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Abstract

A devastating complication of Plasmodium falciparum infection is cerebral malaria, in which

vascular leakage and cerebral swelling lead to coma and often death. P. falciparum pro-

duces a protein called histidine-rich protein II (HRPII) that accumulates to high levels in the

bloodstream of patients and serves as a diagnostic and prognostic marker for falciparum

malaria. Using a human cerebral microvascular endothelial barrier model, we previously

found that HRPII activates the endothelial cell inflammasome, resulting in decreased integ-

rity of tight junctions and increased endothelial barrier permeability. Here, we report that

intravenous administration of HRPII induced blood-brain barrier leakage in uninfected mice.

Furthermore, HRPII infusion in P. berghei-infected mice increased early mortality from

experimental cerebral malaria. These data support the hypothesis that HRPII is a virulence

factor that contributes to cerebral malaria by compromising the integrity of the blood-brain

barrier.

Introduction

Malaria is a disease that afflicts several hundred million people each year. Most of the esti-

mated 600,000 deaths [1] are due to the species Plasmodium falciparum, which can cause

complications such as severe anemia, respiratory distress and cerebral malaria (CM). CM

manifests with a progression of symptoms from decreased consciousness to coma and death.

Cerebral edema due to blood-brain barrier (BBB) compromise ultimately results in brain her-

niation and death [2].

Infection of mice with the rodent malaria parasite strain P. berghei ANKA serves as a small

animal model for cerebral malaria. The pathology present in experimental cerebral malaria
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(ECM) is similar to that in human cerebral malaria (CM) with notable exceptions being lim-

ited sequestration of infected RBC and a more robust immune response enriched in leukocytes

[3–5]. The biological basis of these differences is controversial and poorly defined [6–9].

Histidine-rich protein II (HRPII) is a protein produced by P. falciparum but not by other

malaria parasite species. It accumulates in the bloodstream [10] and is the basis of diagnostic

and prognostic tests for falciparum malaria. Our previous work has shown that HRPII, at con-

centrations seen in patient plasma, can disrupt human cerebral microvascular endothelial cell

barriers by triggering the endothelial cell inflammasome [11]. This sets off a signaling pathway

that causes cell-cell junctional protein rearrangement and decreased barrier resistance [11].

In the current study, we evaluated the effect of HRPII infusion in mice. We find that HRPII

causes cerebral vascular leakage in uninfected mice and increases the incidence of early death

in a rodent malaria model. Blockade of inflammasome signaling with anti-IL1β antibody miti-

gates cerebral barrier compromise. These data support the hypothesis that HRPII contributes

to the pathogenesis of cerebral malaria.

Materials and methods

Antibodies

Armenian hamster anti- mouse IL-1β was purchased (Leinco, I-437) and used for in vivo stud-

ies along with an Armenian hamster IgG isotype control (Leinco, I-140), at 300 μg/mouse.

Dilutions were made in PBS.

HRPII purification

The coding sequence for the mature form of HRPII was cloned into pET-15b (Novagen) with-

out a tag, expressed and purified from E. coli lysate using nickel-affinity chromatography as

described (27). Protein was exchanged into 20 mM Tris, 500 mM NaCl, 50 mM imidazole and

loaded on a 5 ml nickel column (GE Healthcare). After washing with 60 column volumes of 20

mM Tris, 10 mM NaCl, 0.1% Triton X-114 to remove residual LPS, the column was washed

with 20 column volumes of loading buffer and eluted with loading buffer with 1 M imidazole.

All preparations of HRPII were tested for residual LPS using a LAL endotoxin test (Charles

Rivers, R1708K); levels administered to mice contained less than 5 EU/kg. Fully active prepara-

tions of the protein were used for experiments. Activity was measured using a Factor Xa assay

[12]. Protein concentration was determined by BCA assay (Fisher).

Mouse model of cerebral malaria

Four-week old female C57BL/6 mice were purchased from Taconic. Animals were housed

under pathogen-free conditions. All experiments were approved by and performed in compli-

ance with Animal Studies guidelines at Washington University and Johns Hopkins University.

Mice were given retro-orbital intravenous injections (50 μg of recombinant HRPII or BSA, in

100 μl of PBS) approximately 12 hours prior to infection. The mice were infected by retro-

orbital inoculation of P. berghei ANKA parasites (105 parasites/100 μl) derived from stock

mice (Swiss-Webster, Taconic) with parasitemias of<3%. All efforts were made to minimize

animal suffering. We needed to use early death (6–9 days) as an endpoint rather than euthani-

zation of ill-looking animals because the mice are capable of recovering from infection and it

was important to distinguish those that recover from those that do not. Animals that survived

the early period (30–70%) were euthanized for high parasitemia or sick appearance, using

ketamine/xyazine overdose.

A role for HRPII in cerebral malaria pathogenesis
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In vivo assessment of BBB permeability

Two doses of recombinant HRPII (200 μg in 100 ul) were given 24 hours apart by retro-orbital

injection to 4-week old female C57BL/6J mice from Jackson Labs. 48 hours post initial injec-

tion, the mice were evaluated for sodium fluorescein extravasation as previously described

[13]. In some mice, anti-IL-1β antibody or isotype control (300 ug each) was administered

with the first HRPII infusion.

Statistical analysis

All data were analyzed using Graph Pad Prism 6.0 (Graph Pad Software, La Jolla, CA, USA). A

p<0.05 was designated as significant. Pair-wise comparisons were analyzed by two-tailed t-

test. Log rank test was used to compare survival between the groups in the Kaplan-Meier sur-

vival curves.

Results

HRPII promotes increased BBB permeability in vivo

In previous work, we showed that HRPII can disrupt a human cerebral endothelial cell barrier

in vitro [11]. At concentrations found in patients with cerebral malaria [14], HRPII triggered

inflammasome activation, resulting in junctional protein rearrangement and barrier leakage.

To determine whether the HRPII could induce a compromise in barrier integrity of the brain

endothelium in vivo, uninfected mice were administered two 200 μg doses of HRPII 24 hours

apart by intravenous (IV) injection, and fluorescein extravasation was measured in the brain

parenchyma (Fig 1A). We observed an increase in vascular leakage of fluorescein into the cor-

tex and cerebellum of mice infused with HRPII compared to control animals (Fig 1B and 1C).

Peak serum HRPII levels at one-hour post infusion were 300–400 ng/ml. At the time of har-

vest, HRPII levels were 150–200 ng/ml.

Our in vitro BBB model suggested that HRPII-mediated permeability was inflammasome

dependent. To assess this effect in vivo, we infused uninfected mice with a neutralizing anti-

body to IL-1β or an isotype control and then treated them with either HRPII or a control pro-

tein (Fig 2). IL-1β-specific antibody blocked HRPII-induced sodium fluorescein leakage but

did not affect sodium fluorescein extravasation in animals not receiving HRPII. These data

confirm the in vivo relevance of IL-1β-mediated signaling for the actions of HRPII on BBB

permeability.

HRPII reduces host survival in an experimental cerebral malaria model

We next determined whether the compromise in vascular integrity observed with purified

HRPII had clinical consequences during malaria infection in mice. We infused 6-week old

female C57BL/6 mice with 50 μg of BSA or HRPII prior to infection with 2 x105 P. berghei
ANKA infected erythrocytes. Experimental cerebral malaria in mice infected with P. berghei
ANKA has variable penetrance, with a 40 to 100% lethality rate from cerebral malaria [8,15]

defined as neurological symptoms and death at or below 10% parasitemia, by day 10 post

infection. Mice infused with HRPII had early lethality compared to control mice (Fig 3; mean

time to death for HRPII = 10 days and for BSA = 16 days, P = 0.018). The parasitemia of mice

dying from cerebral malaria-like symptoms was low, as expected, and importantly, no differ-

ences in parasitemia were observed between mice infused with HRPII or control protein.

A role for HRPII in cerebral malaria pathogenesis
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Fig 1. HRPII causes vascular leakage in vivo. (A) Scheme of experimental design. Two doses of HRPII or

BSA (200 μg) were injected into 4-week old female C57Bl/6 mice at 0 and 24 hours. At 48 hours, fluorescein

levels in the cortex (B) and cerebellum (C) of the mice was measured. HRPII treatment was significantly

different from control by two-tailed t-test, p = 0.01 (cortex) and p = 0.02 (cerebellum). Data are mean values

+/-SEM for 8–16 mice per group accumulated over 3 independent experiments.

https://doi.org/10.1371/journal.pone.0177142.g001
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Discussion

BBB integrity disruption during Plasmodium falciparum infection is a hallmark of CM. Our

previous studies identified HRPII as a parasite virulence factor that activates host endothelial

innate immunity through an inflammasome-mediated pathway. This causes redistribution of

endothelial junctional proteins, and increased BBB permeability.

In the current work, we found that HRPII is active in vivo, resulting in leakage of fluores-

cein into the brain parenchyma of uninfected mice as well as an exacerbation of experimental

CM when the protein is infused into mice prior to infection. Mouse endothelial cells are less

sensitive to HRPII than human cells (not shown) and achievable plasma levels of HRPII are

considerably lower than those seen in human patients with cerebral malaria, where levels of

Fig 2. HRPII-mediated vascular leakage is blocked by antibody to IL-1β. Mice were infused as in Fig 1,

with HRPII plus an isotype antibody (Iso, positive control), HRPII plus anti-IL-1β antibody (experimental

condition) or anti-IL-1β antibody alone (negative control). Untreated mice (no HRPII, no antibody) served as a

further control. Vascular leakage in mice infused with HRPII/isotype is statistically significantly different from

mice infused with HRPII/ anti-IL-1β, p = 0.01 (cerebellum) and p = 0.01 (cortex), by two-tailed t-test; p = 0.003

(cerebellum) and p = 0.06 (cortex) by ANOVA one-way variance with significance between HRPII/isotype and

HRPII/ anti-IL-1β. Data are mean values +/-SEM for 6–12 mice per group accumulated over 3 independent

experiments.

https://doi.org/10.1371/journal.pone.0177142.g002

Fig 3. HRPII reduces survival time in an experimental cerebral malaria model. (A) Survival curves of

4-week old female mice infused with 50 μg of BSA or HRPII prior to infection with P. berghei ANKA (105

parasites). Shown are the means for n = 24 to 27 mice pooled from four independent experiments. Curves are

significantly different, p = 0.03, by the log-rank (Mantel-Cox) test. Mean time to death for HRPII = 11.5 days

and for BSA = 16 days, p = 0.018, by two tailed t-test. (B) Mice displaying cerebral malaria-like symptoms died

at low parasitemia by day 10, yet parasitemias between HRPII-infused mice and controls were closely

matched on each day. Representative data from one of three experiments shown in panel A, 10 mice per

group.

https://doi.org/10.1371/journal.pone.0177142.g003
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1–100 μg/ml have been reported [14]. These limitations make the mouse a suboptimal system

for study of the effects of this protein. Nevertheless, significant effects of HRPII on BBB perme-

ability and P. berghei pathogenesis were measured.

Given the long half-life of HRPII in the bloodstream of malaria parasites (it can be detected

for more than a month after cured infection [16, 17]), our results raise the possibility that this

protein may contribute to the persistent endothelial activation and inflammation seen after P.

falciparum infection [18]. Whether this could cause lingering symptomatology remains to be

established.

Blocking HRPII action has potential as an adjunctive therapy for falciparum malaria. Anti-

IL-1β antibody was able to mitigate the effect of HRPII on vascular leakage in our mouse infu-

sion studies. Drugs targeting IL-1β are already in clinical use, and these or other inhibitors that

work elsewhere in the HRPII pro-inflammatory pathway could be considered for the treat-

ment of cerebral malaria.

While the current work is focused on the brain, it will be interesting to see if other vascular

beds are sensitive to HRPII, since falciparum malaria is a multi-organ disease. The long half-

life of HRPII in the human bloodstream makes this molecule a candidate to explain the failure

of antimalarial drugs to reverse cerebral malaria symptoms in some cases, even after parasite

clearance. Similarly, it could offer an explanation for post-malaria syndrome symptomatology

and for the persistent endothelial activation that has been observed after falciparum malaria

has been treated.
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