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1  | INTRODUC TION

Atopic dermatitis (AD) (syn. atopic eczema) is a chronic inflamma‐
tory skin condition, affecting up to 20% of children and 5%‐10% of 
adults.1,2 Current understanding of AD pathogenesis points towards 
a sophisticated interplay between genetic and environmental fac‐
tors. The pathogenesis of AD may start in many cases with a genet‐
ically predetermined skin barrier defect, which manifests itself as 
dry skin. This inherent skin barrier deficit leads to an overexpression 
of pro‐inflammatory cytokines and subsequently the activation of 
innate lymphocyte subsets and antigen‐presenting cells (TH2 and 

TH22). IL‐4 and IL‐13 in particular drive eosinophil and mast cell re‐
cruitment and IL‐31 secretion, a key cytokine involved in itch sen‐
sation.3 Transcutaneous sensitization to environmental allergens 
and bacterial infections, in particular Staphylococcus aureus, further 
contributes to the barrier disruption and eczematous skin inflamma‐
tion. While a genetic barrier defect is present in many, this is not a 
prerequisite and many pathological pathways can lead to AD. There 
remains a marked variation in age of onset, severity of disease, ten‐
dency to develop further atopic comorbidities (food allergies, allergic 
rhinitis, asthma) and response to treatment, which is inadequately 
explained by genetic susceptibility alone. It is thought that the sum 

 

Received:	29	January	2019  |  Revised:	27	May	2019  |  Accepted:	5	June	2019
DOI: 10.1111/all.13946  

R E V I E W

The exposome in atopic dermatitis

Nicholas Stefanovic1 |   Carsten Flohr2 |   Alan D. Irvine3,4

This is an open access article under the terms of the Creat ive Commo ns Attri butio n‐NonCo mmercial License, which permits use, distribution and reproduction 
in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2019 The Authors. Allergy Published by John Wiley & Sons Ltd.

1School	of	Medicine,	Trinity	College	Dublin,	
Dublin, Ireland
2Unit for Population‐Based Dermatology 
Research, St John's Institute of 
Dermatology, Guy's & St Thomas’ NHS 
Foundation Trust and King's College London, 
London, UK
3Department of Paediatric 
Dermatology, Our Lady’s Children’s Hospital 
Crumlin, Dublin, Ireland
4National Children’s Research Centre, 
Crumlin	and	Clinical	Medicine,	Trinity	
College Dublin, Dublin, Ireland

Correspondence
Nicholas	Stefanovic,	School	of	Medicine,	
Trinity College Dublin, Ireland.
Email: stefanon@tcd.ie

Alan D. Irvine, Department of Paediatric 
Dermatology, Our Lady's Children's Hospital 
Crumlin, Dublin, Ireland.
Email: irvinea@tcd.ie

Funding information
CF holds a UK National Institute for Health 
Research (NIHR) Senior Career Development 
Fellowship (CDF‐2014‐07‐037). CF is also 
supported by the NIHR Biomedical Research 
Centre at Guy's and St Thomas’ NHS 
Foundation Trust, London, UK. The views 
expressed in this publication are those of the 
authors and not necessarily those of the NHS, 
the NIHR or the UK Department of Health.

Abstract
Atopic dermatitis (AD) is a complex inflammatory disorder with multiple interactions 
between genetic, immune and external factors. The sum of external factors that an 
individual is exposed to throughout their lifetime is termed the exposome. The expo‐
some spans multiple domains from population to molecular levels and, in combination 
with genetic factors, holds the key to understanding the phenotypic diversity seen in 
AD patients. Exposomal domains are categorized into nonspecific (human and natural 
factors affecting populations), specific (eg humidity, ultraviolet radiation, diet, pollu‐
tion, allergens, water hardness) and internal (cutaneous and gut microbiota and host 
cell interaction) exposures. The skin, as the organ that most directly interacts with and 
adapts to the external environment, is a prime target for exploration of exposomal 
influences on disease. Given the well‐recognized physical environmental influences 
on AD, this condition could be much better understood through insightful exposomal 
research. In this narrative review, we examine each domain in turn, highlighting cur‐
rent understanding of the mechanisms by which exposomal influences modulate AD 
pathogenesis at distinct points in time. We highlight current approaches to exposome 
modification in AD and other allergic disease and propose future directions for expo‐
some characterization and modification using novel research techniques.
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of environmental influences plays a significant role to explain this 
phenotypic variation encompassed by the term “atopic dermatitis”, 
perhaps best considered as an overarching term that includes sev‐
eral distinct clinicopathological entities, or endotypes, which are not 
yet fully characterized.

The concept of the sum of environmental influences is termed 
“the exposome.”4 This term includes exposures throughout an in‐
dividual's life from conception to death, spanning the domains of 
environment, diet, behaviour and endogenous processes specific 
to the individual's internal biological milieu. Defining the perti‐
nent exposome of a disease enables the identification of common 
pathways downstream of distinct environmental exposures. In this 
regard, an exposomal approach merges epidemiological enquiry of 
the environment as a distinct influence on AD with current knowl‐
edge of the cellular and molecular pathways at play. Consequently, 
this permits quantification of the biological response and potential 
modification of environmental factors to influence disease course. 
Current literature on the external factors to the pathogenesis of 
AD identifies several environmental contributors, including air pol‐
lutants (airborne particulate matter, tobacco smoke and organic 
compounds), allergens and microbiota (bacteria, viruses and fungi) 
among others.5‐7 A recent review by Cecchi et  al8 highlighted a 
working model of the external exposome with particular emphasis 
on asthma and the unique aetiopathogenesis of respiratory allergy, 
and several concepts in their review are informative for AD expo‐
somal research.8

Given that AD is commonly the first manifestation of atopic mul‐
timorbidity followed by food and respiratory allergies, often termed 
the “atopic march,” though this linear longitudinal pattern is only one 
potential disease trajectory,9,10 AD is uniquely poised for exposo‐
mal research. An enhanced understanding of the factors comprising 
the AD exposome theoretically enables environmental intervention 
early in the disease process, thereby altering the disease course 
with the potential to halt the progression to other allergic diseases. 
Similarly, identifying an environmental factor common and contrib‐
utory to a population affected by a disease might enable large‐scale 
preventative approaches. In this narrative review, we provide an up 
to date summary of our current understanding of the AD exposome 
and its contribution to AD pathogenesis, with distinction between 
the external exposome common at the population level and the in‐
ternal factors that are specific to individuals.

2  | THE E X TERNAL E XPOSOME AND 
ENVIRONMENTAL INFLUENCES

The model proposed by Cecchi et  al for asthma suggests that the ex‐
ternal exposome comprises disease‐modifying factors that affect in‐
dividuals from the outside.8 They further stratify this into nonspecific 
factors affecting populations such as climate, migration and urbaniza‐
tion and quantifiable exposures that are specific to individuals, for ex‐
ample diet, pollution, allergens and drugs. Taking this template, study 
of the nonspecific external exposome in AD requires epidemiological 

inquiry in the first instance, to identify influences on AD pathogenesis 
that are common to populations—be they natural or man‐made.

Geographical variation in AD prevalence has been well charac‐
terized, both internationally and within regions of individual coun‐
tries. The International Study of Asthma and Allergies in Childhood 
(ISAAC) Phase One reported increased prevalence of AD symptoms 
in countries with high gross national product, significant antibiotic 
prescribing, higher trans‐fatty acid consumption and paracetamol 
usage, while vegetable consumption, smoking and immunization 
were inversely associated.11 The data thus highlight that differences 
in lifestyle, in part due to economic development and associated 
population changes, may lead to increased AD prevalence at the 
population level. Data from ISAAC Phase Three support this, as dis‐
ease burden in areas that were originally classed as areas of high 
prevalence (typically developed, urbanized regions) has not changed 
significantly over time. Increases in disease prevalence were pri‐
marily seen in low prevalence regions, typically low per capita in‐
come settings, further supporting the notion that lifestyle factors 
are driving changes in disease prevalence.12 The plateauing effect in 
prevalence burden observed between ISAAC Phases One and Three 
could be due to the fact that those who are genetically predisposed 
to develop AD, for instance through inheritance of FLG skin barrier 
gene mutations, do so when they encounter further exposomal dis‐
ease‐initiating and disease‐modifying exposures that were not pres‐
ent in the environment previously. It is worth noting that while FLG 
mutations represent the strongest genetic risk for AD development, 
the majority of AD patients do not carry such mutations, and only, 
approximately 40% of AD mutants develop AD. Despite this, FLG 
mutation carriers do exhibit a distinct phenotype that is associated 
with a progression towards atopic comorbidities, suggesting that 
they represent a particular cohort in whom an exposomal approach 
may be utilized to facilitate better disease control early on in the dis‐
ease course in an effort to ameliorate such comorbidities.13,14

3  | THE EFFEC T OF SPECIFIC E X TERNAL 
E XPOSURES ON AD

There have been multiple efforts to characterize the effects of spe‐
cific external exposures (eg diet, water hardness, pollution and aller‐
gens) on AD development and progression. Akin to the nonspecific 
external exposome, these factors are likely to act in concert to drive 
the immune responses in AD skin. The inflammatory processes in AD 
likely involve perpetuating cycles of genetically predetermined bar‐
rier susceptibility, external exposures that contribute to barrier dis‐
ruption (eg frequency of washing and detergent use), dysregulated 
skin barrier immunity and consequently increased itch sensation and 
scratch behaviour that leads to further deterioration in epidermal 
permeability and susceptibility to environmental insults.15 An expo‐
somal approach aims to elucidate common pathways downstream 
of individual‐specific external exposures in order to modulate the 
above processes (Figure 1). It is also worth noting that psychologi‐
cal stress during pre‐ and postnatal life may modulate the disease 
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course via neuroendocrine pathways and induction of a TH2 pheno‐
type; however, the effect of specific psychological factors (personal‐
ity, anxiety, depression) on AD pathogenesis is beyond the scope of 
this review.16,17

3.1 | Ultraviolet radiation, 
temperature and humidity

Natural factors such as ultraviolet radiation (UVR), temperature and 
humidity also contribute to both AD flares and regional prevalence 
variation. An ecological analysis of ISAAC data demonstrated a posi‐
tive linear correlation between country‐level monthly minimum and 
mean UVR exposure and AD prevalence, particularly among 13‐ to 
14‐year‐olds.18 Lower AD prevalence is also associated with areas 
of high relative humidity, high temperatures and low use of central 
heating.19,20 Recent data from Denmark highlight that the inverse 
of the above weather conditions is conducive to AD flares, using 
healthcare utilization as a surrogate marker for exacerbations.21 
The mechanism underpinning this is likely multifactorial, with filag‐
grin and filaggrin breakdown products (FBP) lying at the core. Low 
humidity may suppress filaggrin expression via an as‐yet‐unidenti‐
fied mechanism,22,23 while simultaneously driving deimination and 
breakdown of filaggrin to increase levels of natural moisturizing 
factor	(NMF).24 In the presence of UV light, trans‐urocanic acid (an 
FBP) is converted to immunosuppressive cis‐urocanic acid, thereby 
regulating the immune system in the context of AD flares.25,26 
Acting in synergy, the above mechanisms both suppress expression 
and	deplete	existing	filaggrin	to	generate	NMF	under	conditions	of	
low humidity. Epidermal barrier integrity is thus disrupted, conse‐
quently facilitating an upregulated immune response.27 Individuals 

with loss‐of‐function mutations in filaggrin (FLG) are dispropor‐
tionately affected by the above cascade.28 This illustrates the ex‐
posomal approach as it is a case of several environmental factors 
converging on a common pathway in AD pathogenesis.

3.2 | Environmental pollution

As illustrated, the prevalence of AD is increasing in areas of urbani‐
zation. Cross‐sectional studies have confirmed an association with 
higher levels of traffic‐related air pollution and AD prevalence in 
both urban and small‐town settings.29‐32 There is some evidence for 
an association with maternal smoking during pregnancy and tobacco 
exposure postnatally.33 Observational data support these epidemi‐
ological findings, as children exposed to airborne particulate mat‐
ter, benzene, nitrogen compounds and tobacco smoke antenatally 
were shown to be at higher risk of developing AD.34,35 High levels 
of outdoor airborne pollutants were shown to exacerbate symptoms 
of established AD in older children.32,36 Similar effects were ob‐
served in relation to volatile organic compounds, a common indoor 
air pollutant associated with paint.37 A recent review suggests that 
the mechanism by which the above associations contribute to AD 
pathogenesis involve both epigenetic changes in utero and damage 
of the stratum corneum through generation of reactive oxygen spe‐
cies.7 The proposed pathway in relation to tobacco smoke exposure 
involves epigenetic immune priming and consequent TH2 polariza‐
tion, particularly during the third trimester.38 Postnatally, further 
exposure to airborne pollutants leads to oxidative damage to the 
lipids and proteins of the stratum corneum, disrupting the epidermal 
barrier and facilitating a dysregulated immune response.39,40 TH2 
cytokines then drive the characteristic inflammation and pruritus 

F I G U R E  1   The effect of nonspecific external exposures on AD pathogenesis. The interplay between nonspecific external exposures from 
both human and natural domains exerts an effect on AD pathogenesis. Patterns of economic development, migration and urbanization act 
as both cause and consequence of climate change and loss of biodiversity. Consequently, this increases susceptible individuals’ exposure to 
specific disease‐modifying exposures, alters the microbiome and interacts with host genetic and immune factors to contribute to AD flares. 
AD,atopic dermatitis
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associated with AD and downregulate filaggrin expression, further 
compromising the structural integrity of the epidermal barrier.41 The 
result is a perpetuating cycle of AD symptoms, whereby damage in‐
duced by scratching enables enhanced contact with airborne pol‐
lutants and the characteristic immune response. The effect of use 
of biomass fuel burners in the home—a significant source of air pol‐
lution in developing countries—has been analysed in ISAAC Phase 
Three, but was found not to have a statistically significant effect on 
the prevalence of AD, possibly due to the presence of confounding 
factors that lower AD prevalence in areas where biomass fuel cook‐
ing is prevalent.42 The study highlighted a higher prevalence of AD in 
areas where electric heating is used in the home, further cementing 
the link between urbanization and AD prevalence. Further studies 
have linked using kerosene fuel for indoor cooking in the home as 
being an important risk factor for AD development.43,44

While research is needed to elucidate precisely the pathophys‐
iological mechanisms by which air pollutants contribute to AD, 
evidence suggests that minimizing air pollution (eg by bake‐out of 
volatile organic compounds and smoking cessation) during critical 
antenatal and early infancy periods could ameliorate the risks of 
developing and exacerbating (Figure 2) AD in individuals who are 
inherently susceptible from birth.37,38

3.3 | Water hardness

Cohort and cross‐sectional studies have demonstrated an increased 
prevalence of AD in regions with hard domestic water, with no de‐
finitive relationship reported for chlorine.45‐47 Specific external ex‐
posures such as frequent detergent use and hard water may weaken 
the epidermal barrier via increasing skin surface pH and subsequent 
reduction	 in	 NMF	 and	 up‐regulation	 in	 protease	 activity.48 This 
results in a weakened barrier that facilitates sensitization to both 

environmental	and	food	allergens.	Most	recently,	it	was	shown	that	
hard water exposure leads to greater cutaneous deposition of so‐
dium lauryl sulfate (SLS), a surfactant present in many wash prod‐
ucts. The deposits subsequently caused irritation and increased 
TEWL particularly in FLG mutation carriers.49 The mechanism un‐
derpinning this may involve the reduction of profilaggrin expression 
induced by SLS.50 Studied water softening techniques have included 
ion‐exchange and commercially available baby cleansers, although 
only the former has shown to ameliorate the irritant effects of sur‐
factant.49,51 Further studies are currently underway to assess the im‐
pact of softening interventions on AD development and persistence 
at various time points on the pathogenesis pathway.

3.4 | The role of allergens and allergic sensitization

It has long been recognized that AD is associated with the so called 
“atopic march”‐ in which infant AD commonly (though not exclusively) 
precedes the development of food and later respiratory allergies.52 It 
is now understood that this classical longitudinal progression is just 
one pathway to atopic multimorbidity and many possible sequences 
of disease phenotypes are possible.53 Research to date has hypoth‐
esized that a key initiator and mediator of the atopic march is a de‐
fective skin barrier, mediating a TH2‐skewed immune response and 
a persistent pro‐inflammatory state.10 Once sensitized to an envi‐
ronmental allergen, further exposure can trigger AD flares and con‐
tribute to disease chronicity. For instance, when AD predominantly 
affects the head and neck area, significant aeroallergen sensitization 
(eg to house dust mite, tree or grass pollen) is often a key factor, lead‐
ing to disease exacerbations during the pollen season.54

With regard to food allergens, a systematic review by Tsakok 
et  al suggests that there is also a causal relationship between AD and 
subsequent food protein sensitization and allergy, thus supporting 

F I G U R E  2   The role of airborne pollutants in AD pathogenesis. Airborne pollutants induce epigenetic modifications in utero, polarizing 
the immune response towards a TH2 phenotype, as well as directly damaging SC lipids and proteins. TH2 cytokines drive the characteristic 
inflammation and pruritus, as well as suppress FLG expression. The resulting itch‐scratch cycle further impairs the barrier through 
mechanical damage, driving inflammation and enabling direct contact with airborne pollutants, leading to a perpetuating cycle. AD, atopic 
dermatitis;	APM,	airborne	particulate	matter;	NC,	nitrogen	compounds;	RNS,	reactive	nitrogen	species;	ROS,	reactive	oxygen	species;	SC,	
stratum corneum; VOC, volatile organic compounds
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the above hypothesis.55 Emerging data from the Canadian Healthy 
Infant Longitudinal Development study analysed the patterns of al‐
lergen sensitization in 2629 infants at ages 1 and 3.56 Infants with 
AD who were poly‐sensitized to multiple food and aeroallergens by 
age 3 were at highest risk of developing allergic disease, compared 
to mono‐sensitized infants or infants with AD but no evidence of 
sensitization. It is worth noting that infants who were sensitized to 
a food allergen at 1 year were more likely than nonsensitized infants 
to have the allergen excluded from their diet by year 3, despite no 
evidence of allergic disease. Between years 1 and 3, there was a de‐
crease in sensitization rates for most common food allergens, high‐
lighting that this sensitization was transient.

Early restoration or enhancement of the skin barrier is an import‐
ant consideration in primary prevention of AD and the subsequent 
development of allergic comorbidities.57 Emollient therapy from 
birth may be a feasible and cost‐effective method of preventing AD 
development, with several ongoing trials in the area.58‐60 It is worth 
noting, however, FLG mutations as a relevant factor have not been 
studied specifically in the above trials, due to their small size and lack 
of subgroup analysis. The mechanism underpinning this is likely to 
involve decreased skin pH and an alteration in the skin microbiome, 
with Streptoccus salivarius populations reported to exert a protective 
effect.61 The AD allergic exposome is thus best thought of as a com‐
bination of external influences that both precede the development 
of AD in susceptible infants, and subsequently drive an immune re‐
sponse that perpetuates AD. Interrogation of individual influences 

at a pathway level, supported by additional epidemiological insights, 
may enable derivation of an optimum combination of exposures to 
common allergens, at critical time points and at protective doses. 
Doing so may facilitate immune tolerance in infants with an impaired 
skin barrier and prevent allergic sensitization. This approach is also 
critical to elucidating the mechanisms underpinning allergic sensiti‐
zation in infants with no primary skin barrier impairment (Figure 3).62

4  | THE ROLE OF THE MICROBIOME

4.1 | Cutaneous microbiome

A key facilitator of interactions between the external environment 
and the host is the skin microbiome—an entity that is both sensitive 
and susceptible to external influences.63 The critical external influ‐
ence that begins shaping the neonatal microbiome is the mode of de‐
livery, with infants delivered vaginally possessing a skin microbiome 
rich in Lactobacilli, while the microbiome of those born via caesar‐
ean section is initially enriched in organisms colonizing the mother's 
skin.64 The healthy skin microbiome is topographically diverse and is 
dominated by four phyla—Actinobacteria, Firmicutes, Proteobacteria and 
Bacteroidetes.5 The functions of the cutaneous microbiome are diverse 
and are centred around bi‐directional interactions with the epidermal 
barrier and systemic immunity.63 Based on evidence from mouse mod‐
els, the postnatal development of a diverse skin microbiome includes 
rapid colonization with commensal microbiota, such as Staphyloccoccus 

F I G U R E  3   The role of the cutaneous microbiome and its interaction with the exposome. Both lesional and nonlesional AD skin facilitates 
enhanced Staphylococcus aureus adherence and displays reduced microbial diversity. Staphylococcus aureus superantigen production 
facilitates TH2 cell influx, driving the characteristic inflammatory response. An exposomal approach aims to restore the normal cutaneous 
biodiversity via identifying positive and negative influences on the skin microbiome, thus enabling a degree of definitive prevention and 
amelioration in AD. The listed exposures do remain partly hypothetical at present, as further studies investigating the extent of their effect 
on cutaneous microbiome diversity are sought. AD, atopic dermatitis
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epidermidis. Tolerance to commensals is induced via rapid Treg cell epi‐
dermal influx, and subsequently, there is considerable cross‐talk be‐
tween the cutaneous microbiome and the immune system to maintain 
a state of health.65,66 As with allergic exposures, timing of commensal 
colonization is crucial. The potential for induction of tolerance to com‐
mensals is greatest in neonatal life, with decreased capacity for toler‐
ance development as an individual ages.67 These findings may provide 
a mechanistic explanation for the relationship between early life anti‐
biotic exposure and the demonstrated risk of subsequent AD develop‐
ment.68 Indeed, the microbiome may represent the interface between 
the epidermal barrier and external exposures.

Lesional and nonlesional skin from AD patients is dysbiotic with 
diminished Streptococcus, Corynebacterium and Prophionibacterium 
diversity and enhanced Staphylococcus colonization.69 Staphylococcus 
aureus is a pathogen of particular significance, as it abundantly colo‐
nizes over 90% of patients with AD.70 Staphylococcus aureus produces 
several surface and secreted virulence factors and superantigens, driv‐
ing the production of specific IgE and a consequent influx of TH2 cells 
and release of associated cytokines that perpetuate pruritus and fur‐
ther disrupt the epidermal barrier.71 Adhesion is facilitated by bacterial 
clumping factor B, the expression of which is highly enhanced in skin 
expressing	low	levels	of	NMF,	further	suggesting	an	intimate	link	be‐
tween dysfunctional filaggrin metabolism and dysbiosis as an exposo‐
mal influence in AD.72,73 The aim of manipulating the AD microbiome 
is restoration of microbial diversity, as demonstrated during recovery 
following AD flares.69 Coagulase‐negative staphylococci, whose car‐
riage is reduced in AD even at presymptomatic stages, produce pep‐
tides bactericidal to S aureus and inhibit biofilm formation.74‐76 Given 
the cutaneous microbiome's unique location at the skin surface, it is a 
prime target for manipulation via exposomal influences.

The cutaneous microbiome is significantly altered over time and 
is influenced by the physical, ambient and social environment sur‐
rounding an individual.63 The challenge is thus to elucidate the pre‐
cise influences that alter the microbiome to confer a protective and 
therapeutic microbial milieu in AD patients. Conventional AD treat‐
ments such as emollient use, bleach baths and topical steroids have 
been demonstrated to restore bacterial diversity to that more closely 
resembling healthy skin.77,78 A more novel theory proposes that cu‐
taneous microbiome diversity is increased following regular contact 
with nature. The theory proposes that pet owners, particularly dog 
owners, have a higher propensity to spend more time in outdoor nat‐
ural environments, thereby altering their microbiome and benefit‐
ting from reduced psychological stress and the immunomodulatory 
effects thereof.79 Indeed, dog ownership has consistently demon‐
strated to confer a protective effect against development of AD.80

4.2 | Gut microbiome and dietary influences

The gut and its microbiome also act as a distinct body surface, me‐
diating interactions between external exposures (mainly diet and gut 
parasites) and the immune system. Four out of five prospective birth 
cohort studies reported an inverse relationship with faecal microbiota 
diversity in early life and subsequent development of AD.81,82 In the 

above studies, infants who subsequently developed AD had higher 
prevalence of Escherichia coli, Clostridium difficile and obligate anaer‐
obe species in their faecal samples within the first month of life. Early 
studies examining gut microbiome diversity have highlighted that pa‐
tients with AD are likely to have lower levels of Bifidobacterium in 
their faecal samples, with more recent work demonstrating increased 
abundance of Faecalibacterium prausnitzii particularly under 1 year of 
age.83‐85 Emerging data highlight that S aureus may also play a role in 
the gut. Infants whose gut strains of S aureus did not express the ebp 
gene	encoding	for	elastin	binding	protein	and	the	SElM	superantigen	
were less likely to develop AD, although the mechanisms contributing 
to this remain to be elucidated.86,87

The role of the microbiome is expanded further when helminth 
parasites and their relationship to AD development are considered. 
Helminth infection may modulate immune responses by inducing an 
anti‐helminthic TH2 cytokine–dominated milieu, which may result in 
an allergic phenotype once the infection is removed.88,89 Evidence in 
support of this comes for instance from a large placebo‐controlled trial 
in a helminth‐endemic region of Uganda, whereby treatment with al‐
bendazole during the third trimester of pregnancy was associated with 
an increased prevalence of AD in offspring up to 1 year.48,90 In con‐
trast, a randomized placebo‐controlled trial of helminth eradication in 
a helminth‐endemic area in Vietnam found no effect on the prevalence 
of AD in schoolchildren, when anti‐helminthic treatment was adminis‐
tered to schoolchildren, highlighting that there may be a critical time 
window for immuno‐modulation at the gut interface during the perina‐
tal period.91 A natural extension of this observation is the effect of oral 
antibiotics on AD. A systematic review of the literature reported that 
early life exposure increases the risk of developing AD, with an even 
stronger association seen with a higher number of courses of antibiot‐
ics; the effect is mediated through antibiotics’ effect on the gut micro‐
biome and consequent dysbiosis.68,92,93 Recent data from the Danish 
National Birth Cohort reported an association between antenatal anti‐
biotic exposure and AD in the first 18 months of life, but only in cases 
whereby antibiotic use occurred during both early and late gestation.94

Conversely, probiotic supplementation with lactobacilli and bi‐
fidobacteria during the last trimester of pregnancy and in early life 
appears protective. Once AD is established, however, such dietary 
supplementation confers no additional benefit in treatment.95‐97 
The mechanism underpinning this likely involves the microbial gut‐
skin axis and immunomodulatory components produced by certain 
bacterial strains, as discussed below. The evidence for prebiotics 
(oligosaccharides) appears promising, although limited in follow‐up 
duration. A meta‐analysis of studies of prebiotics for prevention of 
AD reported a reduced prevalence among infants whose diets were 
supplemented with a fructooligosaccharide and galactooligosaccha‐
ride combination.98 A single randomized controlled trial of prebiotics 
for treatment of paediatric AD failed to show a benefit; in contrast to 
this, synbiotics (a mixture of pre‐ and pro‐biotics) have been shown 
to be effective as a treatment but not prevention strategy.99,100

The gut microbiome is sensitive to dietary modification, thus 
potentially linking diet with AD pathogenesis. Epidemiological data 
show an association between unpasteurized farm milk consumption 
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and a reduction in AD prevalence, although it is unclear whether this 
is due to an altered microbial composition or unprocessed milk con‐
stituents.48,101‐103 Breastmilk has been shown to possess a distinct mi‐
crobiome, and the introduction of its microbial species diversifies the 
infant's own gut microbiome, a mechanism also likely applicable to un‐
pasteurized farm milk.104,105 For instance, data from the PROmotion 
of Breastfeeding Intervention Trial (PROBIT) highlight that being 
breastfed is not only associated with a reduced prevalence of AD in 
early life, but this effect extended into teenage years.106‐108 It must be 
noted, however, that neither prolonged nor exclusive breastfeeding 
were associated with reduced AD prevalence in the above studies. 
This was also supported by a meta‐analysis of prospective observa‐
tional studies as well as the Enquiring About Tolerance (EAT) study, 
which randomized three‐month old infants to either the introduction 
of allergenic foods alongside breastfeeding or exclusive breastfeed‐
ing for six months.109 No effect on AD prevalence was observed 
between the two groups.110 Furthermore, breastfeeding may confer 
diverse immunomodulatory effects based on its IgA, soluble CD14 
and cytokine (particularly TGF‐β) composition— which varies highly 
across individual mothers. TGF‐β has been shown to be elevated in 
unpasteurized farm milk and infants whose mothers consumed un‐
pasteurized farm products during pregnancy or were exposed to a 
farm environment had an altered immunological and cytokine milieu 
compared to controls.111‐113 Thus, it is feasible that a crucial antenatal 
and early neonatal life periods exist, whereby breastfeeding confers 
an immunomodulatory effect, but this decreases as the child ages. 
With regard to formula feeding, hydrolysed whey and hydrolysed ca‐
sein formula has been associated with a reduction in AD prevalence 
in susceptible infants, as well as a reduction in established AD sever‐
ity, although the duration of formula feeding and exclusive formula 
feeding remains controversial.114‐116 Two studies of amino acid–based 
formula reported conflicting results, and no statistically significant ef‐
fect was observed for soy‐based formula.114,117 Whey‐based formula, 
particularly with added prebiotic oligosaccharides, alters the infant 
gut microbiome to resemble that of a breastfed infant, with abun‐
dant Bifidobacteria.118,119 This lends support to the hypothesis that 
individual breastmilk constituents or their formula substitutes aid in 
the development of a healthy gut microbiome and confer a protec‐
tive effect in AD. Evidence for dietary influences on AD risk beyond 
the neonatal period also comes from ecological observations, such as 
those in ISAAC Phase One, whereby a diet high in trans‐fatty acids 
was associated with increased AD prevalence, while consumption of 
fish, fruits, vegetables and plant proteins was inversely associated 
with AD.120 Further research is required into the precise biological 
impact of individual dietary components on the development of the 
gut microbiome, the maturation of the child's immune system in early 
life and the resulting impact on AD risk to inform potential exposomal 
manipulation strategies with the aim to prevent AD.

4.3 | The skin‐gut interaction

We have highlighted that in AD patients, the gut and the skin rep‐
resent two distinct topographical entities that facilitate dysbiotic 

microbiota. An essential consideration is the potential interaction 
between the two microbiomes with each other, with the immune 
system and the mechanism by which this contributes to AD. In 
their recent review, Lee et  al postulate that a diverse gut micro‐
biome impacts AD in a trifold manner.121 Induction of immune 
tolerance by certain probiotic strains (particularly Lactobacilli) is me‐
diated through a trifold mechanism; enhanced IL‐10/TGF‐β signalling 
and a subsequent expansion of the Treg population, short‐chain fatty 
acids (SCFA) produced by certain species exerting an anti‐inflamma‐
tory effect and a neuroendocrine mechanism whereby mediators 
produced by the gut modulate itch sensation. SCFA produced in the 
gut by various species (Akkermansia, Bifidobacteria, Facalibacterium) 
have also been implicated in maintaining cutaneous microbiome 
diversity. Propionic acid produced by cutaneous Propionibacterium 
acnes has been demonstrated to inhibit S aureus growth, while bu‐
tyrate further induces Treg cells—two mechanisms that are known to 
be dysregulated in AD.122,123 In addition, a diet rich in fat and low in 
fibre alters the microbiome to the extent that SCFA production in 
the gut is significantly impaired and immune homeostasis is conse‐
quently altered in favour of the pathogenic TH2 phenotype.124

The TH2‐Treg balance has been studied by Chatila and colleagues 
with regard to the gut microbiome and food allergy, although the 
cytokines at the core of the mechanism are also common to AD. 
Experimental evidence from murine models shows that gut bacte‐
rial dysbiosis can facilitate a re‐programming of Treg cells into TH2 
cells via reduced TGF‐β signalling and enhanced IL‐4 production by 
ILC2 cells in response to IL‐33.125,126 ILC2 cells have previously been 
shown to be expanded in AD lesional skin with increased production 
of IL‐33 in response to epithelial barrier disruption, as seen in sus‐
ceptible FLG mutant individuals.127

4.4 | Multi‐level exposome manipulation as a 
preventative strategy

To alter the disease course, the AD exposome could be manipulated 
at multiple levels, from population to individual. Climate change, ur‐
banization and loss of biodiversity are likely to impact the aetiopatho‐
genesis of AD. The microbiome and proximity to nature (ie rural and 
farm environments), with consequently increased environmental and 
individual biodiversity, may be the key mediator linking the nonspecific 
exposome with the internal milieu.128 A recent study of Finnish and 
Russian children residing in the same geographic region of Karelia, who 
are genetically homogenous but socio‐economically distinct, found 
greater diversity of Acinetobacter in the Russian population, likely due 
to a nonwesternized lifestyle and frequent contact with natural sur‐
roundings.129 This was highly correlated with lower prevalence of aller‐
gic diseases, including AD.130 Concentric efforts of society to increase 
biodiversity and the number of microbial species in urban settings are 
thus required, with increasing green spaces providing a multifaceted 
benefit.131 At an individual level, we may alter the exposome and in‐
deed the microbiome by identifying beneficial practices, susceptible 
individuals and critical times for intervention. For instance, exposure of 
infants delivered by caesarean section to vaginal microbes, or indeed 
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direct transplantation of human skin microbiota to individuals with 
AD.132,133 Similarly, early introduction of specific allergenic foods into 
the diet has not been associated with reduced AD prevalence.110

With regard to timing, the perinatal period is likely to be crucial. 
Maternal	exposures,	including	diet	and	smoking,	have	a	demonstrated	
effect on the foetal immune system, and the mechanism underpin‐
ning this may indeed involve the microbiome.134 Longitudinal studies 
have demonstrated that a maternal diet rich in fish (and consequently 
anti‐inflammatory n‐3 polyunsaturated fatty acids) reduces the inci‐
dence of AD in the offspring.135 It is likely that immunomodulatory 
dietary components have an immune priming role in the foetus, al‐
though this remains to be confirmed experimentally. What is known, 
however, is that the maternal microbiome influences the risk of atopy 
in the offspring, via transplacental passage of microbial metabolites 
and IgG.136 Given the intimate link between diet and alterations in 
the gut microbiome, it is plausible that alterations in the maternal diet 
translate to an immune response in the foetus, with consequent im‐
plications for allergic disease (Figure 4).137‐140

5  | CONCLUSIONS AND FUTURE 
PERSPEC TIVES

Conceptualizing the exposome provides researchers with a crucial link 
between epidemiology, immunology and cell biology with regard to ae‐
tiology and pathogenesis of specific diseases. In this review, we high‐
lighted that with regard to AD numerous external influences impact 
on the delicate functional balance of the epidermis. Here, we identify 

several pathways by which our changing world may detrimentally and/
or positively impact the skin of susceptible individuals with regard 
to the development of AD or of allergic diseases at large. Exposomal 
impacts need to be studied not only with regard to the nature of the 
exposure, but also its dose and timing. Akin to seasonal variation in 
AD flares being influenced by climate, specific external exposures and 
microbiomal shifts appear to be highly time‐sensitive.

Achieving this goal of temporal analysis of individual influence 
will necessitate novel approaches and study methodology, such as 
longitudinal monitoring of individuals to capture specific exposures 
together and the use of artificial intelligence.141 In the modern era, 
wearable sensors for recording and analysis of geotemporal expo‐
somal niches have been developed and though still in their infancy, 
such technologies to facilitate the characterization of nonspecific, 
specific and microbiomal exposomes at the molecular and organ‐
ism levels for individuals, as well as for distinct locations.142,143 
Emerging technologies and environment‐wide association studies 
now facilitate monitoring of exposures, making exposure biomarker 
and consequently exposome analysis more feasible as computa‐
tional power increases.144 Conceptually, we can thus use personal 
wearable devices to record an individual's specific exposures, 
assess the level of exposure and effect on pathogenesis via bio‐
monitoring. A particular challenge is the precise characterization 
of a nonspecific disease‐modifying exposure, for example urban‐
ization on the individual, although we may use surrogate markers 
of exposure common to the population on hand. We propose that 
by studying the pathways downstream of various doses of expo‐
sures at various times both pre‐ and postnatally an optimum set of 

F I G U R E  4   Individual exposures, their doses and timing influence the interplay between the host microbiota, host immunity and genetics. 
The host gut and skin microbiota are entities sensitive to external manipulation by environmental influences, particularly at certain times 
in an individual's lifespan, such as the third trimester of gestation and the early neonatal period. Given the intimate interaction of the 
two microbiomes with each other via the gut‐skin axis and with the host's immune system, gut and skin dysbiosis are both likely to play a 
significant role in atopic dermatitis (AD) pathogenesis. The balance of detrimental and beneficial influences on the microbiome at critical 
time points determines the course of AD and allergy in the individual. The evidence regarding the above is varied in its robustness (strong 
evidence for breastfeeding, biodiversity, weak or emerging evidence for emollients, synbiotics and unpasteurized farm milk); however, it is 
the balance between a multitude of factors rather than individual factors in isolation that remain the pertinent factor in AD pathogenesis
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exposures may emerge, enabling a degree of definitive prevention 
or symptom amelioration in AD.
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