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Abstract

Background: Our previous work has provided strong evidence that the transcription factor SOX9 is completely needed for
chondrogenic differentiation and cartilage formation acting as a ‘‘master switch’’ in this differentiation. Heterozygous
mutations in SOX9 cause campomelic dysplasia, a severe skeletal dysmorphology syndrome in humans characterized by a
generalized hypoplasia of endochondral bones. To obtain insights into the logic used by SOX9 to control a network of
target genes in chondrocytes, we performed a ChIP-on-chip experiment using SOX9 antibodies.

Methodology/Principal Findings: The ChIP DNA was hybridized to a microarray, which covered 80 genes, many of which
are involved in chondrocyte differentiation. Hybridization peaks were detected in a series of cartilage extracellular matrix
(ECM) genes including Col2a1, Col11a2, Aggrecan and Cdrap as well as in genes for specific transcription factors and
signaling molecules. Our results also showed SOX9 interaction sites in genes that code for proteins that enhance the
transcriptional activity of SOX9. Interestingly, a strong SOX9 signal was also observed in genes such as Col1a1 and Osx,
whose expression is strongly down regulated in chondrocytes but is high in osteoblasts. In the Col2a1 gene, in addition to
an interaction site on a previously identified enhancer in intron 1, another strong interaction site was seen in intron 6. This
site is free of nucleosomes specifically in chondrocytes suggesting an important role of this site on Col2a1 transcription
regulation by SOX9.

Conclusions/Significance: Our results provide a broad understanding of the strategies used by a ‘‘master’’ transcription
factor of differentiation in control of the genetic program of chondrocytes.
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Introduction

The transcription factor SOX9 plays a critical role in cell fate

decisions of a discrete number of cell types [1–4]. Heterozygous

mutations in Sox9 cause Campomelic Dysplasia (CD), a general-

ized disease of cartilage characterized by hypoplasia of endochon-

dral bones [5,6]. Conditional inactivation of the Sox9 gene at

various times during mouse limb development also demonstrated

that SOX9 is necessary for mesenchymal condensations, for the

commitment to the chondrocyte fate at the time when the

chondrocyte and osteoblast lineages segregate from a common

progenitor, and for the overt differentiation of these cells into

chondrocytes. SOX9 thus acts as a master regulator of

chondrocyte differentiation [7,8]. Chondrogenesis is associated

with activation of a repertoire of cartilage-specific ECM genes. In

several of these genes, chondrocyte-specific enhancers have been

identified. These enhancers contain binding sites for SOX9 and

mutations in these sites strongly decrease or abolish the activity of

these enhancers in transfection experiments and in transgenic mice

[9–12]. SOX9 functions as a transcription factor by recognizing a

specific heptameric DNA sequence (A/T)(A/T)CAA(A/T)G

through its high mobility group (HMG)-box domain. The

characterization of SOX9 dimerization mutants identified in

some CD patients, suggests that SOX9 binds to an inverted repeat

of the heptameric sequence and that this dimeric binding is

necessary for the SOX9-dependent expression of chondrocyte-

related genes [13]. Chondrogenesis is also controlled by a complex

interplay of signaling molecules among which some target either

the expression or the activity of SOX9. Whereas IL-1 and TNF a
inhibit its expression [14], FGF signaling increases its expression

and its activity [15]; Wnt/b-catenin also inhibits its activity and

expression [16], whereas PTHrP increases its activity [17]. In

order to determine whether genes involved in cartilage function

and regulation are direct targets of SOX9 in the genome of

chondrocytes, and to examine patterns of SOX9 interactions with

the chromatin of these genes in these cells, we have used a
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chromatin immunoprecipitation (ChIP)-on-chip approach [18].

Our study, which identified many new direct targets of SOX9 as

well as potential binding sites for SOX9 in these genes, provides

new insights in the strategies used by SOX9 in the control of

chondrogenesis. In addition, characterization of a novel SOX9-

dependent activator segment in intron 6 of Col2a1 revealed that

this site appears to be depleted of nucleosomes.

Results

Construction of the array for ChIP-on-chip
As chromatin source for ChIP-on-chip experiments, we used rat

chondrosarcoma cells (RCS cells), because these cells display many

chondrogenic characteristics including secretion of specific carti-

lage ECM proteins and high contents of SOX9, SOX5 and SOX6

[19]. When the expression levels of several mRNAs in RCS cells

were compared to those in Rat-2 fibroblast cells (Figure S1 and

Table S3), the transcription factors, SOX9, SOX5 and SOX6

were expressed at higher levels in RCS cells compared to Rat-2

fibroblast cells. The mRNAs for matrix proteins specific for

chondrocytes including Col2a1, Col11a1, Matrilin-1, Aggrecan,

Syndecan-3, Cdrap, Fibromodulin and Prelp were also highly expressed

in RCS cells. On the other hand, the Col1a1 gene was expressed at

high level in Rat-2 cells but was not expressed in RCS cells. These

results in addition to the previously reported data [19] indicate

that RCS cells maintain a chondrocyte specific phenotype.

Table 1 lists the 80 genes that were placed on the high density

custom oligonucleotide array. Each gene was covered from 15 kb

59of exon 1 to 10 kb 39of the last exon with overlapping 50 mers,

the overlap consisting of 22 bases with the preceding oligonucle-

otide. Oligonucleotides for both sense and antisense strands of

each gene were printed on the array. The sheared, cross-linked

chromatin fragments of rat chondrosarcoma (RCS) cells [19] were

immunoprecipitated with either SOX9 antibodies or with non-

specific IgGs. The DNAs of both anti-SOX9 and non-specific IgG

precipitated chromatin fragments were PCR amplified, labeled

and then hybridized to identical oligonucleotide arrays. In

selecting the genes to be placed on the array, our major rationale

was to examine genes that had been shown to be expressed in

cartilage. This list of genes shown in Table 1 is divided into three

groups. One corresponds to genes for extracellular matrix (ECM)

components. We also placed several genes for small leucine-rich

proteins on the array, since mutations in some of these genes lead

to osteoarthritis [20]. This first group further includes genes for

AdamTS 5 [21], MMP9 and 13 [22], and also Cathepsin B [23], all of

which are involved in ECM turnover. Other genes of group 1 also

include the chains of type I collagen, which are not expressed in

chondrocytes but are prominent in both SOX9-expressing

mesenchymal precursors and in osteoblasts [24]. The second

group was composed of genes for transcription factors including

genes that have a major role in chondrocyte differentiation, such

as Sox9, Sox5 and Sox6, and in cartilage development such as Prx

[25], PGC-1a [26], TCF4 [27], Lef1 [28], b-catenin [29], Stat1 [30]

and TIP60 [31]. This group also included genes with a role in the

osteoblasts differentiation, namely Runx2 [32] and Osterix (Osx)

[33]. This group further included genes for transcription factors

expressed in an altogether different lineage such as MyoD [34] and

Myogenin [35], which are not expressed in chondrocytes. The third

group consisted of genes for signaling molecules involved in limb

development or in various steps of chondrogenesis. These included

genes for Integrins a11 [36], BMP2 and 4 [37], the BMP antagonists

Noggin [37] and Chordin [38], TGFb3 [39], different Wnts [29],

Patched [40], Ihh [41], Shh [42], Smoothened [43], VEGF [44], Ctgf

[45], Egf and Egfr [46], Igf1 and Igf2r [47], PTHrP [48], Grb10 [49],

TNF a [50], IL1a [51], PKC and p38 [52], Fgfr3 [53], PKA [54],

Ncam [55], a-Catenin [56], and CD44 [57].

Criteria for positive SOX9 interaction sites
Because the sheared chromatin fragments had a size between 1

and 1.5 kb, the peaks of hybridization were relatively broad. To be

Table 1. List of genes placed on the array.

Gens for Extracellular Matrix Proteins Genes for Transcription Factors Genes for Signaling Molecules

Col2a1 Matrilin 1 Sox9 BMP2 CTGF

Col9a2 Matrilin 3 Sox5 BMP4 TGF-b1

Col11a1 Matrilin 4 Sox6 Noggin TGF-b3

Col11a2 Cdrap TCF4 Chordin Grb10

Col3a1 Cthrc1 Lef1 Wnt3a Integrin-a11

Col1a1 Adam-TS5 Stat1 Wnt5a NCAM

Col1a2 MMP9 Tip60 Wnt7a ERK1

Aggrecan MMP13 PGC-1a Wnt9 ERK2

Syndecan-3 Cathepsin B b-catenin Shh p38

Fibronectin Chondroadherin Runx2 Patched PKA

Linkprotein Lubricin Osx Smoothened PKCa

Asporin Prelp Myogenin PTHrP Arhj

Biglycan Osteoadherin MyoD FGFR3 CD44

Decorin Epiphycan EGF Asb4

Fibromodulin Osteoglycin EGFR a-catenin

Lumican Opticin IGF1 TNF-a

IGF2r IL-1a

VEGF

doi:10.1371/journal.pone.0010113.t001

SOX9 Interaction Sites
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counted as SOX9 interaction sites the peaks had to have similar

heights at identical locations on both the forward and reverse

DNA strand lanes. A so called smoothened lane was generated by

subtracting the corresponding non-specific IgG hybridization

signals from each SOX9 signal followed by averaging the two

subtracted signals. Overall, except for a few genes discussed below,

peaks, which on the ‘‘smoothened’’ lane had a cut off above the

base 2 logarithm of 1.5 were further examined.

Location of SOX9 interaction peaks
Figure 1 illustrates examples of actual hybridization results for

two genes in which SOX9 interaction sites were identified. Two

clear peaks were identified in Col2a1. The center of the peak

located in intron 1 corresponds to a previously identified

chondrocyte-specific enhancer in this gene [9]. The other peak

is located in intron 6 and the characterization of this SOX9

interaction site will be presented in a subsequent section, that is

SOX9 binds to intron 6 of Col2a1. Two SOX9 interaction sites

were also identified in the Col11a2 gene. The centers of these

hybridization peaks, one located in the promoter and the other in

intron 1, correspond to previously characterized chondrocyte-

specific enhancers [10]. Identification of clear ChIP hybridization

peaks centered at previously characterized chondrocyte-specific

enhancers suggested that the hybridization peaks in other genes on

the array might also correspond to bona fide specific SOX9

interaction sites. A total of 55 peaks with a cut off .log2 1.5 were

identified in 30 genes. These genes and the locations of these peaks

within these genes are listed in Table 2. A majority of the peaks

were located either in promoters or in 59 introns, rarely in regions

39 to the gene. Most genes for cartilage-specific ECM components,

contain at least two SOX9 interaction peaks. These include, in

addition to Col2a1 and Col11a2 [10], Col9a2 [58], Syndecan-3 [59],

Aggrecan [12], Epiphycan [60], Chondroadherin [61] and Biglycan [62].

A few genes, which have smoothened peaks below but close to the

log2 1.5 cut off, are, however, also likely to be direct targets of

SOX9 and are likely to be part of the genetic program of

chondrocytes controlled by SOX9. These genes are listed in a

separate section of Table 2. Interestingly the Col1a1 gene, which is

not expressed in chondrocytes but is prominently expressed in

mesenchymal precursors and in osteoblasts contains two SOX9

interaction peaks. Similarly the genes for Osx and Runx2,

transcription factors required for osteoblast differentiation, contain

distinct SOX9 interaction sites. One possible hypothesis is that at

these sites in chondrocytes SOX9 might be part of repressor

complexes. Table 3 lists the genes in which no SOX9 interaction

sites were identified. This list includes the MyoD and Myogenin

genes, which are master transcription factors for myoblast

differentiation and are not expressed in chondrocytes. Other

genes in this group include MMP13, those for several small

leucine-rich proteoglycans, also the Wnt 3a, 5a, 7a, 9, Ihh and Shh

genes. One surprise is that no clear SOX9-interaction site was

found in the Sox6 gene, which together with Sox5, is required for

overt chondrocyte differentiation and requires SOX9 for expres-

sion [8].

SOX9 binding to specific sequences in peaks of
hybridization

We identified potential dimeric SOX9 binding sequences in

peaks and verified SOX9 binding by electrophoretic mobility shift

assay (EMSA) for 11 of these sites (Figure 2). These eleven sites

included the sites that had been already confirmed to be SOX9

binding sites. They included sites in intron 1 of Col2a1, Col11a1,

Col11a2 and Cdrap. The reason we chose these sites is that by

analyzing the sites by EMSA, we could validate that the ChIP-on-

chip peaks revealed true SOX9 binding sites. We chose the other

sites based on potential SOX9 binding sequences within the peaks

of hybridization. The potential SOX9 binding sites in most of

these genes diverged from the consensus binding sites,

WWCAAWG(N)nCWTTGWW (W is A or T, N is non-specific

base and n shows number of N) and SOX9 was indeed bound to

each of these sequences. By comparing the mobility of SOX9-

DNA complexes with that of a binding site in an enhancer in

intron 1 of Col2a1, we concluded that SOX9 was mainly binding

as a dimer to each of the peak sequences. We also asked whether

Figure 1. Identification of SOX9 interaction sites in rat Col2a1 and Col11a2 genes by ChIP-on-chip. ChIP-on chip using SOX9 antibody
showed specific hybridization peaks, which were further modified by background subtraction to form smoothened peaks shown at the bottom of
each panel. Exons are shown as solid bars. In the Col2a1 gene (left panel), we clearly detected two peaks, one in intron 1 and the other in intron 6. In
the Col11a2 gene (right panel), we clearly detected two peaks, one in the promoter region and the other in intron 1. Exons shown in the right side of
exon 1 in Col11a2 were those in the adjacent gene.
doi:10.1371/journal.pone.0010113.g001
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the species conservation of sequences and the AT or GC content

in the 610 bp centered on the hybridization peaks were different

from 610 bp sequences surrounding random potential SOX9

binding sites outside the peaks. The conservation scores were

higher in peaks than in non-peak DNA sequences (Figure S2). The

AT content in the peaks was significantly lower than that in the

non-peak regions indicating that SOX9 preferentially interacts

with its binding sites when it is surrounded by sequences with a

higher GC content (Figure S3).

SOX9 binds to intron 6 of Col2a1
In addition to the hybridization peak centered on a previously

identified chondrocyte-specific enhancer in intron 1 of Col2a1, a

peak was identified in intron 6 (Figure 1, left). To validate this

result we performed real-time quantitative PCR with intron 6

probes centered on the middle of the intron 6 peak using ChIP

DNA generated with SOX9 antibodies. The results showed a

strong signal for this DNA segment that scored higher than the

DNA segment in intron 1, whereas a control segment at the 39 end

of the Col2a1 gene gave no signal (Figure S4). A potential SOX9

dimeric binding site was identified in the PCR amplified segment

and EMSA confirmed that recombinant SOX9 did indeed bind to

this DNA segment as a dimer (see Figure 2). We concluded that in

chondrocytes, SOX9 interacts with a specific site in the chromatin

of intron 6 of the Col2a1.

Intron 6 segment is likely to contribute transcriptional
activity

A multimerized 48 bp segment in intron 1 of Col2a1 was

previously shown to have strong SOX9-dependent enhancer

activity [9]. A similar reporter construct was generated using a 48-

bp sequence in the intron 6 segment that binds SOX9 in EMSA.

However, the multimerized segment of intron 6 did not show

SOX9-dependent enhancer activity (Figure S5 A and B). When

the two multimerized sequences were placed in tandem in the

reporter construct, the intron 6 sequence did not significantly

increase or decrease the SOX9-dependent activity of the intron 1

enhancer in either 293T cells or RCS cells (Figure S5 A and B).

The 39 part of the 48-bp sequence in intron 1 contains a dimeric

inverted repeat SOX9 binding site, whereas the 59 part consists of

a direct repeat of monomeric SOX9 binding sites (Figure 3A).

When the rat intron 6 sequence was aligned with the

corresponding mouse and human sequences, the mouse sequence

in the 39 region of the 48 bp was completely conserved. The

human sequence in this region was not identical to rat or mouse

sequences. However, the human sequence binds SOX9 efficiently

in EMSA (Figure S6). Then, to test whether the inverted repeat

SOX9 binding site in intron 6 could replace the inverted repeat

site in the 39 part of the 48-bp intron 1 sequence, two chimeric 48-

bp sequence segments were generated as illustrated in Figure 3

and multimerized as in the original intron 1 and intron 6 vectors.

Table 3. Genes which do not contain ChIP hybridization peaks.

Extracellular Matrix Proteins Transcription Factors Signaling Molecules

Col1a2 Col3a1 MMP13 Sox6 TCF4 TGFb1 EGF BMP2 IGF1

Cthrc1 Lubricin Matrilin 3 MyoD Myogenin TNFa FGFR3 Integrin a11 Arhj

Osteoadherin Osteoglycin Asporin b-catenin PGC-a Shh Wnt3a Wnt5a Wnt7a

Lumican Opticin Decorin Wnt9 NCAM CD44 Asb4

doi:10.1371/journal.pone.0010113.t003

Figure 2. Validation of SOX9 binding motifs by EMSA. EMSA was performed as described in Materials and Methods using SOX9 binding motifs
found at or near the center of the hybridization peaks in each gene. Suppl. Table S1 lists the sequences of the probes used. The mobility of 32P
labeled probe bound to purified SOX9 was consistent with a complex containing mainly a SOX9 dimer. The amount of SOX9 used in each panel was
0, 20 or 40 ng.
doi:10.1371/journal.pone.0010113.g002

SOX9 Interaction Sites
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When the inverted repeat SOX9 binding site of intron 1 was

replaced with that of intron 6 (Chimera B), the resultant activity

became similar to that of the intron 1 48-bp in RCS cells.

Replacement of the 59 sequence of the intron 1 48-bp segment

with the 59 sequence of the intron 6 48-bp (Chimera A) reduced

the activity of the enhancer almost 20-fold in RCS cells. These

results strongly suggested that the 59 part of the intron 1 sequence

has an important role in the Chimera B activity. In the presence of

this sequence, the inverted repeat SOX9 binding site in the intron

6 segment is likely to contribute transcriptional activity in RCS

cells (Figure 3B). Further when this inverted repeat sequence was

mutated, SOX9 binding was abolished and the mutated Chimera

B did not show any activity (Figure S7).

Increase in intron 1 enhancer activity in the presence of
intron 6

Although a short amplified segment of intron 6 was inactive, this

DNA segment appeared to become active when juxtaposed to the

59 segment of the intron 1 fragment. The construct containing a

3kb Col2a1 promoter, exon 1 with a mutation in the ATG

translation initiation site and 3kb of intron 1 followed by the b-geo

reporter (construct a in Figure 4) has been shown to display strong

chondrocyte-specific b-galactosidase expression in transgenic mice

[63]. We then inserted the entire 1kb intron 6 sequence (construct

b in Figure 4) or an intron 6 from which the SOX9 binding motif

was deleted (construct c in Figure 4) into 39 of the b-geo polyA

signal. In transfection experiments the intron 6-containing

reporter (construct b in Figure 4) was three times more active

than the vector containing no intron 6. When the SOX9 motif was

deleted from intron 6, the activity was decreased by about 40%.

The results of these experiments suggested that the SOX9 binding

motif in intron 6 might act as an enhancer and have a role in

activation of the Col2a1 gene. However, the precise role of this

segment in the regulation of Col2a1 gene in vivo remains to be

clarified.

Histone-poor SOX9 binding segment in intron 6 in
chondrocytes

Judging from the experiments shown in Figure 4, the function of

the SOX9 binding motif in intron 6 could be different from that in

intron 1 in the Col2a1 gene. Since histone modifications control

chromatin’s function in the regulation of gene expression [64], we

compared the status of several histone H3 modifications around

the SOX9 binding sites in intron 6 with those in other introns.

These experiments revealed that the levels of histone H3 in intron

6 were clearly lower than those in intron 1 and much lower than

those in intron 9, a segment with which SOX9 is not interacting

(Figure 5A). The levels of H3K14ac, a marker of active chromatin,

were also much reduced in intron 6 compared to their much

higher levels in introns 1 and 9 (Figure 5B). This finding was in

agreement with the low level of histone H3 in intron 6 (Figure 5A).

As expected the levels of H3K9ac and H3K4me3 were high in

intron 1 but low in introns 6 and 9, because the levels of both

markers are high at the 59 end of active genes, but decrease toward

the 39 segments (Figure 5B). When the occupancies of SOX9 and

histone H3 were compared in the Col2a1 segments immediately

surrounding intron 6, the high occupancy of SOX9, and the very

low occupancy of histone H3 were restricted to intron 6

(Figure 5C). Overall these results strongly suggest that the

chromatin segment surrounding the SOX9 binding site in intron

6 was depleted of nucleosomes. We then asked whether the

absence of histone H3 in intron 6 was also found in the chromatin

of a cell type that does not express Col2a1. Figure 5D shows that

histone H3 occupancy in intron 6 of Col2a1 in Rat-2 fibroblasts, in

which Col2a1 is not expressed, was much higher than in RCS cells.

The occupancy of the active gene marker, H3K9ac was low in the

different segments of Col2a1 in Rat-2 fibroblast, compared to its

higher occupancy in the promoter region of the cyclin B1 gene,

which is active in Rat-2 fibroblast. Further we performed Chip-

qPCR with SOX9 and H3 antibodies using two additional cell

types, one consists of mouse primary rib chondrocytes that express

Figure 3. Functional analysis of SOX9 interaction site in intron 6. A: The 48 bp intron6 (+6676 to +6724) of rat was aligned with the
corresponding sequences of mouse and human Col2a1 gene. The putative SOX9 binding sites were underlined. B: Left; Schematic representation of
chimera constructs. The sequences of a 48 bp segment in intron 1 and intron 6 are shown above each construct in a and b. The bases written by bold
letters indicated the putative SOX9 binding sites. The 59 region in intron 1 contained dimeric direct repeat, and 39 regions of both intron 1 and intron
6 contained inverted repeats. Right; Each chimera construct consisted of five tandem repeats followed by a Col2a1 minimal promoter (89bp) [73] and
the Firefly luciferase gene and transfected in RCS cells. The values of luciferase activity were normalized by adjusting the activity of construct (a) as
1.00.
doi:10.1371/journal.pone.0010113.g003
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Col2a1 and Sox9 and the other is a human lymphoblast cell line

(Reh) that expresses neither Col2a1 nor Sox9 (Figure S8). Our

results support the hypothesis that the histone-poor region of

intron 6 is specific for the cells that express Col2a1.

Discussion

Our objective was to identify possible SOX9 chromatin

interaction sites among a number of genes, which are believed

to be involved either in chondrocyte differentiation or in

chondrocyte function. The 80 genes, which were placed on a

high density oligonucleotide array, were subdivided in three

groups, namely genes for extra cellular matrix components, for

transcription factors, and for signaling molecules. As chromatin

source for ChIP-on-chip experiments, we used rat chondrosarco-

ma cells (RCS cells), because these cells display many chondro-

genic characteristics including secretion of specific cartilage ECM

proteins and high contents of SOX9, SOX5 and SOX6 (see

Figure S1) [19]. In arrays containing either sense or anti-sense

oligonucleotides the SOX9 interaction profiles showed very similar

patterns of hybridization providing strong evidence for the high

degree of specificity of these hybridization peaks. Further, the

profile of the negative controls using non-specific IgGs showed

essentially no hybridization peaks. Overall these results showed

that the ChIP-on-chip approach was very efficient in identifying

highly specific SOX9 interaction sites. Among the 80 genes placed

on the array, 30 genes showed one or more clear hybridization

peaks. Most of these genes are active during chondrocyte

differentiation and include extracellular matrix (ECM) protein-

coding genes, genes for transcription factors and for signaling

proteins. Our experiments also indicate that among the ECM gene

several genes for small leucine rich proteoglycans show clear

interaction sites for SOX9. Previous experiments identified

functional SOX9 binding sites that control the activity of

chondrocyte-specific transcriptional enhancers in the Col2a1,

Col11a2 [10], Aggrecan [12] and Cdrap [11] genes. Our finding that

the SOX9 hybridization peaks are centered on these previously

identified SOX9 binding sites strongly supports the hypothesis that

the SOX9 interaction sites have a clear biological role. The results

of our ChIP-on-chip experiments revealed that most cartilage

ECM genes contain at least two SOX9 chromatin interaction sites.

These sites are mainly located in promoter regions and in first

introns, some also in other introns, and fewer in 39 un-transcribed

regions. Since promoter and first intron segments contain major

transcriptional regulatory sequences the presence of SOX9

interaction sites in these DNA segments suggests that in these

genes SOX9 may interact with the general transcriptional

machinery.

Figure 4. Stimulation of enhancer activity of intron 1 by intron 6. A: Schematic representation of constructs used. Construct (a) had a 3 kb
promoter, exon 1, a 3 kb intron 1 of Col2a1followed by b-geo as previously shown [73]. Construct (b) had 1kb corresponding to the entire intron 6
itself (+6489 to +7374) in addition to construct (a) just after the polA. In construct (c) the SOX9 binding sequence (48bp, +6676 to +6724) was deleted
from intron 6. B: Each construct (500 ng) was co-transfected into RCS cells with 10 ng of a TK-Renilla luciferase plasmid that served as an internal
control for transfection efficiency. The bars represent b-galactosidase activity of each construct normalized to the internal control (TK-Renilla luciferase
plasmid).
doi:10.1371/journal.pone.0010113.g004
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Our previous results have shown that in the absence of SOX9

there is no expression of Sox5 and Sox6 in chondrocytes [8]. Sox5

contains several SOX9 interaction sites located in the promoter,

introns 1 and 2. In contrast, we did not detect SOX9 interaction

sites in the Sox6 gene. This suggests either that the Sox6 gene is not

a direct target of SOX9 or that the SOX9 interaction sites are

located outside the Sox6 DNA segments that were printed on the

array. Our experiments detected interaction sites for SOX9 in the

Sox9 gene located in introns 1 and 2. Although our previous results

have indicated that chondrocyte-specific regulatory segments of

Sox9 were still active even when the Sox9 gene was partially

deleted, it is nevertheless possible that the SOX9 binding sites in

introns 1 and 2 have an autoregulatory role in the transcriptional

control of SOX9 in combination with other transcription factors.

In Sertoli cells SOX9 binds to the promoter region of Sox9 but our

results did not detect a SOX9 interaction sites in the chromatin of

this segment in chondrocytes [65]. The PTHrP receptor is highly

expressed in prehypertrophic chondrocytes where Sox9 is equally

highly expressed. Through this receptor and via PKA, PTHrP

stimulates the phosphorylation of SOX9 [17,54]. This phosphor-

ylation of SOX9 increases its activity [17]. The finding of a SOX9

interaction site in the gene for the PTHrP receptor indicates that

SOX9 interacts with the gene for a component of a signaling

pathway that increases the activity of SOX9. BMP signaling also

plays a major role in chondrocyte differentiation. Finding SOX9

interaction sites in genes of the BMP signaling strongly suggested

that SOX9 is directly implicated in the control of these genes.

Interestingly, the Bmp4 gene itself showed also a SOX9 interaction

site. In addition to the genes specifically expressed in chondrocytes

such as cartilage ECM genes, SOX9 interaction sites were also

detected in ubiquitously expressed genes such as those for the

transcription factors Tip60, Stat1 and Lef1, and for the ERK1,

ERK2 and PKA signaling molecules. Thus in chondrocytes SOX9

also appeared to interact with a number of genes that are more

broadly expressed. For example, we showed recently that Tip60

up-regulated expression of Col2a1, a direct target of SOX9 [31].

Our present data indicated that SOX9 interacted with the Tip60

promoter and up-regulated this promoter (H.Yasuda et al.,

unpublished results). Thus SOX9 interacts with the gene for a

coactivator, which cooperates with SOX9 in activating a

downstream target of SOX9. Previous experiments have shown

that both ERK1 and ERK2 signaling in response to FGF increases

Figure 5. Depletion of histone H3 in intron 6 in RCS cells but not in Rat-2 fibroblast. Histone modification status in the chromatin at
several introns of Col2a1 in RCS cells (A–C) and at the promoter of Col2a1 and Cyclin B1 (CNB1) and introns 1 and 6 of Col2a1 in Rat-2 fibroblasts (D)
was examined by real time quantitative PCR. The ChIP DNA fragments were prepared as described in Materials and Methods using SOX9, H3 (A and
C), H3K9ac, H3K14ac, H3K4me3 (B) and H3, H3K9ac (D) antibodies. The SOX9 hybridization peak in introns together with the partial map of the Col2a1
gene is shown in E.
doi:10.1371/journal.pone.0010113.g005
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SOX9 expression [15], whereas signaling by p38 also in response

to FGF increases SOX9 activity [66]. Interestingly, the well known

Col1a1 gene, which is not expressed in chondrocytes and in RCS

cells, showed two clear interaction sites one in intron1, the other

immediately 39 to the gene. One possible hypothesis is that SOX9,

which is known to be a transcriptional activator, might also be able

to become part of a negative transcriptional complex and that in

chondrocytes SOX9 may have a role in silencing genes that are

active in Sox9-expressing osteochondroprogenitor cells as well as in

osteoblasts. The SOX9 interaction sites in the genes for RUNX2

[32] and OSX [33], two transcription factors that are required for

osteoblast differentiation, may have a similar function. The genes

for two other ‘‘master’’ transcription factors, MyoD [34] and

Myogenin [35] which are not expressed in chondrocytes but are

needed for myoblast differentiation, did not have SOX9

interaction sites consistent with the high degree of specificity of

the role of SOX9 in the chromatin of chondrocytes.

EMSA of a sample of SOX9 interaction sites confirmed that

SOX9 was able to bind to specific sites found in the hybridization

peaks of our ChIP-on-chip experiment. These sequences often

diverged from the consensus dimeric binding sites

WWCAAWGX(N)CWTTGWW (W = A or T) by several mis-

matches. Among the many genes having SOX9 binding sites, the

Col2a1 gene is one that has been most intensively characterized so

far in terms of response to SOX9. In this gene, SOX9 has been

shown to bind to a sequence in a chondrocyte-specific enhancer in

intron 1 and consequently to induce the activity of this enhancer.

As shown here a ChIP-on-chip peak was clearly centered on this

binding site in intron 1. In addition to this peak, another peak was

detected in intron 6 of Col2a1. The binding of SOX9 at this site

was validated by EMSA and ChIP-qPCR. Intron 6 increases the

activity of a reporter containing the Col2a1 promoter and the

enhancer of intron1, and the deletion of a short segment

containing the SOX9 binding site in intron 6 from this reporter

decreased its activity suggesting that this SOX9 binding site

functions as a positive regulatory site in Col2a1. The 39 sequence of

a 48bp of intron 6 contained an inverted repeat sequence similar

to the inverted repeat sequence in the 39segment of the 48bp in

intron 1 (Figure 3). The 39 segment of intron 6 was able to

functionally substitute for the inverted repeat sequence in intron 1

when tested as a chimeric construct containing the 59 part of the

48 bp of intron1. We previously showed that a highly multi-

merized repeat of an 18 bp sequence containing the inverted

repeat in intron 1 was sufficient for enhancer activity in

chondrocytes [67]. A similar construction containing the inverted

repeat of intron 6 was not tested in this study. However, the

function of this region in the regulation of the Col2a1 gene in vivo

still remains to be clarified.

Very interestingly the intron 6 enhancer segment is either very

poor in nucleosomes or free of nucleosomes in chondrocytic cells

(RCS cells and mouse primary rib chondrocyte cells [68]) (Figure 5

and S8). Nucleosome deficient regions in the genome have been

detected in promoter regions of actively transcribed genes, in 39

non-translated segments and in interval sequences between genes

[69–71]. Recently nucleosome-deficient structures were also

shown at several transcription factor binding sites in Saccharomyces

cerevisiae [72,73]. Although the DNA sequence itself plays an

important role in nucleosome occupancy, it is also likely that

competition between the binding of transcription factors to their

recognition sites and of nucleosomes determines their relative

occupancy at specific sites in the genome. Since intron 6 in the

Rat-2 fibroblasts and human lymphoblast, Reh cells, in which

both Col2a1 and Sox9 genes were not actively transcribed, did form

nucleosome structures (Figure 5 and S8), we propose that SOX9 is

part of a large multiprotein complex that occupies the chromatin

in intron 6 in chondrocytes and prevents nucleosome structures to

form. Based on our transfection experiments it is likely that this

complex, together with a SOX9-containing complex that occupies

the enhancer segment in intron 1, interacts with the pre-initiation

complex at the promoter to activate the Col2a1 gene in

chondrocytes. One possible explanation for this nucleosome free

structure is that several transcription factors are recruited, disrupt

the nucleosome structure and bind to this region through the

binding to SOX9. In summary, the ChIP-on-chip experiment

using chondrocyte chromatin has identified SOX9 interaction sites

in a number of genes for components of cartilage as well as for

transcription factors and signaling molecules that participate in the

regulation of the chondrocyte program. Our experiments also

indicate that SOX9 co-opts other genes that are largely ubiquitous

to become part of the SOX9 program in chondrocytes. Because

SOX9 interacts also with genes that are not expressed in

chondrocytes but are expressed in a cell type that is derived from

a common progenitor, SOX9 could have a negative role in these

genes. Other experiments led to the identification of a nucleo-

some-free novel SOX9-dependent segment in the Col2a1 gene.

Overall our experiments are providing new insights in the essential

role of SOX9 in the complexity of the chondrocyte genetic

program.

Materials and Methods

Cell culture
Human HEK293T, Reh cells and Rat fibroblast (Rat-2) were

obtained from American Type Culture Collection (ATCC). Rat

chondrosarcoma (RCS) cells were gifted from Dr. James H.

Kimura, Henry Ford Hospital, Detroit, Michigan [19].

HEK293T, Rat-2, and RCS cells were cultured in DMEM and

Reh cells were in RPMI1640 supplemented with 10% fetal bovine

serum.

ChIP-on-chip and ChIP-qPCR analysis
ChIP was performed according to the previously described

method [74] using the ChIP assay kit (Millipore Co., Ltd). Briefly,

the RCS cells were fixed with formaldehyde and then the

chromatin prepared by sonication was treated with rabbit anti-

SOX9 antibodies (Millipore, AB5809) or non-specific rabbit IgGs.

The resultant DNA fragments were ligated with random

oligonucleotides after the DNA was modified with terminal

deoxyribonucleotide transferase (TdT). The modified anti-SOX9

precipitated and IgG precipitated DNA fragments were amplified

by PCR and further labeled with Cy3 and Cy5, respectively. The

chip array was done by use of NimbleGen platform (NimbleGen).

The ChIP-qPCR experiments were carried out by SYBR Green

PCR Master Mix and ABI7900HT (Applied Biosystems) using

ChIP DNA as a template. ChIP DNA-to-input DNA ratios were

calculated after immunoprecipitation with each antibody. The

data were normalized with IgG control antibody, The primers

used for the qPCR are shown in Suppl. Table S2.

Electrophoretic mobility shift assay
The probes used in EMSA shown in Suppl. Table S1 were

labeled by a32P-dCTP using Klenow fragment, and then EMSA

was performed using recombinant human SOX9 proteins

expressed in E.coli as described previously [67].

Plasmid construction and reporter assay
Oligonucleotides of 48 base pair fragments of both Col2a1

intron 1 and intron 6 were cloned into pBluescript vector and then
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multimerized as previously described [67]. For the luciferase

reporter assay we used a luc4 reporter plasmid. The intron 6 DNA

was obtained by PCR using Bac CH230-103H12 provided from

BACPAC Resource Center (Oakland, USA) as a template. In the

reporter assay, the cells were co-transfected with an adequate

reporter plasmid, a SOX9 expressing plasmid and a control

plasmid (TK-Renilla luciferase plasmid) using Fugene 6, The

luciferase and b-galactosidase activities were obtained by use of a

dual luciferase assay system (Promega Co. Ltd) and a Tropix

Galacto Reaction kit (Applied Biosystems), respectively. Each

value in the reporter assay was presented as the fold increase in

Firefly luciferase activity units or b-galactosidase activity units per

Renilla luciferase activity units from three independent experi-

ments, each performed in triplicate.

Supporting Information

Table S1 List of Primers for EMSA

Found at: doi:10.1371/journal.pone.0010113.s001 (0.05 MB

DOC)

Table S2 List of Primers for qPCR

Found at: doi:10.1371/journal.pone.0010113.s002 (0.08 MB

DOC)

Table S3 List of Primers for Figure S1

Found at: doi:10.1371/journal.pone.0010113.s003 (0.05 MB

DOC)

Figure S1 mRNA expression levels in RCS cells compared to

Rat-2 fibroblast cells. Total RNA was extracted from logarithmi-

cally growing RCS cells or Rat-2 cells using Trizol reagent

(Invitrogen) according to the manufacturer’s protocol. cDNA was

prepared from the RNA using AMV reverse transcriptase followed

by qPCR with specific primer for each RNA (Table S3) using

SYBR Master Mix and ABI 7900 (Applied Biosystems). The

difference of Ct values (delta Ct) between the Ct value of each

sample and that of GAPDH was calculated. Then the delta Ct

value of each gene in RCS cells was compared to that value in

Rat-2 cells. The values on the Y axis show expression levels in

RCS cells compared to Rat-2 cells as log2y.

Found at: doi:10.1371/journal.pone.0010113.s004 (1.56 MB TIF)

Figure S2 Sequence conservation of peaks. By use of the

program, Multiz9way, obtained from UCSC genome browser, the

evolutionary conservation was measured in nine vertebrates

including rat, human, mouse, dog, cow, opossum, chicken, frog

and zebrafish. In order to calculate the conservation scores, 72

regions out of 76 peaks that contain the consensus inverted repeat,

WWCAAWG(N)nCWTTGWW (W is A or T, N is non-specified

base and n shows number of N.) with a space (n) of 3 to 6. These

regions also conserved a core inverted repeat sequence,

AANG(N)nCNTT, and had a maximum of 2 mismatches in each

half of the consensus repeat. 76 non-peak regions containing such

repeat were also chosen. Note that such sequences are frequently

found in both peak and non-peak regions of the genome. A two-

sample t-Test showed that p-value was 0.01864. Readers

interested in the detailed sequences that were used to compose

this figure should contact the corresponding author.

Found at: doi:10.1371/journal.pone.0010113.s005 (1.56 MB TIF)

Figure S3 Box plot showing AT content of peak and non-peak

regions. We compared AT or GC content in 610 bp sequences

centered on the hybridization peaks were compared to 610 bp

sequences surrounding random potential SOX9 binding sites

outside the peaks. The bold horizontal lines show the mean of the

data. Mean of AT content in peak regions was 46.7%, and mean

AT content in non-peak regions was 53.8%. By Student’s t-Test,

p-value was measured at 3.42561029.

Found at: doi:10.1371/journal.pone.0010113.s006 (1.56 MB TIF)

Figure S4 Validation of SOX9 binding sites in Col2a1 on ChIP-

on-chip microarray by ChIP-qPCR. The DNA obtained from

ChIP of sheared chromatin of RCS cells with SOX9 antibodies

was used as the template in real time qPCR to amplify a segment

of intron 6 of Col2a1. A segment of intron 1 of Col2a1 previously

identified as containing a functional SOX9 binding sites and

another segment located 39 to the Col2a1 gene served as positive

and negative controls, respectively. Error bars represent standard

deviations. The sequence of each probe is shown in Table S2.

Found at: doi:10.1371/journal.pone.0010113.s007 (1.56 MB TIF)

Figure S5 Functional analysis of the SOX9 binding site in intron

6. Five tandem repeats of the 48bp in intron1, the 48bp in intron6

or the segment conjugated each other were inserted in 59 to the

Col2a1 minimal promoter (89bp) followed by the firefly luciferase

gene (Luc4) [67]. The activity of each construct was tested by

measuring the activity of each reporter in 293T (A) and RCS cells

(B). 293T cells were transiently transfected with the reporter

plasmids in the presence or absence of 0.5 mg of SOX9 expression

plasmid, whereas RCS cells were transfected only with the

reporter. Five tandem repeats of a 48 bp sequence in intron 1

(5xIn1) showed strong enhancer activity, but five tandem repeats

of an equivalent 48 bp in intron 6 (5xIn6) showed no

transcriptional activation. The duplication of this construct

(5xIn6, 5xIn6) did not show activity in either cell. However, the

combination of the intron 1 and intron 6 sequence (5xIn6, 5xIn1)

did not repress intron 1 enhancer activity in both cells and rather

increased slightly the activity in 293T cells (A). Each experiment

included 0.5 mg of the reporter plasmid and 0.01 mg of an internal

control plasmid, TK-Renilla luciferase construct, to normalize for

transfection efficiency.

Found at: doi:10.1371/journal.pone.0010113.s008 (1.56 MB TIF)

Figure S6 Conservation of the SOX9 binding site in intron 6

among different species. The sequences of Sox9 binding sites in

intron 6 of Col2a1 gene of three different species are aligned. The

inverted repeat of the rat SOX9 binding site is underlined. The

bases in red are the bases that are not identical to the

corresponding human sequence. The sequence of the binding

sites between rat and mouse are completely conserved. The

sequence of the binding site of the human is not identical to the rat

sequence. B. An EMSA assay was performed to test whether

SOX9 was binding to the human intron 6 sequence. The sequence

of each probe is shown in Table S3. The human putative SOX9

binding site binds SOX9 efficiently.

Found at: doi:10.1371/journal.pone.0010113.s009 (1.56 MB TIF)

Figure S7 Effect of mutation on the enhancer activity of Chimera

B shown in figure 3. The seven bases of 39 region of the 48bp of

intron 6 were mutated as follows. The bases mutated are shown by

italics. Wild: CTGGGTTTCTGTAAAGAAGGCCTTCAGC-

TATCTGA Mutant; CTGGGTTTCTGTCGAAAAGGAAAACA-

GCTATCTGA The ability of this mutated fragment to bind Sox9

was demonstrated as shown in Figure 2. Lane 1; Control probe

(SOX9 binding site of Col2a1 intron 1), lane 2; SOX9 binding site of

Col2a1 intron 6, lane 3; mutant SOX9 binding site of Col2a1 intron

6. B. Luciferase reporter assay of Chimera B and mutant Chimera B

constructs. By use of this mutant fragment, the mutant Chimera B

(Figure 3) construct was prepared and its enhancer activity was

compared with wild Chimera B construct using RCS cells. Reporter

assay was done as shown Figure 3. The mutant Chimera B did not

show the enhancer activity.

SOX9 Interaction Sites
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Found at: doi:10.1371/journal.pone.0010113.s010 (1.56 MB TIF)

Figure S8 Depletion of histone H3 in 2nd peak of Col2a1 gene in

primary chondrocyte. Binding of H3 and Sox9 in Col2a1 gene of

mouse rib chondrocyte primary culture and human lymphoblast,

Reh cells, was demonstrated by ChIP-qPCR The mouse

chondrocytes were cultured as shown previously [68]. The

ChIP-qPCR was performed as shown in Figure 4. The primers

used in this figure are shown in Table S2. 1st peak and 2nd peak

correspond to the peaks in intron 1 and intron 6 of rat Col2a1

gene, respectively. Expression of Col2a1 and Sox9 was detected in

primary chondrocyte cells but not in Reh cells by RT-qPCR

method shown in Figure S1. The sequence including SOX9

binding site corresponding to intron 6 of the mouse and rat Col2a1

gene is highly conserved in the human Col2a1 gene.

Found at: doi:10.1371/journal.pone.0010113.s011 (1.56 MB TIF)
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