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Abstract: Lactobacilli species are an effective biotherapeutic alternative against bacterial infections and
intestinal inflammatory disorders. However, it is important to evaluate their beneficial properties,
before considering them as probiotics for medical use. In this study we evaluated some probiotic prop-
erties of Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLSD, Lactobacillus helveticus IMAU70129,
and Lactobacillus casei IMAU60214 previously isolated from dairy products and as control Lactobacillus
casei Shirota. Experimental evaluations revealed that all strains expressed hydrophobicity (25–40%),
auto-aggregation (55–60%), NaCl tolerance (1–4%), adhesion to Caco-2 cells (25–33%), partial in-
hibition on adherence of Escherichia coli ATCC 35218, Salmonella Typhimurium ATCC 14028, and
Staphylococcus aureus ATCC 23219. Cell-free supernatants (CFS) of Lactobacilli also inhibit growth of
these pathogens. In immunomodulatory properties a reduction of interleukin-8 (IL-8) and nitric oxide
(NO) release was observed in assays with Caco-2 cells stimulated with interleukin-1β (1 ng/mL),
or lipopolysaccharide (0.1 µg/mL). On the other hand, the damage induced to Caco-2 cells with
sodium dodecyl sulfate (SDS) was attenuated when the cultured cells were pretreated with L. rham-
nosus KLDS, L. helveticus IMAU70129 and L. casei IMAU60214. These Lactobacilli possess probiotic
properties determined by both an antagonistic activity on pathogenic bacteria and reduction in the
inflammatory response of cells treated with SDS, a pro-inflammatory stimulant.

Keywords: Lactobacilli; probiotic; immunomodulation; nitric oxide (NO); antimicrobial activity;
interleukin-8 (IL-8); stress inflammatory; adherence inhibition

1. Introduction

The human gastrointestinal tract (GIT) is colonized by different microorganisms
known as intestinal microbiota, which establish a symbiotic relationship with their host
contributing to its homeostasis [1]. Intestinal microbiota contributes among other factors
to intestinal mucosa maturation, functional digestion, metabolic homeostasis, protection
against pathogens and immune regulation [2,3]. The microbiota of the GIT belongs to
the Firmicutes, Bacteroides, Proteobacteria and Actinobacteria phyla principally and dif-
ferent studies have shown that gut microbiota composition changes are associated with
inflammatory bowel diseases (IBD), type II diabetes, rheumatoid arthritis, autism, and
Parkinson’s disease [4,5]. Clinical studies have shown positive effects on these alterations
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when probiotic microorganisms are consumed [5,6]. Probiotic microorganisms that belong
to the genus Lactobacillus have been reclassified and renamed as genus Lacticaseibacillus,
which includes Lacticaseibacillus casei (L.casei) Lacticaseibacillus rhamnosus (L. rhamnosus),
and Lacticaseibacillus specie paracasei [7]. Species of Lactobacillaceae family as Lactobacillus
acidophilus, Lactobacillus helveticus (L. helveticus) Lactiplantibacillus plantarum) among others
as the well-characterized Lacticaseibacillus Shirota (formerly L. casei strain Shirota), exert a
variety of beneficial effects on human health and some of them are considered potential
probiotic bacteria [8,9]. Capabilities such as adherence to the epithelium, colonization
interference with the colonization of pathogens by production of inhibitory components
or competition of sites, and biofilm formation and immunomodulatory activities of in-
testinal epithelial cells (IEC, are important properties to consider a bacterium as a good
probiotic [9,10]. In the IECs there are the sensors and cellular effector components to
host defense against intestinal harm [11,12]. Studies with L. rhamnosus GG strain (LGG)
show that it causesan increase in immunoglobulin A (IgA) producing cells in the intestinal
mucosa, interferons are released and there is an improvement in the capture of antigens
by lymphoid cells in Peyer’s patches [13]. In induced intestinal inflammatory conditions
by sodium dextran sulfate administration, treatment with L. casei prevents the inflamma-
tion through down-regulation of neutrophil infiltration [14,15]. However, L. casei strain
Shirota also activates macrophages that produced high interleukin-12 (IL-12) levels, while
in chronic inflammatory diseases it exhibits a partial negative deregulation of the secretion
of immunological markers [16–18]. The effects of L casei identified are diverse and can be
beneficial or cause harm to the host [19,20]. That is why it is important to evaluate the
properties of probiotics to define their potential use as beneficial microorganisms. In a
previously study, L. rhamnosus GG, L. rhamnosus KLDS, L. helveticus IMAU70219 and L. casei
IMAU70214 strains isolated from commercial fermented milk were evaluated showing
immunomodulatory properties [21]. However, complete characterization is necessary to
define their potential use as probiotic microorganisms. The aim of this study is to character-
ize L. rhamnosus GG, L. rhamnosus KLDS, L. helveticus IMAU70219 and L. casei IMAU70214
by analyzing their physicochemical properties and functional effects on the intestinal mu-
cosa, with the purpose of understanding what cellular mechanisms are activated and their
potential effect on health.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

Five strains of Lactobacilli (L. rhamnosus GG, L. rhamnosus KLDS, L. helveticus IMAU70129,
L. casei IMAU60214 and L. casei Shirota) were analyzed. The Lactobacilli strains isolated
from milk were kindly provided by Dr. Alma Cruz-Guerrero (Universidad Autónoma
Metropolitana, Mexico) [22]. The strains were grown on MRS agar (Man, Ragosa and Sarp)
and broth culture medium (Franklin Laker, NJ, USA) at 37 ◦C for 18–24 h. The reference
L. casei strain Shirota was also grown in MRS broth under the same condition. Escherichia
coli ATCC 35218, Salmonella Typhimurium ATCC 14028, and Staphylococcus aureus ATCC
23219 were used as control pathogens. These strains were grown overnight in a tryptic soy
broth (TSB) medium at 37 ◦C. After incubation, the cultures were centrifuged (3000× g,
5 min, 4 ◦C) and washed twice in phosphate-buffered saline (PBS) pH = 7.4. Each bacterial
pellet was suspended in sterile PBS at bacteria concentration adjusted to 1 × 108 CFU/mL
and used for the different assays. For plating of Lactobacillus strains and pathogen bacteria
the count was performed with serial dilution (1:100, 1:1000) and 100 µL of the sample was
seeded on MRS agar and TSB, respectively. Each test was performed in triplicate sample
from three experiments.

2.2. Physicochemical Properties of Lactobacillus Strains
2.2.1. Cell Surface Hydrophobicity

The hydrophobicity of the cell surface was evaluated by affinity to organic solvent
of the Lactobacillus strains in accordance with the method described by Kotzamanidis,
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et al. [23] with several modifications. Briefly, the bacterial cells were suspended in PBS
solution at pH 7.4 to an optical density (OD600) of 0.72 corresponding to approximately
108 CFU/mL (A0). A bacterial suspension of 3 mL was mixed with 1 mL of hydrocarbon
(xylene). The mixture was shaken in a vortex for 2 min and allowed to stand at 37 ◦C for
1 h for phase separation. The aqueous phase was gently collected, and the absorbance was
measured at 600 nm. The surface hydrophobicity was calculated as:

Hydrophobicity (%) = (1 − A1/A0) × 100, (1)

where A0 is initial absorbance and A1 is final absorbance.

2.2.2. Auto-Aggregation

The auto-aggregative ability of Lactobacillus strains was assessed as described pre-
viously by Archer, et al. [24] with some modifications. A 4 mL suspension of bacterial
cells (108 CFU/mL) was prepared with PBS solution (pH = 7.4) shaken in a vortex for 10 s,
followed by incubation without agitation at 37 °C during 1, 2, 3, 4, and 5 h. Each time the
supernatant was collected, and the absorbance was determined at 600 nm using a quantum
spectrophotometer (Amersham Biosciences, Little Chalfont, UK). The auto-aggregation
was calculated as:

Auto-aggregation (%) = 1 − (A2/A0) × 100, (2)

where A0 is the initial absorbance at 0 h (OD600) of 0.72 (A0) and A2 is the final absorbance
at 1, 2, 3, 4, and 5 h of incubation.

2.3. NaCl Tolerance Assay

The salt tolerance of the Lactobacillus strains was evaluated as described by Archer,
et al. [24] with slight modifications. MRS broth with different NaCl concentrations (1–6%)
was inoculated with 10 µL of an overnight culture of the Lactobacillus strains and incu-
bated at 37 °C for 18–24 h. The bacterial growth was then measured by examining the
absorbance at 600 nm using a quantum spectrophotometer (Amersham Biosciences, Lit-
tle Chalfont, UK).

2.4. Caco-2 Cells Assay

The Caco-2 epithelial cells of a human colon adenocarcinoma (ATCC, HTB-37) were cul-
tured in Dulbecco’s modified Eagle’s minimal essential medium (DMEM; Gibco, Waltham,
MA, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS; Gibco;
Waltham, MA, USA) and penicillin (100 U/mL), and streptomycin (100 µg/mL) (Gibco,
Waltham, MA, USA). The cells were incubated in a CO2 (5%) oven at 37 °C. For the adhe-
sion assay, the Caco-2 cells at 2 × 105 cells/mL (final concentration), were deposited in
24-well tissue culture plates (Corning, NY, USA) containing coverslips (1 mm diameter).
After the cells became fully differentiated they were maintained in a new DMEM medium
2 h prior to the adhesion assay, subsequently 100 µL with 108 CFU was incorporated in
each well of tissue culture plates. The plates were incubated at 37 ◦C during 3 h under the
same conditions specified earlier. To determine the Caco-2 cells adhesion of Lactobacillus
strains, the cells were methanol (Merck, Darmstadt, Germany) and fixed during 10 min
at room temperature. Then, the methanol was completely removed, and the cells were
stained with Giemsa (Merck, Darmstadt, Germany) for 20 min at room temperature. To
remove the excess stain the coverslips were washed with PBS (pH 7.4). The coverslips were
air dried and mounted on glass slides using Entellan (Merck, Darmstadt, Germany). The
fields of Caco-2 cells/Lactobacillus were observed under an oil immersion microscope at
400× magnification using a Nikon photomicroscope (Nikon Canada Inc., Richmond, BC,
Canada).
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2.5. Quantification of Adherence of Lactobacillus Strains

To determine the number of adhering bacteria, each Lactobacillus strain was added to a
1 mL 108 CFU/mL bacterial suspension to Caco-2 cells prepared as indicated in Section 2.4.
These plates were incubated for 2 h at 37 °C under a 5% CO2 atmosphere. The incubation
plates with cells were washed four times with a solution sterile of PBS (pH 7.4) to remove
the non-adherent bacterial cells. Later the cells were detached by treating them with
100 µL 0.05% TritonX-100 for 5 min at room temperature. Each sample was diluted 10-fold
and plated on MRS (Difco Agar, Franklin Lakes, NJ, USA) and incubated for 48 h. Each
experimental assay was performed in triplicate. The percent of adhesion was determined
by the following calculation:

Adhesion (%) = (V1 × 100)/V0, (3)

where V0 is the initial (CFU/mL) viable count of the tested Lactobacillus strains and V1 is the
viable bacteria count (CFU/mL) obtained from Caco-2 cells at the end of the experimental
assay (i.e., at 2 h after treatment).

2.6. Adhesion Inhibition of Pathogen Bacteria by Lactobacillus Strains

This assay was performed using the method described by Jiang, et al. [25] with slight
modifications. The Caco-2 cell adherence assay was performed as previously described,
but the cells were pretreated with the Lactobacillus isolates at 2 h. Later the non-adherent
Lactobacillus strains were removed with sterile PBS (pH 7.4) washing and then separately
the pathogenic bacteria (E. coli ATCC 35218, S. Typhimurium ATCC 14028, and S. aureus
ATCC 23219) were added (ratio 1:1) and incubated for another 1 h. In all cases, non-
adherent bacteria were removed as mentioned, and the bacterial counts were determined
as described previously in Section 2.1. The counts of the adhered pathogenic bacteria after
each assay were calculated as:

% anti-adhesion = (1 − (the number of adherent CFU/mL of pathogenic bacteria pretreated with
Lactobacillus strains/the number of adhered CFU/mL of pathogenic bacteria in Caco-2 cells

non-pretreated with Lactobacillus strains)) × 100
(4)

2.7. Antimicrobial Activity of Cell-Free Supernatants (CFSs)

The antimicrobial activity of CFSs Lactobacillus strains were assessed against E. coli
ATCC 35218 and S. Typhimurium ATCC 14028 Gram-negative bacteria and S. aureus ATCC
23219 Gram-positive bacteria using the modified agar well diffusion method described
by Wang, et al. [26] with slight modifications. The bacterial inoculum was adjusted to
0.5 McFarland tube (1.5 × 108 CFU/mL) and employed as inoculum in Mueller-Hinton
agar plates (Difco Agar, Franklin Lakes, NJ, USA). The plates of 7 mm diameter wells were
then filled with 100 µL of CFSs and incubated for 10 min at room temperature to allow
diffusion into the agar, followed by incubation at 35 ◦C for 24 h. The antimicrobial activity
of each Lactobacillus CFSs isolate was evaluated measuring the bacterial inhibition zones.
The negative controls were MRS medium (alone) and MRS medium supplemented with
tetracycline antibiotic as the positive control.

Preparation CFSs from Lactobacillus Strains

For the preparation of (CFSs), the 1% (v/v) inoculum of each Lactobacillus isolate was
cultured in MRS broth medium and incubated at 37 °C for 48 h. The cells were separated
by centrifugation at 5000 rpm for 15 min and the supernatant was collected and filtered
through a sterilized 0.22 µm Millex-GV filter (Millipore, MA, USA). The CFS was adjusted
to a pH of 6.5 with a sterile solution of 1 M sodium hydroxide (NaOH). Finally, the CFSs
were stored in 500 µL aliquots at 4 ◦C.
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2.8. Immunomodulatory Activitie of Lactobacillus Strains on the Secretion of IL-8 and NO-Induced
by LPS on Caco-2 Cells

The protection effect of Lactobacillus strains against inflammation mediators (IL-8 and
NO) of Caco-2 cells stimulated with 1 ng/mL IL-1β (Pharmingen, NJ, USA) or 0.1 µg/mL
LPS of E. coli 0111:B4 for 24 h was evaluated measuring the IL-8 levels by ELISA assay kit
(Pharmingen, NJ, USA) under basal conditions, with stimulated or without the Lactobacillus
strains stimulus (ratio 1:1) after 24 h. The NO production levels were quantified by
the Griess reaction in accordance with methods described by Archer, et al. [24]. The
accumulation of nitrites, as a measure of the secretion of NO, was determined in the cell
culture supernatant reading the absorbance at 570 nm using a microplate reader Fluoroskan
Ascent FL (Thermo Fisher Scientific, Waltham, MA, USA). The culture medium alone was
employed as the blank control.

2.9. Inflammatory Stress Protection Induced by Lactobacillus Strains

The protection effect of Lactobacillus strains on inflammatory stress was evaluated
by Presti, et al. [27]. The inflammatory stress on Caco-2 cells was induced with SDS
(Sigma, Darmstadt, Germany) at a concentration of 0.05% prepared in DMEM. Each one
of the Lactobacillus strains was added to the wells at a concentration of 107 CFU/mL
following incubation of 24 h. The cell viability was evaluated using the 3- (4,5-bromide
dimethylthiazol-2-yl) -2,5-diphenyltetrazole (MTT) assay (Sigma, Darmstadt, Germany) at
a concentration of 0.05% MTT in DMEM, followed by incubation for 4 h at 37 ◦C under
a 5% CO2 atmosphere in the dark. After the medium was removed, 100 µL of dimethyl
sulfoxide (DMSO; Sigma, Darmstadt, Germany) was added to each well and the reduction
of MTT was measured at an absorbance of 570 nm using a microplate reader Fluoroskan
Ascent FL (Thermo Fisher Scientific, Waltham, MA, USA) with DMSO alone serving as the
blank control.

2.10. Statistical Analysis

The results are expressed as the mean ± standard deviation (SD) of three indepen-
dent experiments. The statistical analysis was performed using the GraphPad Prism 5
(San Diego, CA, USA). The obtained data were subjected to one- or two-way analysis of
variance (ANOVA) and p < 0.05 was considered statistically significant.

3. Results
3.1. Physicochemical Properties of Lactobacillus Strains
3.1.1. Cell Surface Hydrophobicity

The Lactobacillus strains displayed different values of hydrophobicity (Figure 1).
L. rhamnosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214 showed a significant
moderate hydrophobicity (31 ± 3.1%, 35.4 ± 2.4%, and 38.9 ± 3.4%), respectively after
treatment with xylene. In contrast, lower values were observed for both L. rhamnosus GG
(25 ± 2.0%) and Lacticaseibacillus strain Shirota (22 ± 2.5%), which was used as reference.

3.1.2. Auto-Aggregation

The auto-aggregation properties of the evaluated Lactobacillus strains showed variable
scales which were time dependent (Figure 2). The analysis of L. rhamnosus KLDS, L.
helveticus IMAU70129, and L. casei IMAU60214 showed high auto-aggregation levels to
early time (3 h), while L. rhamnosus GG and L. casei Shirota showed lower activity in early
incubation times which gradually increased after 5 h.
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3.2. NaCL Tolerance

To investigate the effect of high concentrations of salt on growth, the Lactobacillus
strains were cultured in MRS medium supplement with different NaCl concentration
during 18 h. The observed results showed tolerance of Lactobacillus strains studied defined
by the growth of bacteria to 1–4% NaCl concentrations (Figure 3).

3.3. Caco-2 Cells Adherence Assay

The qualitative test to determine the adherence capacity of L. rhamnosus GG, L. rham-
nosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214 used the human epithelial
Caco-2 cell line. This test showed the Lactobacillus strains adhere to cells after two hours of
incubation (Figure 4A). The quantitative analysis report values varied from 25% to 35%. L.
rhamnosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214 had higher adhesion,
compared with L. casei strain Shirota (Figure 4B).
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Caco-2 cells. The values represent the mean ± SD of three separated experiments. * significant
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3.4. Adherence Inhibition of Pathogen Bacteria by Lactobacillus Strains

Lactobacillus strains were evaluated for their ability to interfere with the adhesion
of human pathogens on epithelial Caco-2 cells. The results showed that some of the
Lactobacillus strains evaluated induced a significant decrease in the adherence of pathogens
to Caco-2 cells when compared with the reference probiotic L. casei strain Shirota (Figure 5).
L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214 exhibited anti-
adhesion effect against E. coli (30 ± 2.5%), S. Typhimurium (45 ± 3.5%) and S. aureus
(50 ± 2.5%) respectively. In contrast, the anti-adhesion values observed with L. rhamnosus
GG (25 ± 2.5%) and the reference probiotic L. casei strain Shirota (27 ± 3.1%) showed
less activity.
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Figure 5. Adherence inhibition effect of Lactobacillus strains against pathogenic bacteria as well as Escherichia coli ATCC
35218 and Salmonella Typhimurium ATCC 40128 and Staphylococcus aureus ATCC 23219. The values represent the mean ± SD
of three different assays. * significant among Lactobacillus strains (p < 0.05).

3.5. Antimicrobial Activity of Cell-Free Supernatants (CFSs) from Lactobacillus Strains

The obtained results in this assay shown that the cell-free supernatants tested inhibited
the growing pathogenic bacteria evaluated (Figure 6A). The highest inhibition zone was
recorded against S. aureus ATCC 29213 (16 mm), followed by S. Typhimurium ATCC 14028
(10 mm) and E. coli ATCC 35218 (12 mm) after 24 h of incubation (Figure 6B). L. helveticus
IMAU70129, L. casei IMAU60214, and the reference probiotic L. casei strain Shirota showed
higher inhibition zones than L. rhamnosus GG.
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Figure 6. Antimicrobial activity of cell-free supernatant (CFS) of Lactobacillus strains against pathogenic bacteria. (A) Well 1,
control MRS (alone) or negative (not-inhibitory); Well 2, L. rhamnosus GG; Well 3, L. rhamnosus KLDS; Well 4, L. helveticus
IMAU70129; Well 5, L. casei IMAU60214; Well 6, L. casei strain Shirota; Well 7, MRS with tetracycline antibiotic (positive
showed inhibitory activity). (B) Zone inhibition in diameter (mm). Values represent the mean ± SD of three different assays.
* significant difference among Lactobacillus strains (p < 0.05).

3.6. Immunomodulatory Activity of Lactobacillus Strains on the Secretion of IL-8 and NO-Induced
by LPS on Caco-2 Cells

A feature to consider for a potential probiotic microorganism is its property of im-
munomodulation of the intestinal epithelium. An assay with Caco-2 cells incubated during
12 h with Lactobacillus strains induced a slight increase of IL-8 levels (250 ± 13 pg/mL), like
those observed on unstimulated epithelial cells (150 ± 10 pg/mL). On the other hand, the
incubation of Caco-2 cells with IL-1β (1 ng/mL) or LPS (0.1 µg/mL) significantly increased
the IL-8 secretion levels (800 ± 15 pg/mL) (Figure 7). However, prior to stimulation of
Caco-2 cells with IL-1β (1 ng/mL) or LPS (0.1 µg/mL), the cells were incubated with L.
rhamnosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214 strains and a reduced



Microorganisms 2021, 9, 825 10 of 15

secretion of IL-8 was observed (Figure 7A). was Another interesting observation was that
stimulation with LPS of E. coli 011:B4 (0.1 µg/mL) of Caco-2 cells previously incubated for
12 h with L. rhamnosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214 inhibited
NO production (Figure 7B).
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3.7. Inflammatory Stress Protection Induced by Lactobacillus Strains

The in vitro inflammatory stress model of human epithelial Caco-2 cells exposed to
SDS was used to evaluate the potential protective effect of Lactobacillus strains (L. rhamnosus
GG, L. rhamnosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214). Co-incubation
of Caco-2 cells with Lactobacillus strains for 24 h resulted in a significant reduction in the
damage produced by SDS exposition (0.05%) compared with the untreated Caco-2 cells. In
the assay L. rhamnosus KLDS, L. helveticus IMAU70129, and L. casei IMAU60214 exhibited a
greater viability percent of the Caco-2 cells when compared to the cells only exposed to
SDS (Figure 8).
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4. Discussion

Human colonization by bacteria occurs at childbirth, as well as through breastfeeding
and by environmental microorganism. Through breast milk the infant acquires different
microorganisms, mainly Lactobacilli and bifidobacteria. The symbiotic relationship between
human and microbiota contributes to establish a partnership that benefits both. The
microorganisms acquire nutrients and a niche to reproduce and live while the host receives
substrates that it is not capable of producing. In this way, it is protected against colonization
by pathogenic microorganisms and the immune system matures [28]. Changes in the
composition and structure of the intestinal microbiota have been linked to diseases such as
diabetes, inflammatory syndromes such as ulcerative colitis, and neurological alterations
like autism and Parkinson’s [29,30]. Changes in the intestinal microbiota have been related
to diet and the inappropriate use of antimicrobials [2,8]. When microbiota alterations occur,
the use of probiotic microorganisms is proposed. However, it is necessary to evaluate
the specific characteristics and safety of the probiotic bacteria before using them to avoid
causing damage to the host [31,32].

In this study, we evaluated different properties of the potential probiotic L rhamnosus
KLDS, L. helveticus IMAU70129, and L. casei IMAU60214, which were isolated from com-
mercial fermented products. Hydrophobicity, auto-aggregation, cell adhesion, antagonistic
activity against enteric pathogens and immunomodulatory effects on Caco-2 cells were
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evaluated. The cell-surface hydrophobicity and cell-surface charge of bacteria are recog-
nized as physicochemical variables for evaluating bacterial adhesion to surfaces [33]. In this
study we observed that the hydrophobicity values of the Lactobacillus strains were similar
to those observed in other probiotic strains reported elsewhere [34,35]. The hydrophobicity
results (30–50%) support that the studied strains could be classified as having moderate
hydrophobicity in accordance with the report by Jiang, et al. [25]. The hydrophobic charac-
teristics of a strain have been implicated in bacteria adhesion to host tissues, conferring a
competitive advantage on pathogen bacteria toward maintaining homeostasis in the host’s
GIT [15,36,37].

Adherence between the same bacteria (auto-aggregation) helps bacteria adhere to
the surface of the intestinal mucosa so that it persists in the intestine. Consequently, it
competes with pathogenic bacteria and interferes with their establishment in the GIT to
promote host health [38–41]. In the study the auto-aggregation results show that in L. casei
IMAU60214 this property was very similar with what was observed in L. rhamnosus KLDS
and L. helveticus IMAU70129.

Auto-aggregation and hydrophobicity are properties utilized as selective screening of
potential probiotic strains. However, there is controversy when both properties correlate
with epithelium adherence [42–45]. In this study, the cell adherence to Caco-2 cells, auto-
aggregation, and hydrophobicity of the evaluated Lactobacillus strains was positive but
with some differences between each other and with what we observed in the L. casei Shirota
reference strain. This could be due to the difference in responses between strains which
ultimately contributes to the bacteria interacting with the epithelium of their potential host.
The Lactobacillus adherence initially could be associated with hydrophobic interactions
and later specifically associated throughout bacterial structures as pilis which interact
with cell receptors [46]. The identification and characterization of bacteria structures is
of great importance in probiotic strain studies, since this would facilitate the study of the
mechanisms associated with the beneficial properties of these microorganisms.

As previously mentioned, many different characteristics must be considered when
selecting potential probiotic microorganisms. In addition to adherence, other properties
need to be analyzed. Different studies have reported that several groups of probiotic strains
can be protective, especially through interfering with the adherence and colonization
of pathogenic bacteria [47,48]. In this study, anti-adhesion activity against pathogenic
strains was analyzed (E. coli ATCC 35218; S. Typhimurium ATCC 12840 and S. aureus
ATCC 23219). The results show interference of the pathogen bacteria (30–35% inhibition
of adhered bacteria), similar to what was reported in studies performed with L. paracasei
strains [49,50]. Although S. aureus does not act directly on the intestinal epithelium since it
is through its enterotoxin, we evaluate the interference effect of Lactobacillus strains on this
bacterium because dairy products can be enriched with probiotics and in this way they
prevent staphylococci contamination.

The probiotic strains can also antagonize with pathogen bacteria both by antimicro-
bial activity mediated by metabolism secreted molecules or through immunomodulatory
activities of the host’s immune system [9,12]. In this study, different growth inhibition of
the selected pathogens induced by secreted products of Lactobacillus strains were observed.
L. casei IMAU60214 and L. helveticus IMAU70129 show a more intense activity than the
other studied strains, which was determined by the size of growth inhibition halos. Previ-
ous studies with L. reuteri isolated from humans show moderate inhibition against E. coli
(inhibition of 7–10 mm in diameter) [50]. This is in contrast to what has been observed
with the L. delbrueckii subspecies bulgaricus which exerted a substantial inhibition (21.1 mm
in diameter) against E. coli [51]. It is also in contrast to what has been observed with L.
plantarum B7 isolated from dyspeptic patients which induced moderate growth inhibition
of H. pylori (11–13 mm) [52]. The differences in the bacterial growth inhibition effects
observed in our study could be attributed to acidic products such as lactic and acetic acids,
or compounds like hydrogen peroxide, ethanol, diacetyl, acetaldehyde, acetoin, reuterin,
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reutericyclin, and bacteriocins, among others. However, in the future it will be necessary to
characterize the components responsible for these effects at the molecular level.

The immunomodulatory effect of probiotics has been considered as other one of the
potential clinical effects of these microorganisms. This is why the term Bio-immunobiotics
has been proposed to designate probiotic microorganisms with the ability to modulate
the immune response [53]. In this study some immunomodulatory properties of the
Lactobacillus strains analyzed were identified. One of these was the diminishing effect in the
production of IL-8, similar to results observed with L. plantarum in previous studies [54,55].
The oxidative attenuation of NO that induces cytotoxic mechanisms under oxidative stress
conditions was also evaluated. L. rhamnosus GG, L. helveticus IMAU70129, and L. casei
IMAU60214 showed protective abilities against damage caused by SDS. This result is
important because oxidative stress conditions can be extremely harmful to the epithelium,
which suggests that these strains can contribute to reducing the inflammatory processes in
the mucosa and may play a functional role in the prevention and control of several acute
and chronic infectious diseases. Our research findings allow us to define these lactobacillus
strains as probiotic candidates for the first time. However, the main limitation of the
study is that the results were obtained by in vitro tests where the challenge and response
conditions are controlled. Therefore, it is necessary to carry out studies in animal models
and in humans to explore their safe use and explore the probable mechanisms of clinical
application of these strains.

5. Conclusions

Studies of the gut microbiota on health and disease are of high importance, and the
role of probiotics and prebiotics as modulators of the microbiota require studies to find the
best candidates. The obtained results show that the Lactobacillus strains evaluated possess
properties such as adherence to cultured cells, inhibition of the colonization and growth of
pathogenic bacteria, and regulation of the inflammatory response. All of these are elements
that make them good candidates for use as probiotics. However, it is important to evaluate
their properties in animal models to ensure they are safe to use in clinical applications.
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