on to
explain how the model is refined and optimized.

2.1. Data Retrieval. The first step in model construction is
the retrieval of information about the given parameters, for
example, cell division rates or enzyme kinetics, which can be
extracted from the literature or from public databases, for
example KEGG [17] or Reactome [18] (see Table 1). Focused
immunological information can be found in specialized
databases (e.g. IEDB [19]). More detailed information about
specific processes is extracted from experimental results.
These can be gained by carrying out own experiments
or cooperation with wet-lab researchers, or by carefully
mining the published literature. In some cases, parameters
are not experimentally accessible; here, data fitting must be
performed to estimate them. The values must be adjusted so
that the biological feasibility of the model is preserved (for a
detailed review, see [20]).

2.2. Building and Refining the Model. The model is built
and refined in an iterative process. The basic assumptions
of the behavior of the system are formulated as differential
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equations or as computational rules and the parameters are
defined as described above. The resulting model is used
to simulate the system under different conditions and the
results are compared to wet-lab experiments or clinical data.
If the simulation differs from the experimental results, the
model parameters get adjusted, or the model is refined to
account for a more divergent systems behavior. In turn, the
model can explain the system more in detail and gives more
realistic predictions.

A model relating to the nuclear factor “kappa-light-
chain-enhancer” of activated B-cells (NF-«B) signaling path-
way illustrates clearly how a mathematical model is refined
in a stepwise manner by the addition of new experimen-
tal knowledge which in turn leads to an ever growing
understanding of the system. Lipniacki et al. developed a
mathematical model of the NF-xB regulatory module [23].
The model exhibits two-compartment kinetics built as a
system of differential equations and it can reproduce the time
behavior of the involved protein and mRNA levels and of the
catalytic activity of IxB kinase. After further research, this
model was refined to include two classes of switches that
are invoked stochastically, namely, the cell-surface receptor
activation by the tumor necrosis factor-a (TNF-«) ligand
and the activation of genes by NF-xB [24]. These stochastic
switches allow single cells to respond differently to their
neighbors, with each individual response being unequivocal.
In cooperation with a wet-lab research group, it was shown
that the activation by TNF-« is indeed heterogeneous and
single cells respond in a digital process with fewer cells
responding at lower doses [25]. In addition, they found that
some parameters change analogously, for example, NF-xB
peak intensity, response time, and number of oscillations.
Consequently, the mathematical model was refined again
with a cellular variation in the amount of TNFa-receptor
and a nonlinear activation profile of 1xB kinase. This final
model is able to reproduce both the digital and analogue
dynamics as well as most gene expression profiles at all
measured conditions. It can also predict the fraction of
cells responding to consecutive short pulses of low-dose
TNF-a with high accuracy. Our understanding of the
TNEF-a-induced NF-xB-signaling has improved significantly
through the close cooperation and reciprocal influence of
experimental and theoretical research.

3. Differential Equations Systems

Differential equations are used to describe several principles
in physics or chemistry or to simulate complex systems in
biology and economics. A system of differential equations
allows modeling of time-dependent cellular phenomena such
as individual biochemical reactions, signal transduction cas-
cades, or even the interaction between whole cell populations
[26]. Each entity that is considered to be important for the
question of interest is modeled by one differential equation
describing its production and its decay or its influx and
efflux from a compartment. In Figure 2, a simplified model
is shown consisting of two equations describing the amount
of tumor and CD8 T-cells over time. By changing only

one parameter, the result can switch from an exponentially
growing tumor to a tumor being recognized and destroyed
by the immune system. An equivalent system of differential
equations can be analyzed for several criteria. In sensitivity
analysis, the impact on the amount of entities is determined
for any change of the parameter’s magnitude. In equilibrium
analysis, parameter values are identified for which the
entities meet a steady state, meaning their amount does not
change over time; for example, in a tumor-free equilibrium,
the tumor is kept under control by the immune system.
Threshold criteria are defined at which the behavior of the
system changes from one state to the other. In bifurcation
analysis, the solution space is scanned for discontinuous
parts. Using this tool, the point can be found where one
parameter changes the behavior of the system all of a sudden,
jumping from one state to another; for example, below the
bifurcation point, the patient remains tumor-free and above
it, he develops a growing tumor.

In tumor immunology, several different problems have
been addressed using differential equations systems. The
simplest form consists of ordinary differential equations
(ODEs) that can be solved analytically to find maxima and
minima, for example, the maximal survival probability of the
patient.

3.1. Ordinary Differential Equations to Find Generic Princi-
ples. Some of the mathematical models describe the tumor-
immune interaction generally to find common mechanisms.
A generic model of the influence of cytotoxic T-cells is
presented by Kuznetsov et al. [29] which helps to explain
the phenomena of tumor dormancy and sneaking through
in a mathematical way. Leon et al. [30] explore the impact
of regulatory CD25 CD4 T-cells on cancer. They propose
two alternative modes of unbounded tumor growth. Either
the tumor induces the production of effector T-cells that
outcompete regulatory T-cells but are not able to eradicate
the tumor, or a balanced expansion of both effector and
regulatory T-cells is induced by the tumor, which prevents
it from being destroyed by the immune cells.

The different roles of NK cells and CD8 T-cells in tumor
suppression were investigated in another study [27]. The
authors highlight the importance of CD8 T-cells in tumor
eradication and suggest that immunotherapy should focus
on the increase of their activity.

3.2. Ordinary Differential Equations in Specialized Therapy.
The effect of innovative new cancer therapies can be
estimated using differential equations systems. The influence
of the newly characterized IL-21 in cancer immunotherapy
was explored by Cappuccio et al. [31]. This interleukin has
a role in the transition from innate immunity to adaptive
immunity, and thus the authors suggest that lower doses
of IL-21 should be used for low immunogenic tumors and
higher doses for highly immunogenic ones. In addition, they
find that cytokine gene therapy is more promising than
hydrodynamics-based gene delivery.
Bunimovich-Mendrazitsky et al. [32, 33] focus on a more
specific type of cancer and explore the effect of pulsed
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FiGure 2: Differential equations system. A simplified differential equations system describes the interaction between tumor cells (T) and
CD8 T-cells (K). The only difference between the simulation of a nonimmunogenic tumor (upper graph) and an immunogenic tumor
(lower graph) is that parameter g is increased leading to an increase in tumor immunogenicity. Lysis of tumor cells by the CD8 T-cells and
the activation of CD8 T-cells by tumor cells follow a Michaelis-Menten kinetic to account for saturation at high cell numbers. The death
rate of CD8 T-cells is proportional to the square of the cell number to assure for fast declining waves of T-cell expansion. Equations and
parameters modified from [27], parameters originally obtained from a published mouse study [28].

and continuous immunotherapy with Bacillus Calmette-
Guérin—an attenuated strain of Mycobacterium bovis—to
treat superficial bladder cancer. They calculate the amount of
bacterial solution by which the tumor is eradicated but only
little side effects are induced.

Kronik et al. [34] investigate the dynamics of Glioblas-
toma, a highly aggressive primary brain tumor, treated with
ex vivo activated cytotoxic T-cells. Model analysis suggests
that tumor eradication requires a 20-fold higher dose than
had been administered in clinical studies.

Another role of the immune system in tumor formation
is concerned in the cancer treatment using an oncolytic
virus. In this case, the immune response against the host
is considered to be negligible, while the immune cells can
destroy the virus, before it is able to enter the tumor cell.
To find the optimal virus administration circumventing a
strong immune response against the virus, Wein et al. [35]
considered different sites of virus application. They conclude
that injections should be distributed equally within a solid
tumor; core or rim injections alone will eventually result in
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tumor escape. Tao and Guo [36] extend this model, focusing
on the diffusion of the virus and the immune cells and
narrow down possible forms of optimal treatment.

3.3. Ordinary Differential Equations in Molecular Detail. A
differential equations system can also focus on a specific
molecular interaction. Accordingly, the importance of the
Fas/FasL system was emphasized by Webb et al. [37]. The
Fas ligand (FasL) can induce apoptosis in the target cell
expressing the Fas receptor, while both ligand and receptor
are expressed on tumor cells and T-cells at different levels
depending on developmental state. The model shows that
tumor regression could be enhanced by upregulated Fas
receptor expression in tumor cells, but an even greater
success would be gained by constitutive FasL expression in
activated T-cells. This has an implication for the clinical
use of broad spectrum matrix metalloproteinase (MMP)
inhibitors as antiangiogenic agents. In the model, MMP inac-
tivation results in increased transmembrane FasL and leads
to a higher rate of Fas-mediated apoptosis in lymphocytes
than in tumor cells; therefore, MMP treatment might be
counterproductive.

3.4. Principle of Optimal Control. In the principle of optimal
control, a control function is established that quantifies the
wanted and unwanted impact of the parameters on the
outcome of the model. The control function is minimized to
find the desired solution. This method is based on the work
of Kacser and Burns [38] and Heinrich and Rapoport [39]. A
typical application nowadays is to find the best vaccination
strategy with the lowest vaccine burden that is still able
to eliminate the tumor. Exploring this question in human
patients would be very labor intensive or almost impossible,
but can easily be done using differential equations.

De Pilis et al. [40, 41] examine the effect of immunother-
apy and chemotherapy on cancer growth and find that each
therapy alone is not able to control the tumor; therefore, they
recommend combination therapy. Also, IL-2 and adoptive
cellular immunotherapy are compared in another study
(Kirschner 1998), and the combination of both is able
to reduce the tumor and has the least risk of inducing
autoimmunity.

Castiglione and Piccoli [42, 43] apply the principle of
optimal control to determine an exact vaccination schedule
in immunotherapy with autologous dendritic cell transfec-
tion. For that purpose, they build a cost function summing
up the burden of the tumor and of all side effects of the
immune therapy depending on the vaccination schedule
and then minimizing that function to receive the optimal
schedule. They recommend a vaccination schedule with one
high-dose injection at the beginning of the treatment, and
the other injections being smaller dosages distributed almost
equally over the rest of the six months treatment period [43].

3.5. Delay Differential Equations. Differential equations can
be enhanced to become delay differential equations (DDEs)
that can account for time consumption in processes like cell
division or other specific behavior. Delayed feedback and

oscillatory behavior can be efficiently described using this
method. For instance, Kim et al. [44] study the dynamics
of chronic myelogenous leukemia (CML) under imatinib
treatment including the influence of immune cells. They use
delay differential equations, whereby the delay term is used
to incorporate the time for cell division. The model suggests
a combination of immunotherapy and imatinib treatment to
optimally sustain the antileukemia T-cell response. Another
study elucidates the effect of immunotherapy in leukemia
patients after bone marrow transplantation to study specif-
ically the graft-versus-leukemia effect [45]. A delay term in
the differential equations system is used to account for the
progression of cells through different modes of behavior.
The authors conclude that high concentrations of donor
T-cells slightly favor tumor elimination, but also increase
the risk of graft-versus-host disease. Interestingly, higher
initial concentrations of general host blood cells enhance the
success rate more significantly whilst also avoiding the risk of
graft-versus-host disease. This result can be applied directly
to clinical treatment.

3.6. Partial Differential Equations. Partial differential equa-
tions (PDEs) are the most advanced form of differential
equations; hence, they are also most demanding mathemat-
ically. PDEs are commonly used either to account for the
progression of cells through a developmental process (age-
structured model) or to model spatiality (spatiotemporal
model). Matzavinos et al. [46] make use of PDEs to study
the geometry of a tumor interacting with tumor-infiltrating
cytotoxic lymphocytes (TICLs). This approach focuses on
the motility of TICLs that can move at random or towards
increasing chemokine concentration inside the tumor. The
mechanism elucidated in this work may help to explain
the phenomenon of tumor dormancy. A similar approach
[13] tries to illuminate the growth pattern of a solid tumor
depending on the attack of tumor-associated macrophages
and their movement.

PDEs can also be used to model the movement of
tumor cells, as in the study of Eikenberry et al. [47], where
melanoma invasion into healthy tissue was simulated. The
authors observe that immune cells can have opposed effects
as they can both destroy tumors or can induce tumorigenic
expansion through the production of angiogenic factors.

4. Rule-Based Modeling

In immunology, the two main simulation approaches in
rule-based modeling are Agent-Based Models (ABMs) and
Cellular Automata (CA), which are closely related. In ABMs,
discrete autonomous units or agents interact with each
other at discrete time steps following a set of logical rules,
depending on the state of their environment. The agents are
identifiable, and their environment is represented by a grid.
They are able to adapt to changes in their surroundings and,
therefore, need some sort of memory. A simplified ABM is
shown in Figure 3, illustrating how observed phenomena are
translated into behavioral rules for the entities in a grid.
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FIGURE 3: Agent-based modeling. (a) Lymphocytes infiltrating an urothelial carcinoma of the bladder. (b) Translation to an ABM. Cells
move and interact in a grid. Each cell can occupy one grid space, while antibodies or cytokines have a continuous concentration at each grid
space. (c) A simplified part of the underlying rules for the agents is shown.

CA are closely related to ABMs even though there are
some important differences. In ABMs, agents are mobile
whereas in CA they have fixed positions. Updating of the
agents’ state is usually performed in a synchronous way in CA
while this is not always the case in ABMs. The understanding
of the environment in ABMs also differs from the one in CA.
In ABMs, it is discretized into micro-compartments which
can hold a variety of information whereas the environment
of agents in CA is described by the von Neumann or Moore
neighborhood which consider four or eight neighbors for
each agent, respectively [48]. Another aspect is that CA
rule sets mostly comprise strictly deterministic rules, and
ABMs often include a mixture of stochastic and deterministic
elements. An example of CA is shown in Figure 4, where a
prostate tumor is reconstructed using a CA called CancerSim
[49]. The three-dimensional visualization of CancerSim can
be compared to the observed tumor and the model can
simulate the progression of cancer.

It has to be kept in mind that the modeling approaches,
ABMs and CA, are very similar to each other as they are
both rule-based, and it is not unusual to find hybrid forms
in which elements from both methods are used.

In immunology, rule-based models are particularly use-
ful because cells and molecules are modeled as individual
agents that may have specific ligands or receptors on
their surface. An additional advantage is the possibility
of including the three-dimensional space explicitly in the
simulation, where each cell can be exactly located and change
its activation state depending on its direct environment. This
way, complex patterns evolve from a set of simple behavioral
rules.

4.1. Tumor-Immune System Interaction in Rule-Based Mod-
eling. When simulating the immune response to tumor

formation, the use of discrete modeling techniques as CA or
ABMs is advantageous due to the possibility of considering
the activity of individual cells and their interactions. The idea
of simulating the immune system using discrete automata
was first introduced by Kaufman et al. [50]. In their
model, Boolean values are used to represent different cellular
populations whereas the interactions between each other are
defined by simple rules.

In early approaches to simulating tumor-immune inter-
actions, each automaton describes the concentration of one
cell type [51]. Discrete two-state variables are used to specify
the concentration of particular cell types (high or low) and
the functionality of their epitopes (is recognized, is not
recognized). In this model, the killer role of macrophages as
well as the difference between antigen recognition by T- or B-
cells is ignored; still, the model captures many crucial aspects
of the immune response to tumor formation.

Agent-based modeling proves to be particularly useful
for modeling the early stages of tumor growth before solid
tumor or metastasis formation, because in this phase of
tumor development, it is necessary to consider the activity
of each single cell. A model dealing with the interaction of
the immune system with a tumor at this stage was presented
by Mallet and de Pillis [52]. In this model, a cluster of
tumor cells is studied which are supplied with nutrients
through a blood vessel. The dependence of different tumor
morphologies such as spherical and papillary or lymphocyte-
infiltrated growth on several key model parameters related
to the interplay between the immune system and the tumor
is shown. For this purpose, a hybrid modeling approach is
used. Cells’ behavior is described by a set of probabilistic
rules whereas chemical diffusion is simulated via determinis-
tic PDEs. The simulation comprises NK cells and cytotoxic T-
lymphocytes and considers their spatiotemporal interaction
with normal and tumor cells.
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(b)

FIGURE 4: Cellular Automata. (a) Human prostate gland containing carcinoma at the lower right part, seen as a yellowish mass [23]. (b)
Cellular automata named CancerSim [49] simulating tumor growth. Tumor cells are shown in blue, healthy tissue in gray, and blood vessels
in red, dual view with and without healthy tissue. The three-dimensional shape of the prostate gland and the simulated structure can be
compared to improve the model and to explain the observed phenomena.

4.2. Rule-Based Modeling in Immune Therapy. Recently,
immune therapy of tumors is becoming increasingly well
established [55, 56]. Nevertheless, several questions con-
cerning the dosage, vaccination schedules, usage of carriers,
and so forth are still open. Answering these questions
experimentally remains difficult due to the high number of
experiments required, which result in high costs and are
very time consuming. Simulations can be extremely helpful
in order to predict optimal therapy strategies and reduce
the amount of experiments necessary. Several attempts to
answer these questions have been performed by different
groups based on a former ABM of the immune system called
IMMSIM [57].

Among them, Castiglione et al. developed an elaborated
model of the immune response to tumor antigens [58]. The
model includes several behavioral patterns of the immune
system: hematopoesis, antigen digestion and presentation
by B-lymphocytes, macrophages and dendritic cells, the
hypermutation of antibodies, and last but not least, cyto-
toxicity by CD8 T-cells. In order to simulate the immune
recognition, epitopes, and peptides are represented by binary
strings, and their immunogenicity is defined by the hamming
distance, which is the number of complementary bits in bit-
wise comparison. The aim of this work is to evaluate the
effects of repeated injections of tumor-associated antigen
(TAA) together with carriers on the humoral as well as
on the cellular immune response. The authors find that
the administration of TAA with multiple carriers causes
the strongest immune response against the tumor. The
administration of TAA with one single carrier fails because
a stronger immune response against the carrier and not the
TAA takes place.

ABMs are also used to describe tumor vaccination in
mice with the Triplex vaccine. The model SimTriplex is an
ABM that describes the relevant processes of the competition
between mammary carcinoma and the immune system [59,
60]. Its results show a strong correlation with experimental
results. This modeling framework is also based on IMMSIM
[57]. In a further approach, the model is used to optimize
vaccination schedules by the use of a genetic algorithm to

drive the simulator [61] and later by a simulated annealing
approach [62]. This makes it possible to use the model as a
virtual mouse with which extensive in silico experiments can
be performed.

4.3.  Virotherapy Simulated by Agent-Based Modeling.
Another approach in tumor therapy is to attack the cancer
with oncolytic viruses, which are capable of killing cancer
cells or inducing an immune response against them.
Agent-based modeling is especially suitable to simulate
oncolytic virotherapy due to the possibility of describing
the interplay between cancer cells, viruses, and the immune
system individually and in a multiscale way. The authors
of this work [63], construct a hybrid ABM-PDE model
which illustrates virotherapy in a stage of avascular tumor
growth. The multiscale dynamics of tumor growth are
defined by probabilistic CA rules whereas the dynamics of
nutrients and viruses are described by reaction-diffusion
equations. The modeling result suggests that for a successful
single-agent virotherapy, the host immune system must be
strongly inhibited, and a potent virus with high intratumoral
mobility is to be used.

5. Application of Modeling Results

The most elaborate modeling approach is futile if it cannot
be applied to reality. Therefore, it is essential to compare
simulation results of a model to experimental data from the
laboratory or the clinic. As an example, a comparison of the
model of Kim et al. [44] to clinical data is shown in Figure 5.
The parameters of three different patients (Figures 5(a), 5(b),
and 5(c)) are incorporated into this model simulating the
immune response to Chronic Myelogenous Leukemia under
imatinib treatment. Clinically observed T-cell numbers [53]
are compared to the simulated curve that represents the
data points sufficiently. Based on several of these tests, the
model is used to simulate the course of disease shown in
the “Leukemia” curve and is compared to a similar model
prediction that does not account for immune reaction (“No
immune response”).
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FiGurek 5: Differential equations model validation with experimental data of chronic myelogenous leukemia treatment with imatinib [44].
(a), (b), and (c) show data from different patients along with simulated results using individual parameters for each of the patients.
Simulated cell concentrations are compared to measurements of T-cell numbers from [53] (cell numbers are scaled down by 2500 to show
relative magnitudes). Simulated curves are shown as lines and experimental data as black squares; the horizontal dashed line indicates the
approximate level of complete cytogenetic remission. “No immune response” corresponds to the predicted tumor cell number using a model
that does not include the immune response [54], “Leukemia” corresponds to the results of another model that takes the immune response
into account [44]. The “T cells” curve is obtained with the model by Kim et al. and is compared to experimentally observed T-cell numbers

from different patients [53].

After the validity of a model is proven using experimental
data, it can be used to predict a clinical outcome, to improve
a certain treatment, or to elucidate unknown mechanisms.
Through collaboration with wet-lab researchers, it is possible
to achieve an optimal interplay in which both sides profit
from the knowledge gained from the analyzed system. Cheng
et al. [64] describe the fruitful cooperation between his
group and a collaborating wet-lab group, which gained
important insights into the dynamics of the memory T-
cell responses under sequences of heterologous viral infec-
tions. The mathematical model (IMMSIM) not only could
simulate the biological findings but also could predict the
experimental outcome correctly. From this collaboration, it

could be shown that long-term memory loss is accounted for
by active attrition by virus-induced type 1 interferon and not
by the competition between memory cells.

6. Advantages and Disadvantages of
the Modeling Types

The advantages of theoretical models over experimental
work and clinical studies are obvious, mathematical and
computational techniques are by far less expensive, less
time consuming, and it is possible to change environmental
influences and parameter scales easily.
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As presented, both continuous differential equations sys-
tems and discrete ABMs or CA have been applied successfully
to tumor immunology, each having its own advantages and
disadvantages.

Differential equations are easier to analyze, parameter
sensitivity is measurable, and the solution space can be
determined. It is also more straightforward to adjust global
parameters and fit the model to experimental data using
differential equations. On the other hand, differential equa-
tions systems are mainly limited to a specific observable
phenomenon, and it is nearly impossible to capture the
whole complexity of a biological system. By contrast, rule-
based models can deal with a lot of different entities and
can be easily extended with new insights from experimental
research. In addition, rule-based models reproduce complex
patterns from simple behavioral rules. However, rule-based
models are difficult to analyze in terms of parameter sensitiv-
ity and solution space. Furthermore, most rule-based models
are not completely deterministic, but they include stochastic
elements which complicate the analysis additionally. The
same holds true for the computational efficiency; differential
equations systems are not too computationally demanding,
while rule-based models might be limited by computational
capacity.

The great advantage of rule-based models is their capa-
bility of distinguishing every single cell or molecule in its
location, developmental state, and specificity. Using differ-
ential equations, one is limited to homogeneous populations
that might not correctly represent immune cells with their
specific receptors.

After all, the choice of the modeling technique always
depends on the question of interest. If the advantages of both
modeling approaches are desired, the newly emerging hybrid
models might be favored. In hybrid models, the underly-
ing architecture of an ABM is extended with differential
equations to simulate continuous parts of the system, as
for example the interaction strength between two cells with
matching receptors.

7. Outlook

Theoretical models are established tools in medical science
and support experimental work in various ways. Their major
drawback is that models can only be as good as the data
or the theory they are based on, and every result has to
be verified experimentally. Several parameters have to be
estimated as they are not known or are not even accessible
from experiments. Theoretical models can focus on main
mechanisms leaving out perturbing environmental effects.
Thus, they can be used to support or to contradict a theory
or to search for optimal conditions for a desired outcome.
One application is to improve individualized medicine as
parameters of a theoretical model can be easily adjusted to
the requirements of a specific patient, and the individual
optimal treatment schedule can be gained.

Certainly, theoretical models and applied immunology
will grow hand in hand, as experimental data is needed to
establish theoretical models, and the results from simulation
can help in a more efficient design of experiments.

Acknowledgments

This study was supported by the Deutsche Forschungsge-
meinschaft (SFB 449) and the BMBF project MedSys. The
open access charge was funded by the project DFG SFB 449.
We would like to thank Catherine Worth for correcting the
manuscript and for her helpful suggestions.

References

[1] H. Kitano, “Systems biology: a brief overview,” Science, vol.

295, no. 5560, pp. 1662-1664, 2002.

J. Synnergren, B. Olsson, and J. Gamalielsson, “Classification

of information fusion methods in systems biology,” In Silico

Biology, vol. 9, no. 3, pp. 65-76, 2009.

[3] H. Kitano, “Computational systems biology,” Nature, vol. 420,
no. 6912, pp. 206-210, 2002.

[4] A. Mantovani, P. Allavena, A. Sica, and F. Balkwill, “Cancer-
related inflammation,” Nature, vol. 454, no. 7203, pp. 436444,
2008.

[5] K. E. de Visser, A. Eichten, and L. M. Coussens, “Paradoxical
roles of the immune system during cancer development,”
Nature Reviews Cancer, vol. 6, no. 1, pp. 24-37, 2006.

[6] S. A. Rosenberg, “Progress in human tumour immunology
and immunotherapy,” Nature, vol. 411, no. 6835, pp. 380—384,
2001.

[7] S. Kim-Schulze, B. Taback, and H. L. Kaufman, “Cytokine
therapy for cancer,” Surgical Oncology Clinics of North America,
vol. 16, no. 4, pp. 793-818, 2007.

[8] C. R. Parish, “Cancer immunotherapy: the past, the present
and the future,” Immunology and Cell Biology, vol. 81, no. 2,
pp. 106-113, 2003.

[9] S. Feyerabend, S. Stevanovic, C. Gouttefangeas et al., “Novel
multi-peptide vaccination in Hla-A2+ hormone sensitive
patients with biochemical relapse of prostate cancer,” Prostate,
vol. 69, no. 9, pp. 917-927, 2009.

[10] H. Van Poppel, S. Joniau, and S. W. Van Gool, “Vaccine
therapy in patients with renal cell carcinoma,” European
Urology, vol. 55, no. 6, pp. 1333—1344, 2009.

[11] L. M. Weiner, R. Surana, and S. Wang, “Monoclonal anti-
bodies: versatile platforms for cancer immunotherapy,” Nature
Reviews Immunology, vol. 10, no. 5, pp. 317-327, 2010.

[12] S.Koido, E. Hara, S. Homma et al., “Cancer vaccine by fusions
of dendritic and cancer cells,” Clinical and Developmental
Immunology, vol. 2009, Article ID 657369, 2009.

[13] C. A.Kruse, L. Cepeda, B. Owens, S. D. Johnson, J. Stears, and
K. O. Lillehei, “Treatment of recurrent glioma with intracav-
itary alloreactive cytotoxic T lymphocytes and interleukin-2,”
Cancer Immunology Immunotherapy, vol. 45, no. 2, pp. 77-87,
1997.

[14] A.Lin, A. Schildknecht, L. T. Nguyen, and P. S. Ohashi, “Den-
dritic cells integrate signals from the tumor microenviron-
ment to modulate immunity and tumor growth,” Immunology
Letters, vol. 127, no. 2, pp. 77-84, 2010.

[15] Z. Kirkali and E. Ttizel, “Systemic therapy of kidney cancer:
tyrosine kinase inhibitors antiagiogenesis or IL-22” Future
Oncology, vol. 5, no. 6, pp. 871-888, 2009.

[16] D. E. McDermott, “Immunotherapy of metastatic renal cell
carcinoma,” Cancer, vol. 115, no. 10, pp. 2298-2305, 2009.

[17] M. Kanehisa, S. Goto, M. Furumichi, M. Tanabe, and M.
Hirakawa, “KEGG for representation and analysis of molec-
ular networks involving diseases and drugs,” Nucleic Acids
Research, vol. 38, supplement 1, pp. D355-D360, 2009.

[2



10

(18]

[19]

[20]

[29]

(33]

L. Matthews, G. Gopinath, M. Gillespie et al., “Reactome
knowledgebase of human biological pathways and processes,”
Nucleic Acids Research, vol. 37, no. 1, pp. D619-D622, 2009.
R. Vita, L. Zarebski, J. A. Greenbaum et al., “The immune epi-
tope database 2.0,” Nucleic Acids Research, vol. 38, supplement
1, pp. D854-D862, 2009.

M. Ashyraliyev, Y. Fomekong-Nanfack, J. A. Kaandorp, and
J. G. Blom, “Systems biology: parameter estimation for
biochemical models,” The FEBS Journal, vol. 276, no. 4, pp.
886-902, 2009.

C. P. Toseland, D. J. Clayton, H. McSparron et al., “AntiJen:
a quantitative immunology database integrating functional,
thermodynamic, kinetic, biophysical, and cellular data,”
Immunome Research, vol. 1, no. 1, p. 4, 2005.

D.]J. Lynn, G. L. Winsor, C. Chan et al., “InnateDB: facilitating
systems-level analyses of the mammalian innate immune
response,” Molecular Systems Biology, vol. 4, article 218, 2008.
T. Lipniacki, P. Paszek, A. R. Brasier, B. Luxon, and M. Kimmel,
“Mathematical model of NF-«B regulatory module,” Journal of
Theoretical Biology, vol. 228, no. 2, pp. 195-215, 2004.

T. Lipniacki, K. Puszynski, P. Paszek, A. R. Brasier, and M.
Kimmel, “Single TNFa« trimers mediating NF-«B activation:
stochastic robustness of NF-«B signaling,” BMC Bioinformat-
ics, vol. 8, article 376, 2007.

S. Tay, J. J. Hughey, T. K. Lee, T. Lipniacki, S. R. Quake, and M.
W. Covert, “Single-cell NF-B dynamics reveal digital activation
and analogue information processing,” Nature, vol. 466, no.
7303, pp. 267-271, 2010.

V. Helms, Principles of Computational Cell Biology, WILEY-
VCH, Weinheim, Germany, 2008.

L. G. de Pillis, A. E. Radunskaya, and C. L. Wiseman,
“A validated mathematical model of cell-mediated immune
response to tumor growth,” Cancer Research, vol. 65, no. 17,
pp. 7950-7958, 2005.

A. Diefenbach, E. R. Jensen, A. M. Jamieson, and D. H. Raulet,
“Rael and H60 ligands of the NKG2D receptor stimulate
tumour immunity,” Nature, vol. 413, no. 6852, pp. 165-171,
2001.

V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, and A.
S. Perelson, “Nonlinear dynamics of immunogenic tumors:
parameter estimation and global bifurcation analysis,” Bulletin
of Mathematical Biology, vol. 56, no. 2, pp. 295-321, 1994.

K. Leon, K. Garcia, J. Carneiro, and A. Lage, “How regulatory
CD25+CD4+T cells impinge on tumor immunobiology? On
the existence of two alternative dynamical classes of tumors,”
Journal of Theoretical Biology, vol. 247, no. 1, pp. 122-137,
2007.

A. Cappuccio, M. Elishmereni, and Z. Agur, “Cancer
immunotherapy by interleukin-21: potential treatment strate-
gies evaluated in a mathematical model,” Cancer Research, vol.
66, no. 14, pp. 7293-7300, 2006.

S. Bunimovich-Mendrazitsky, H. Byrne, and L. Stone, “Math-
ematical model of pulsed immunotherapy for superficial
bladder cancer,” Bulletin of Mathematical Biology, vol. 70, no.
7, pp. 2055-2076, 2008.

S. Bunimovich-Mendrazitsky, E. Shochat, and L. Stone,
“Mathematical model of BCG immunotherapy in superficial
bladder cancer,” Bulletin of Mathematical Biology, vol. 69, no.
6, pp. 1847-1870, 2007.

N. Kronik, Y. Kogan, V. Vainstein, and Z. Agur, “Improving
alloreactive CTL immunotherapy for malignant gliomas using
a simulation model of their interactive dynamics,” Cancer
Immunology, Immunotherapy, vol. 57, no. 3, pp. 425-439,
2008.

(35]

(40]

[47

(48]

[49]
(50]

(51]

[52]

Clinical and Developmental Immunology

L. M. Wein, J. T. Wu, and D. H. Kirn, “Validation and analysis
of a mathematical model of a replication-competent oncolytic
virus for cancer treatment: implications for virus design and
delivery,” Cancer Research, vol. 63, no. 6, pp. 1317-1324, 2003.
Y. Tao and Q. Guo, “The competitive dynamics between tumor
cells, a replication-competent virus and an immune response,”
Journal of Mathematical Biology, vol. 51, no. 1, pp. 37-74, 2005.
S. D. Webb, J. A. Sherratt, and R. G. Fish, “Cells behaving
badly: a theoretical model for the Fas/FasL system in tumour
immunology,” Mathematical Biosciences, vol. 179, no. 2, pp.
113-129, 2002.

H. Kacser and J. A. Burns, “The control of flux,” Symposia of
the Society for Experimental Biology, vol. 27, pp. 65-104, 1973.
R. Heinrich and T. A. Rapoport, “A linear steady state
treatment of enzymatic chains: general properties, control and
effector strength,” European Journal of Biochemistry, vol. 42,
no. 1, pp. 89-95, 1974.

L. G. de Pillis et al., “Chemotherapy for tumors: an analysis
of the dynamics and a study of quadratic and linear optimal
controls,” Mathematical Biosciences, vol. 209, pp. 292-315,
2007.

L. G. de Pillis, W. Gu, and A. E. Radunskaya, “Mixed
immunotherapy and chemotherapy of tumors: modeling,
applications and biological interpretations,” Journal of Theo-
retical Biology, vol. 238, pp. 841-862, 2006.

E Castiglione and B. Piccoli, “Optimal control in a model of
dendritic cell transfection cancer immunotherapy,” Bulletin of
Mathematical Biology, vol. 68, no. 2, pp. 255-274, 2006.

E Castiglione and B. Piccoli, “Cancer immunotherapy, math-
ematical modeling and optimal control,” Journal of Theoretical
Biology, vol. 247, no. 4, pp. 723-732, 2007.

P. S. Kim, P. P. Lee, D. Levy et al., “Dynamics and potential
impact of the immune response to chronic myelogenous
leukemia,” PLoS Computational Biology, vol. 4, no. 6, Article
ID €1000095, 2008.

R. DeConde, P. S. Kim, D. Levy, and P. P. Lee, “Post-
transplantation dynamics of the immune response to chronic
myelogenous leukemia,” Journal of Theoretical Biology, vol.
236, no. 1, pp. 39-59, 2005.

A. Matzavinos, M. A. J. Chaplain, and V. A. Kuznetsov,
“Mathematical modelling of the spatio-temporal response of
cytotoxic T-lymphocytes to a solid tumour,” Mathematical
Medicine and Biology, vol. 21, no. 1, pp. 1-34, 2004.

S. Eikenberry, C. Thalhauser, and Y. Kuang, “Tumor-immune
interaction, surgical treatment, and cancer recurrence in
a mathematical model of melanoma,” PLoS Computational
Biology, vol. 5, no. 4, Article ID 1000362, 2009.

L. Gray, “A mathematician looks at Wolfram’s new kind of
science,” Notices of the American Mathematical Society, vol. 50,
no. 2, pp. 200-211, 2003.
http://www.cs.unm.edu/~forrest/software/cancersim/.

M. Kaufman, J. Urbain, and R. Thomas, “Towards a logical
analysis of the immune response,” Journal of Theoretical
Biology, vol. 114, no. 4, pp. 527-561, 1985.

D. Chowdhury, M. Sahimi, and D. Stauffer, “A discrete
model for immune surveillance, tumor immunity and cancer,”
Journal of Theoretical Biology, vol. 152, no. 2, pp. 263-270,
1991.

D. G. Mallet and L. G. De Pillis, “A cellular automata model
of tumor-immune system interactions,” Journal of Theoretical
Biology, vol. 239, no. 3, pp. 334-350, 2006.



Clinical and Developmental Immunology

(53]

(63]

E. M. Higham, C.-H. Shen, K. D. Wittrup, and J. Chen,
“Cutting edge: delay and reversal of T cell tolerance by
intratumoral injection of antigen-loaded dendritic cells in an
autochthonous tumor model,” Journal of Immunology, vol.
184, no. 11, pp. 5954-5958, 2010.

E Michor, T. P. Hughes, Y. Iwasa et al., “Dynamics of chronic
myeloid leukaemia,” Nature, vol. 435, no. 7046, pp. 1267—
1270, 2005.

M. Dougan and G. Dranoff, “Immune therapy for cancer,”
Annual Review of Immunology, vol. 27, pp. 83-117, 2009.

R. R. Jenq and M. R. M. van den Brink, “Allogeneic
haematopoietic stem cell transplantation: individualized stem
cell and immune therapy of cancer,” Nature Reviews Cancer,
vol. 10, no. 3, pp. 213-221, 2010.

E Celada and P. E. Seiden, “A computer model of cellular
interactions in the immune system,” Immunology Today, vol.
13, no. 2, pp. 56-62, 1992.

F. Castiglione, F. Toschi, M. Bernaschi et al., “Computational
modeling of the immune response to tumor antigens,” Journal
of Theoretical Biology, vol. 237, no. 4, pp. 390400, 2005.

S. Motta, E. Castiglione, P. Lollini, and E. Pappalardo, “Mod-
elling vaccination schedules for a cancer immunoprevention
vaccine,” Immunome Research, vol. 1, no. 1, p. 5, 2005.

E Pappalardo, P.-L. Lollini, F. Castiglione, and S. Motta,
“Modeling and simulation of cancer immunoprevention
vaccine,” Bioinformatics, vol. 21, no. 12, pp. 2891-2897, 2005.
P.-L. Lollini, S. Motta, and E. Pappalardo, “Discovery of cancer
vaccination protocols with a genetic algorithm driving an
agent based simulator,” BMC Bioinformatics, vol. 7, article 352,
2006.

F. Pappalardo, M. Pennisi, F. Castiglione, and S. Motta, “Vac-
cine protocols optimization: in silico experiences,” Biotechnol-
ogy Advances, vol. 28, no. 1, pp. 82-93, 2010.

L. R. Paiva, C. Binny, S. C. Ferreira Jr., and M. L. Martins,
“A multiscale mathematical model for oncolytic virotherapy,”
Cancer Research, vol. 69, no. 3, pp. 1205-1211, 2009.

[64] Y. Cheng, D. Ghersi, C. Calcagno, L. K. Selin, R. Puzone,

and E Celada, “A discrete computer model of the immune
system reveals competitive interactions between the humoral
and cellular branch and between cross-reacting memory and
naive responses,” Vaccine, vol. 27, no. 6, pp. 833-845, 2009.

11



