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ABSTRACT

Imaging plays an important role in the diagnosis and staging of cancer, as well as in radiation treatment planning
and evaluation of therapeutic response. Recently, there has been significant interest in extracting quantitative infor-
mation from clinical standard-of-care images, i.e. radiomics, in order to provide a more comprehensive characteriza-
tion of image phenotypes of the tumor. A number of studies have demonstrated that a deeper radiomic analysis
can reveal novel image features that could provide useful diagnostic, prognostic or predictive information, improv-
ing upon currently used imaging metrics such as tumor size and volume. Furthermore, these imaging-derived phe-
notypes can be linked with genomic data, i.e. radiogenomics, in order to understand their biological underpinnings
or further improve the prediction accuracy of clinical outcomes. In this article, we will provide an overview of
radiomics and radiogenomics, including their rationale, technical and clinical aspects. We will also present some
examples of the current results and some emerging paradigms in radiomics and radiogenomics for clinical oncol-
ogy, with a focus on potential applications in radiotherapy. Finally, we will highlight the challenges in the field
and suggest possible future directions in radiomics to maximize its potential impact on precision radiotherapy.
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INTRODUCTION

Imaging plays an important role in clinical oncology, including diag-
nosis, staging, radiation treatment planning, evaluation of thera-
peutic response, and subsequent follow-up and disease monitoring
[1-4]. In current radiology practice, the interpretation of clinical
images mainly relies on visual assessment of relatively few qualita-
tive imaging metrics. While this approach has been undoubtedly
valuable in the diagnostic setting, there is an unmet need for meth-
ods that allow more comprehensive disease characterization and
reliable prediction or early assessment of treatment response and
prognosis toward the goal of personalized or precision medicine.

Radiomics has recently emerged as a promising tool for disco-
vering new imaging biomarkers, by high-throughput extraction of
quantitative image features such as shape, histogram and texture
that captures tumor heterogeneity [5-9]. Radiomics can be applied
to any type of standard-of-care clinical images such as CT, MRI or
PET, and used in a variety of clinical settings, including diagnosis,

prediction of prognosis, and evaluation of treatment response.
When combined with appropriate statistical or bioinformatics tools,
models can be developed that will potentially improve prediction
accuracy of clinical outcomes. A closely related field, radiogenomics,
is concerned with the study of relations between radiomic features
at the tissue scale and with underlying molecular features at the
genomic, transcriptomic or proteomic level [10-17], which may
allow identification of the underlying biological basis of imaging
phenotypes.

The fields of radiomics and radiogenomics have experienced sig-
nificant growth in the past few years. Many radiomic studies have
identified novel that have
improved diagnostic, prognostic or predictive performance over cur-

imaging signatures demonstrated
rently used imaging metrics (such as tumor size) in various oncolo-
gic applications. In the following, we will provide an overview of
their technical aspects and discuss some potential clinical applica-

tions with a focus on radiotherapy.
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WORKFLOW OF RADIOMICS
Radiomics typically involves multiple serial steps, including image
acquisition, tumor segmentation, feature extraction, predictive mod-
eling, and model validation. Figure 1 shows a general workflow of
radiomics. More details about each step are presented below.

Image acquisition

In current oncology practice, various imaging modalities such as
CT, MRI and FDG-PET are used to provide direct visualization
and evaluation of the underlying anatomical or physiological proper-
ties of each tumor in individual patients [18]. Clinical images are
typically acquired with the goal of maximizing the contrast between
normal and diseased tissues. There is often a lack of standardization
of imaging protocols across institutions with different acquisition
and reconstruction parameters, which may have a significant impact
on the image features. For radiomic analysis, it is essential to stand-
ardize or harmonize the imaging data in multicenter validation stud-
ies. High performance computational tools such as GPU [19] may
be leveraged to process the images in order to mitigate various arti-
facts for radiomics analysis.

Tumor segmentation

After the images are acquired, the next step for radiomics is segmen-
tation of the region of interest—in most cases, the gross tumor. For
patients treated with radiotherapy, their tumors have already been
manually delineated by radiation oncologists, and are available from
the treatment planning system. These preexisting contours can
greatly facilitate retrospective radiomic analysis. However, there can
be significant variations in tumor contours among different oncolo-
gists. To account for intra- and inter-rater variations, it is important
to evaluate the robustness of image features and their effect on
downstream analysis by perturbing the tumor contours or using
multiple delineations. Alternatively, tumors can be contoured more
consistently using semi-automated segmentation algorithms with
minimal human inputs, such as seed points [20]. Using deep-
learning techniques for substantially improved segmentation of nor-
mal and malignant structures is an active area of research [21-23].
In the near future, deep-learning-based auto-segmentation tools
that are robust enough for routine radiomics applications should be
available.

Feature extraction

Two types of radiomic features, semantic and agnostic, can be
extracted from images to comprehensively characterize the tumor
phenotypes. Semantic features are based on an existing radiology
lexicon to qualitatively describe tumors, and can be derived from
the existing guidelines for specific imaging reporting and the data
system of the American College of Radiology. On the other hand,
agnostic features are computational metrics with predefined math-
ematical formulations. There are various types of agnostic image fea-
tures that describe tumor shape, intensity, and texture to capture
intratumoral heterogeneity. The details of available agnostic features
have been reviewed elsewhere [7, 24]. Many commonly used radio-
mic features have been integrated into open source software or
commercial software platforms. Among these [25, 26], Deasy and
colleagues have provided an open platform, known as CERR [27]
(http://www.cerr.info/), to prototype algorithms for radiomic fea-
tures specifically for radiotherapy research. On the commercial soft-
ware side, we mention that companies such as Huiyihuiying, a
Beijing-based company focusing on the use of radiomics and artifi-
cial intelligence for solving various clinical problems, afford a prac-
tically useful cloud-based platform for radiomics research (for more
details or to set up a free research account, please visit the com-
pany’s website: www.huiyihuiying.com).

Predictive modeling
Once the tumor phenotypes are decoded into minable feature vec-
tors, algorithms from artificial intelligence or statistical learning can
be applied to detect patterns that are associated with relevant clin-
ical endpoints or biological/genomic traits. Regression or classifica-
tion methods are selected based on the type of targeted variables,
continuous values or class labels. In practice, due to the relatively
large number of features compared with the small number of sam-
ples, feature selection is an essential step in mitigating the risk over-
fitting [28]. There are several approaches to achieving this. For
instance, image features that show minimal changes to tumor con-
tour variations and minimal redundancy or overlap with other fea-
tures may be preferentially selected. In addition, various feature
selection algorithms, stepwise forward/backward selection, and lasso
among others, can be applied in order to identify the most inform-
ative ones to fit the prediction model. Cross validation is needed to
minimize the potential selection bias. In addition to building pre-
dictive models with supervised learning algorithms, it is also feasible
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Fig. 1. Workflow of a typical radiomic study.
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to apply exploratory unsupervised clustering algorithms to the radio-
mic features in order to discover novel classes of groups for a given
disease [13, 14].

Model validation
Any radiomic signature should be validated on independent, prefer-
ably multiple external cohorts. While validation in a prospective
clinical trial remains the gold standard and provides the highest level
of evidence, there are several other more practical ways to demon-
strate a model’s validity and allow a quicker assessment of multiple
competing models. Promising radiomic signatures can be tested
with existing clinical trial data or retrospectively curated datasets.
The key for validation is that training and testing should be entirely
separate and no information leakage should occur between the two
procedures [29]. In addition, it is also important to evaluate the
relationship between the newly proposed radiomics signatures and
known clinical and pathologic factors by combining them together
in a multivariate model. Those radiomic signatures that provide
independent prediction power are more likely to add clinical value

for patient management.

Radiomics quality score and practical implementation
Recently, Lambin and colleagues have proposed the radiomics qual-
ity score (RQS) as evaluation criteria for radiomic studies [7]. The
RQS contains sixteen key components that intend to minimize bias
and enhance the usefulness of radiomics models. These recommen-
dations cover the image acquisition protocol, image preprocessing,
image feature extraction, and statistical modeling, which establish
the reporting guidelines for future radiomic studies.

For a typical radiomics study, image acquisition and tumor seg-
mentation are operated by experienced imaging technologists and
radiologists, and are often the bottleneck and most time-consuming
parts. By contrast, feature extraction, predictive model construction
and validation can be automated and therefore are done in a much
more time-efficient manner.

CURRENT STATUS AND RESULTS OF
RADIOMICS IN RADIOTHERAPY
There has been tremendous growth in radiomics research in the
past few years [5-8, 30-36]. Given the very large number of studies,
it is not possible to provide an exhaustive list of articles in a single
review. Below we highlight a few studies that may be potentially
relevant for improving patient management in radiotherapy. Aerts
and colleagues proposed a radiomics signature for predicting overall
survival in lung cancer patients treated with radiotherapy [37]. They
extracted over 400 quantitative features from CT images to describe
tumor intensity, shape and texture. Based on these features, they
constructed a radiomic signature that captured intratumor hetero-
geneity, which was shown to be prognostic in several independent
validation cohorts, including one head-and-neck cohort. In another
study by the same group, radiomics analysis was used to investigate
the association of MRI features with survival and progression in
glioblastoma [38]. The radiomic signature showed significant strati-
fication of patient prognosis, which was stronger compared with
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clinical or traditional imaging metrics. Moreover, these findings
were independently validated in a multicenter clinical trial cohort.

Wau et al. investigated quantitative radiomic features of FDG-PET
and CT for predicting distant metastasis in early-stage non—small cell
lung cancer (NSCLC) after stereotactic ablative radiotherapy (SABR)
[39]. Based on image features characterizing tumor morphology and
intratumoral metabolic heterogeneity, a radiomic signature was built
that significantly improved the prognostic value compared with con-
ventional imaging metrics. Moreover, combining imaging and histo-
logic information yielded further improvement in prediction of distant
metastasis. In another study, Cui et al. performed the first investigation
to study the FDG-PET radiomic features for predicting overall survival
in 139 locally advanced pancreatic cancer patients treated with SABR
[40]. The proposed radiomic signature showed significant association
with survival after independent validation and, importantly, remained
an independent predictor of survival after adjusting for known clinico-
pathological risk factors.

Van Rossum et al. investigated whether subjective and quantita-
tive assessment of baseline and post-chemoradiation FDG-PET can
improve the prediction of pathologic complete response to pre-
operative chemoradiotherapy in esophageal cancer beyond the clin-
ical predictors [41]. Though statistical incremental values were
observed for the proposed radiomic signatures, there was only lim-
ited discriminatory improvement beyond the clinical predictors. In
an ongoing study, they are investigating whether adding diffusion-
weighted MRI radiomic features could improve potential predictive
power. El Naga and colleagues studied FDG-PET/CT radiomics
and combined them with clinical information to assess the risk of
locoregional recurrences and distant metastases in head-and-neck
cancer [42]. The prognostic value of constructed prediction models
was confirmed in an external cohort. The radiomic model may have
the potential to allow for personalization of chemoradiation treat-
ments for head-and-neck cancer patients.

EMERGING PARADIGMS OF RADIOMICS FOR
PRECISION RADIOTHERAPY
Intratumoral partitioning for characterizing spatial
heterogeneity
Up to this point, the vast majority of radiomic studies have been
focused on analysis of the primary tumor. While texture features
provide a measure of intratumor heterogeneity to a certain extent,
this characterization is not complete. Because their calculation is
applied to the entire tumor as a whole, this approach implicitly
assumes that the tumor is heterogeneous but well mixed, and
neglects the regional variations within a tumor that have been previ-
ously demonstrated. To address this issue, the concept of habitat
imaging was proposed to capture imaging heterogeneity more expli-

citly at a regional level [8, 43].

Cao and colleagues proposed a clustering-based algorithm for
identifying the significant subvolumes in primary tumors from
dynamic contrast-enhanced (DCE) MRI in head and neck cancer
[44]. They showed that large, poorly perfused subvolumes of the
primary tumor at baseline and persisting during the early course
of chemoradiotherapy can potentially predict local or regional
failure, which could potentially stratify patients for local dose



i28 « J Wuetal

intensification. Gatenby and colleagues proposed cascading T1 post-
gadolinium MRI with T2-weighted fluid-attenuated inversion recovery
sequences in order to divide the whole tumor into multiple regional
habitats with distinct contrast enhancement and edema/cellularity
[45]. A preliminary study of 32 TCGA glioblastoma multiforme
patients showed that the distribution of MRI-based habitats was sig-
nificantly correlated with survival. Wu et al. [46] developed a robust
tumor-partitioning method by a two-stage clustering procedure, and
identified three spatially distinct and phenotypically consistent sub-
regions in lung tumors. One subregion, associated with the most
metabolically active, metabolically heterogeneous, and solid compo-
nent of the tumor, was defined as the ‘high-risk’ subregion. The vol-
ume of high-risk intratumoral subregion predicted distant metastasis
and overall survival in patients with NSCLC treated with radiation
therapy.

Tumor partitioning can be combined with radiomic or texture
analysis to allow more detailed and refined image phenotyping. Wu
et al. [47]. showed that early change in texture features for the intra-
tumoral subregion (associated with fast contrast-agent washout at
DCE MRI) predicted pathological complete response to neoadju-
vant chemotherapy in breast cancer. Cui et al [48]. performed
radiomic analysis on tumor subregions and defined 120 multiregio-
nal image features on MRI in glioblastoma. A five-feature radiomic
signature was identified and independently validated in an external
cohort as predicting overall survival, and it outperformed whole-
tumor measurements. Stoyanova and colleagues investigated the
association between MRI radiomic features and prostate cancer
gene expression profiles from MRI-guided biopsy tissues [49]. They
extracted radiomic features for the identified habitats on MRI/3D-
ultrasound fusion and found strong associations between radiomic
features and gene expression profiles.

Taken together, these studies support the need for tumor parti-
tioning to identify aggressive intratumoral subregions, and this is
applicable to many types of solid tumors that demonstrate intratu-
mor heterogeneity at imaging. This may have significant implica-
tions for clinical oncology by identifying important tumor regions
for biopsy. In addition, this is particularly relevant for radiotherapy
treatment planning and adaptation, because high-risk tumor subre-
gions associated with the aggressive disease can then be targeted
with a radiation boost to potentially improve local control and
patient survival.

Radiogenomics: integrating imaging with genomics
An emerging field that is closely related to radiomics is radioge-
nomics, which integrates imaging and genomic data with the goal of
gaining biological interpretation or improving patient stratification
for precision medicine [10-1S, S0-54]. There are two major types
of radiogenomic association studies. One approach that most radio-
genomic studies so far have adopted is to find imaging correlates or
surrogates of a specific genotype or molecular phenotype of the
tumor. For instance, CT semantic and radiomic image features have
been found to be associated with EGFR mutations in lung cancer
[S5, 56]; MRI radiomic features have been correlated with intrinsic
molecular subtypes or existing genomic assays in breast cancer [57-59].

Radiogenomics can also be used create association maps between
molecular features and a specific imaging phenotype so as to reveal its
biological underpinnings. For example, tumors with a higher maximum
standardized uptake value from FDG-PET have been demonstrated to
be associated with the epithelial-mesenchymal transition in non-small
cell lung cancer [60]. In another recent radiogenomic study, heteroge-
neous enhancing patterns of tumor-adjacent parenchyma from perfu-
sion MRI were associated with the tumor necrosis signaling pathway
and poor survival in breast cancer [15].

Another interesting area of investigation is classification of
tumors into subtypes based on imaging phenotypes rather than
molecular features. Recently, Wu et al. [14]. discovered and inde-
pendently validated three breast cancer imaging subtypes, which
were characterized as having homogeneous intratumoral enhance-
ment, minimal parenchymal enhancement, or prominent parenchy-
mal enhancement. In a large multicohort study of over 1000
patients, each of the imaging subtypes was associated with distinct
prognoses and dysregulated molecular pathways, and they were
shown to be complementary to known intrinsic molecular subtypes.

Finally, one important direction that is particularly relevant for
precision medicine is to leverage the complementary power of
imaging and molecular data, and integrate them into a unifying
model to further improve the prediction accuracy of clinical out-
comes. Cottereau et al. [61]. showed that the combination of
molecular profile and metabolic tumor volume at FDG-PET
imaging improved patient stratification for progression-free and
overall survival in diffuse large B-cell lymphoma. Grossmann
et al. [62]. combined gene expression and CT radiomic signa-
tures to enhance the accuracy of survival prediction in lung can-
cer. Cui et al. [63] showed that integrating MGMT methylation
status and volume of the high-risk subregion at multiparametric
MRI improved survival stratification in glioblastoma. These stud-
ies provide the initial evidence that image-based biomarkers can
provide additional information beyond molecular analysis alone,
and integrating both will provide more accurate assessment of

individual tumors.

CHALLENGES IN RADIOMICS
INVESTIGATIONS
Given the growing interest in the field, it is important to highlight
some technical and practical challenges associated with radiomics
and its ultimate clinical translation. These challenges include: stand-
ardization of image acquisition protocols and feature extraction,
ensuring robustness and reproducibility of radiomic signatures in
order to maximize the translational potential, and integration of
large multicenter cohorts by cultivating the culture of data sharing.

Standardization
Currently, there is no universal image acquisition protocol for any
imaging modality in clinical practice. The retrospectively acquired
images are often heterogeneous, with a wide range of image acquisi-
tion and reconstruction protocols across different centers and
among scanner manufacturers, which can significantly hamper quan-
titative radiomic analysis. To overcome this issue, there have been



several efforts to standardize the imaging protocol by the quantita-
tive imaging biomarkers alliance (QIBA) [64] and the quantitative
imaging network (QIN) [65], among others. In a retrospective ana-
lysis, several strategies have been proposed for harmonizing imaging
scans such that they are comparable across multiple cohorts. A com-
mon strategy is to derive the underlying physiological measures
from the functional imaging. For instance, the perfusion maps
can be computed from DCE MRI based on pharmacokinetic
modeling [66]. Another practical strategy is to gauge the imaging
values with the value of the selected normal tissue region of
interest as a baseline. For instance, on an individual basis, the
average interquantile values of the background parenchyma can
be used to normalize breast MRI scans [14]. In addition, the
phantom study can be adopted to investigate the interscan and
inter-vendor variability of the imaging-derived features [67, 68],
which can provide useful insights into the uncertainties of quanti-
tative imaging analysis.

Reproducibility

Prior to clinical translation of any putative biomarkers, the most
critical step is rigorous validation in a prospective multicenter trial
[1]. For radiomics, there can be many causes that render the radio-
mic analysis and results invalid, including poor experimental design,
model overfitting, and unadjusted biases or confounding factors,
among others. The meaning of reproducibility is 2-fold. First, it is
essential to assure the predictive accuracy during radiomic signature
construction. A rational radiomic design should include proper
imaging standardization, a robustness test of radiomic features
regarding segmentation variabilities, as well as rigorous model train-
ing and testing. Second, each radiomic analysis step should be well
documented, and original codes and data should be easily accessible,
allowing other investigators to replicate the results.

Data sharing

One of the biggest challenges in radiomics, and more generally in
big data research [69], is the curation of image and relevant
metadata across multiple centers [65, 69, 70]. It is important to
match imaging with detailed clinicopathological and treatment
information, as well as relevant clinical outcomes. There has
been some progress toward data sharing under the initiative of
the cancer imaging archive, where image and clinical data for
various tumor sites are curated and shared publicly (http://www.
cancerimagingarchive.net/). These cohorts are from single-
institution or multicenter trails, which should greatly facilitate
the discovery and validation of radiomic models. Nonetheless,
compared with the abundant public gene expression data, the
available imaging data are much less, and continuing efforts
should be spent curating high-quality imaging datasets. Beyond
technical challenges, there are also administrative and regulatory
barriers that need to be overcome in order to make large-scale
data sharing feasible in the future [69]. A cloud-based platform
such as the one provided by Huiyihuiying Inc. may prove to be
useful in facilitating data sharing and multi-institutional collab-
orative research.
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CONCLUSION AND FUTURE OUTLOOK
Radiomics and radiogenomics have shown great promise for the dis-
covery of new candidate imaging markers; such markers have
demonstrated potential diagnostic and prognostic value in a variety
of cancer types. Despite the enthusiasm and excitement around this,
it should be noted that many radiomic and radiogenomic studies so
far have been of hypothesis-generating nature, and rigorous valid-
ation in independent cohorts has been lacking. Another caveat is
that existing biologic knowledge about a certain disease is not taken
into account in many studies. To be of practical value, any new can-
didate imaging biomarkers should be complementary to known clin-
ical and pathologic factors, i.e. adding value. One critical and yet
currently an underexplored area of investigation is how radiomics
can be applied to serial imaging scans to better evaluate therapeutic
response, given the increasing availability of treatment regimens.
Initial studies on simple delta-radiomics are encouraging, but the
optimum approach to characterizing longitudinal change is yet to be
defined. Moving forward, advanced machine-learning techniques,
notably deep convolutional neural networks, are expected to be
increasingly used to identify useful image features automatically,
rather than defining them manually (personal communication from
Ibragimov B, Toesca D, Chang D et al.). In order for this approach
to work, a sufficiently large dataset will be required for training a
reliable model, highlighting the need for curation of high-quality
datasets and data sharing. Ultimately, prospective validation in mul-
ticenter clinical trials will be required to demonstrate the clinical val-
idity and utility of newly identified imaging markers and truly
establish the value of radiomics and radiogenomics in precision
radiotherapy.
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