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Genome-wide association study of medication-use
and associated disease in the UK Biobank
Yeda Wu1, Enda M. Byrne 1, Zhili Zheng1,2, Kathryn E. Kemper 1, Loic Yengo 1, Andrew J. Mallett1,3,

Jian Yang 1,2,4, Peter M. Visscher 1,4,5 & Naomi R. Wray 1,4,5

Genome-wide association studies (GWASs) of medication use may contribute to under-

standing of disease etiology, could generate new leads relevant for drug discovery and

can be used to quantify future risk of medication taking. Here, we conduct GWASs of

self-reported medication use from 23 medication categories in approximately 320,000

individuals from the UK Biobank. A total of 505 independent genetic loci that meet stringent

criteria (P < 10−8/23) for statistical significance are identified. We investigate the implica-

tions of these GWAS findings in relation to biological mechanism, potential drug target

identification and genetic risk stratification of disease. Amongst the medication-associated

genes are 16 known therapeutic-effect target genes for medications from 9 categories.

Two of the medication classes studied are for disorders that have not previously been subject

to large GWAS (hypothyroidism and gastro-oesophageal reflux disease).
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Susceptibility to most common human diseases is complex
and multifactorial, involving genetic, environmental and
stochastic factors1. During the last decade, large-scale

genome-wide association studies (GWASs) have identified thou-
sands of single nucleotide polymorphisms (SNPs) associated with
diseases and related traits, consistent with a polygenic genetic
architecture of common disease. These results add useful human-
relevant information to drug discovery, drug repurposing and
clinical trial pipelines2. In addition to the valuable disease-
diagnoses data, the available medication-use data are also inter-
esting for research. In the context of electronic health record data,
medication-use may be an easy route to identify disease-case
subjects. However, in clinical practice, it is common that one
medication is prescribed for several indications, but conversely,
several medications can be prescribed for the same indication. It
is likely that medication-use reflects not only similarity between
different clinical manifestations3 and/or comorbidity4 of diseases
but also heterogeneity of clinical manifestation (symptoms and
signs) and of intervention response (for example, from lifestyle
change to the combination of treatments).

We hypothesise that genetic variants associated with taking
medications categorised based on anatomical and therapeutic
classifications may add additional relevant information to
understanding the underlying biological mechanism of diseases
and drug development approaches. Here, we study genetic var-
iation in current medication-use using UK Biobank (UKB)
(http://www.ukbiobank.ac.uk/about-biobank-uk/) medication
data. We report 505 loci independently associated with medica-
tion categories. We explore these GWAS findings for biological
mechanisms and as drug targets. We estimate the genetic corre-
lation between the 23 medication traits, and with other diseases
and traits using published GWAS results. We use Mendelian
Randomization (MR) to investigate putative causal relationships
among diseases and traits. We show that genetic predisposition to
common disease predicts likelihood of taking relevant medica-
tions, a significant finding in relation to future practice of pre-
cision medicine for common disease. That is, we provide a
baseline quantification of an individual’s predicted risk for disease
from independent genetic data to their probability of taking
disease-relevant medication.

Results
UKB medication-taking demographics. There were 502,616
participants (~54% females) with medication records (~73% with
non-blank medication information) at their first visit UKB
assessment. The mean age for the participants when attending
assessment centre was 56.53 (standard deviation (sd) 8.09) years
and the mean body mass index (BMI) for participants was 27.43
(sd 4.80). The percentage of participants taking medication
increased with age and it was higher for female participants than
for males, across all age groups. The percentage of males taking
medication increased sharply from ~50% at 40 years old to ~85%
at 70 (Supplementary Fig. 1).

Case-control GWAS of medication-use. UKB has classified
medications into 6,745 categories, of which 1,809 were
reported by 10 or more people (Supplementary Fig. 2). Of these
1,752 (97%) were classified using the Anatomical Therapeutic
Chemical Classification System5 (Fig. 1 and Supplementary
Data 1). 318,177 UKB European individuals were selected for
23 medication-use case-control analysis (Supplementary Fig. 3).
We conducted a suite of GWASs and post-GWAS analyses
(Methods and Supplementary Fig. 4). The medication-use case-
control GWASs identify 910 within-trait independent SNPs
significantly associated (P < 5 × 10−8) across 23 medication traits

(Fig. 2 and Supplementary Fig. 5). After applying a more strin-
gent multiple testing threshold (P < 10−8/23)6, a total of 505
SNPs remain (Supplementary Table 1 and Supplementary
Data 2), with per-trait associations ranging from 0 (C02:
hypertensives, N02A:opioids, N06A: antidepressants) to 103
(C09: agents acting on renin-angiotensin system) SNPs. Many of
the associated SNPs may simply be a reflection of the primary
indication for which the medication is prescribed (Supplemen-
tary Table 2). For example, C09 medications have therapeutic
effect on hypertension; of the 103 independent SNPs associated
with C09 medications (P < 10−8/23), we identified SNPs pre-
viously linked to hypertension (7 SNPs)7, systolic blood pressure
(32 SNPs)8, diastolic blood pressure (5 SNPs)9 and pulse pres-
sure (2 SNPs)9. Of the 55 independent SNPs associated with
C10AA (HMG CoA reductase inhibitors)-associated SNPs (P <
10−8/23), 19 SNPs have been reported to be significantly asso-
ciated with low-density lipoprotein cholesterol (LDLC)10, sup-
porting the known biological mechanism that statins are effective
in lowering LDLC. However, three of the medication classes
studied are for disorders that have not previously been subject to
large GWAS analysis, including A02B (drugs for peptic ulcer and
gastro-oesophageal reflux disease), H03A (thyroid preparations)
and N02BE (anilides).

Genetic risk to common disease predicts medication-taking.
We undertook polygenic risk prediction analyses using GWAS
summary statistics from eight published disease/traits (Supple-
mentary Table 3) as discovery data to predict disease risk in 9
medication-taking phenotypes as target data. Participants in the
UK Biobank with a high genetic risk score (GRS) for different
diseases/traits have a higher odds of taking corresponding med-
ications than those with a low GRS (Fig. 3; Supplementary
Table 4). The top decile of individuals ranked on risk prediction
for depression had an odds ratio (OR) of 1.7 in taking anti-
depressants compared to the bottom decile. Similarly comparing
top and bottom deciles, we find an OR of 3.1 for taking anti-
diabetic medication (A10) for individuals ranked on genetic risk
for type 2 diabetes and of 3.3 for taking immunosuppressants
(L04) for individuals ranked on their genetic risk for rheumatoid
arthritis (RA). The OR increased to 5.2 for taking L04 medica-
tions commonly used in RA patients (Supplementary Data 1).

GWAS results and biological mechanisms. First, we estimated
SNP-heritability of the 23 traits using linkage disequilibrium
(LD) score regression11 (Supplementary Fig. 6; Supplementary
Table 5), all traits showed SNP-heritability (proportion of var-
iance attributed to genome-wide SNPs) significantly different
from zero to a maximum of 0.15 (s.e. 0.008) for N02A (opioids)
on the estimated scale. Second, to identify medication-relevant
tissue/cell types, we partitioned the SNP-heritability12 based on
annotations of SNPs to genes, and genes to differential gene
expression between tissues. Among the 23 medication-taking
traits, eight traits showed significantly enriched association with
genes expressed in at least one tissue at a false discovery rate
(FDR) <5% (Supplementary Fig. 7). GWAS associations for
thyroid preparations (H03A), immunosuppressants (L04), adre-
nergics inhalants (R03A), glucocorticoids (R03BA) and anti-
histamines for systemic use (R06A) were enriched in immune
cell types. Those of opioid analgesics (N02A) were enriched in
central nervous system tissues, such as limbic system, those of
antimigraine preparations (N02C) were enriched in cardiovas-
cular tissue, and those of drugs affecting bone structure and
mineralisation (M05B) were enriched in digestive cell type
(Supplementary Data 3).
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Third, we investigated whether associations between SNPs and
medication-taking traits were consistent with mediation through
gene expression, based on associations between SNPs and gene
expression (eQTLs). We identified 177 unique genes for which
expression is significantly associated with 19 medication-taking
categories (Supplementary Data 4) using summary data-based
Mendelian Randomization (SMR) analysis13. Gene-based asso-
ciation tests were conducted using MAGMA14 from the GWAS
SNP results for each of the 23 medication-taking traits and a total
of 1,841 significantly associated unique genes were identified
(Supplementary Data 5). To provide biological insights from the
GWAS associated loci, we used the gene-based association test
summary statistics to test for enrichment in 10,891 gene sets from
MSigDB (v5.2)15,16. All 23 medication-taking traits were enriched
in at least one gene set at FDR <5% (Supplementary Data 6).
Several of the results showed plausible relevant biological
mechanisms. For example, the genetic associations for taking
A10 (drugs used in diabetes) were enriched for the glucose
homeostasis gene set, those for taking C10AA (statins) were
enriched in the cholesterol homeostasis gene set, C09 (agents
acting on renin-angiotensin system) for cardiovascular-related

gene sets, M05B (drugs affecting bone structure and mineralisa-
tion) for skeletal system development, chondrocyte differentiation
gene sets, N02A for gene sets of behavioural response to cocaine
and neurogenesis and lastly H03A, L04, R03A, R03BA medica-
tions for immune-related gene sets. Interestingly, genes associated
with taking A02B (drugs for peptic ulcer and gastro-oesophageal
reflux disease) were enriched in gene sets of central nervous
system neuron differentiation and of neurogenesis, highlighting
the connection between gut and brain17.

Linking medication-taking associated genes to drug targets.
Secondary analyses of GWAS results not only provide insights
into the biological complexity of common diseases, but also
offer opportunities relevant to drug development and
repurposing2,18,19. To determine whether genes associated with
medication-taking could provide clues relevant to drug target
identification, we performed analyses using drug-target lists
from Santos et al.,5 ChEMBL (https://www.ebi.ac.uk/chembl/)20

and ClinicalTrials.gov (https://www.clinicaltrials.gov/) database
as reference. First, for each UKB medication category, we
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to that subgroup. Red bars are the 23 medication-taking traits used in analyses (selected based on participant numbers, as shown in Fig. 2). The 23
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investigated whether there are therapeutic-effect target genes for
medications classified in that medication category; a total of
9 genes were identified (Supplementary Table 6). For example,
we find HMGCR (Entrez ID: 3156) is, as expected21, associated
with taking C10AA medications (statins) and encodes the
HMGCR protein which is targeted by medications from C10AA
category. Second, we tested whether there are therapeutic-effect
target genes for treating indications relevant to taking medica-
tions of each category; a total of seven genes were identified
(Supplementary Table 6). PCSK9 (Entrez ID: 255738) in our
analyses is also associated with taking C10AA medications,
and encodes the protein mediating lowering-cholesterol effect
of evolocumab (ATC code: C10AX13) and alirocumab (ATC
code: C10AX14). Third, we looked at whether there are
therapeutic-effect target genes (ever or currently in clinical
trial and not approved by U.S. Food and Drug Administration
(FDA) yet) for treating indications relevant to medications of
each category; a total of eight genes were identified (Supple-
mentary Table 7). For example, TSLP (Entrez ID: 85480) is
associated with R03A (adrenergics), R03BA (glucocorticoids)
and R06A (antihistamines) and also mediates the effect of
tezepelumab for the treatment of uncontrolled asthma22. Hence,
among our associated genes are 24 genes with some known
evidence of therapeutic effect. Therefore, we anticipate that
other genes that are associated with medication may help to
prioritise other putative therapies23, but further validation
is required. In Supplementary Table 8 we provide additional
analyses for two genes, IDE and AGT that we believe merit fur-
ther study for type 2 diabetes and C07/C09 related disorders,
respectively.

Genetic correlation between traits and medications. The genetic
correlation (rg) between the 23 medication-taking traits and 21
traits/diseases (Supplementary Table 3) related to them were
calculated using bivariate LD score regression24. Many rg esti-
mated were significantly different from zero. For example, BMI,
educational attainment (EA), former/current smoker and cor-
onary artery disease were significantly correlated with most of the
medication categories in expected directions. Major depression
(MD) and neuroticism showed positive rg with A02B (gastro-
oesophageal reflux drugs), suggesting a link between the brain
and the digestive system. Type 2 diabetes showed correlations
with taking medications C02, C03, C07~C09 and C10AA,
implying a shared genetic architecture of type 2 diabetes,
hypertension and hypercholesterolemia. The rg between B01A
and other diseases/traits show similar pattern to those between
N02BA medications and other diseases/traits because the original
medication aspirin (code number: 1140868226, 59,150 individuals
in our analysis) has multiple ATC codes (A01AD05, B01AC06
and N02BA01). Full results are presented in Fig. 4 and Supple-
mentary Data 7.

Putative causal relationship between traits and medications. It
is reasonable to assume that having a disease is causal for taking
the associated medication (rather than reverse causation).
Therefore, we used MR in a proof-of-principle analysis to
quantify causality. Independent SNPs (P < 5 × 10−8) associated
with 15 selected diseases/traits (Supplementary Table 3) were
used as instruments to evaluate putative causal relationships25

among these 15 diseases/traits and the 23 medication-taking traits
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Fig. 2 Summary of UKB medication-taking GWAS analyses. For each category, the number of cases and controls is shown on the left and the number of
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(Supplementary Data 8 and Fig. 5). Increasing BMI increases the
likelihood of taking A10, B01A, C01D, C02, C03, C07, C08, C09,
C10AA, R03A medications, consistent with the role of BMI
across diseases related to these medications25. The effect of obe-
sity on bone health is controversial26. However, results from our
analysis clearly show that increasing BMI decreases the likelihood
of taking M05B (bone-associated) medications (OR 0.68 per SD
of BMI). MD increases the likelihood of taking A02B medication
(drugs for peptic ulcer and gastro-oesophageal reflux disease;
1.23-fold increase per SD in liability to MD), capturing a link

between the brain and the digestive system. In addition to this,
MD increases the likelihood of taking N02BE (1.23-fold increase
per SD in liability to MD) medication, which is consistent with
comorbidity of pain in some MD patients27.

Discussion
In this study, we profile genetic contributions to medication-use.
Traditional GWAS identify DNA variants associated with disease,
with a goal that these discoveries ultimately may open the door to
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new drug treatments. Here, we have taken the reverse approach,
aiming to identify DNA variants associated with medication-
taking, in recognition that underlying biology may contribute to
the same medication being prescribed for several indications, and
conversely that only some of those with a given diagnosis may
take a particular medication. As expected, some of our results for
medication-taking recapitulate GWAS results of the disease traits
for which the medication is prescribed. However, we have also
identified some associations that may be worthy of follow-up.

We identified 505 linkage disequilibrium independent SNPs
associated (P < 10−8/23) with different medication-taking traits.
For some of our traits, large GWAS for the medication relevant
indications have not been conducted, such as A02B (drugs for
peptic ulcer and gastro-oesophageal reflux disease, 2 SNPs) and
N02BE (anilides, 4 SNPs). Notably, 76 SNPs were associated
with H03A (thyroid preparations—the main indication is

hypothyroidism), only 11 of these loci have been previously
reported to be associated with hypothyroidism. Conditional
(mtCOJO) analysis suggested that these 76 SNPs associated with
taking H03A medication are indeed associated with hypothyr-
oidism. We showed that individuals with higher genetic risk of
disease have higher likelihood to take relevant medications,
for example, individuals with higher GRS for RA have an OR of
3.3 to take immunosuppressants compared with lower GRS
individuals (Fig. 3), thereby providing a proof-of-principle vali-
dation of precision medicine based upon risk prediction of
common diseases, since individuals with high genetic risk of
disease can be identified well before the onset of symptoms and
the time of medication prescription.

To provide biological insight to the SNP associations for
medication-taking28, we linked GWAS findings to relevant bio-
logical gene sets and drug target efficacy. These analyses
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generated a series of expected or plausible results, such as genes
associated with taking A10 (drugs used in diabetes) enriched
in gene sets for glucose homeostasis. Our analyses also generate
hypotheses; genes associated with taking N06A (antidepressants)
showed enrichment in the gene set for the synthesis and secretion
and diacylation of ghrelin, a gut-derived hormone29. Previous
studies have described an antidepressant-like role of ghrelin30,31.
This line of evidence suggests that testing a pharmacological
effect of ghrelin on depression may be worthwhile. Although
medication-associated genes overlapped with only a small pro-
portion of current drug target genes, the framework of genetic
association studies provides a potentially valuable resource for
new drug target identification and prediction of unfavourable
side effects18.

Comorbidity is commonly observed in clinical practice,
which means the presence of additional diseases in relation to an
index disease32. Results from genetic correlation and disease-
medication (exposure-outcome) MR highlight potential shared
etiology, and may help explain medication use in clinical practice.
Our analysis showed that major depression increased the like-
lihood of taking A02B (drugs for peptic ulcer and gastro-
oesophageal reflux disease) and N02BE (anilides), the latter
consistent with reports that antidepressant prescriptions are not
only indicated for depression, but also for pain33.

There are a number of limitations in our study. First, although
the medication-use data were obtained by trained nurses during
interviews, the self-reported nature may limit the accuracy of
information. We note that a recent UK study has reported mostly
good concordance between prescription data and self-reports of
medication taking34. Second, the ambiguous names of medica-
tions may limit the accurate classification of medications. The
reasons (e.g. disease diagnosis) for taking medication were not
recorded. The duration, dosage, response and adverse effect of
medications were not recorded. For this reason we could not
conduct pharmacogenomics analyses to identify associations of
SNPs with treatment response or dosage level. Third, our findings
are specific to the UK biobank participants, which are recognized
to be a non-random sample of the UK population. Fourth, the
medication-taking in UK biobank participants may be more
representative of medication-taking in the UK and may not
translate to other populations and different health systems. Fifth,
we would have liked to look for genetic associations with adverse
drug reactions, but the number of reported incidents was too few
(Supplementary Table 9).

In summary, we identified 505 independent loci associated
with different medication-use in 318,177 individuals from
UKB, with implications for biological mechanisms, drug target
identification and risk of medication use, providing a baseline
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Fig. 5 Mendelian Randomization results between 15 diseases/traits and medications. Rows represent 15 diseases/traits as exposure and columns
represent 23 medication-taking traits outcome. The significant effects after correcting for 345 tests (P≤ 1.4 × 10−4) are labelled with OR (P value). The OR
is per SD in liability when the exposure is disease. Abbreviation: Body mass index (BMI), Coronary artery disease (CAD), Diastolic blood pressure (DBP),
Bone mineral density (BMD), High-density lipoprotein cholesterol (HDLC), Low-density lipoprotein cholesterol (LDLC), Major depression (MD), Pulse
pressure (PP), Rheumatoid arthritis (RA), Systolic blood pressure (SBP), Type 2 diabetes (T2D), Total cholesterol (TC), Triglyceride (TG)
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quantification of the prospect of precision medicine for common
disease.

Methods
United Kingdom Biobank (UKB). The study design and sample characteristics of
the United Kingdom Biobank (UKB) (http://www.ukbiobank.ac.uk/about-biobank-
uk/), a major population-based longitudinal study, have been extensively described
elsewhere35,36. The UKB was approved by the National Research Ethics Service
Committee North West Multi-Centre Haydock and all participants provided
written informed consent to participate in the study. Briefly, initial data from more
than 500,000 individuals aged 37–73 years were collected between 2006 and 2010,
with first-repeat data (revisit) collected on approximately 20,000 individuals from
2012 to 2013 and second-repeat data (imaging visit) collected from ~22,000
individuals since 2014 (Downloaded on March 2017).

UKB medication classification. Self-reported regular medication and health
supplements taken weekly, monthly or three monthly were recorded. Duration and
dosage of the medication records were not collected37. Medication and health
supplements data (Data Field: 20003) were coded using 6,745 categories (Data
coding 4). In all, 1,809 of 6,745 categories were for medications taken by at least 10
participants. These 1,809 categories were manually mapped to their corresponding
active ingredients using online information (mainly Electronic Medicines Com-
pendium (https://www.medicines.org.uk/emc), Drugs (https://www.drugs.com/),
and NetDoctor (https://www.netdoctor.co.uk/)), and were classified using the
Anatomical Therapeutic Chemical (ATC) Classification System5. Categories named
by their active ingredient(s) were directly mapped to the ATC code. Categories
named by brand name were first mapped to their active ingredient(s) and then
further mapped to ATC code according to the dose and administration route if
available. Some categories were ambiguous or could not be mapped to an ATC
code, leaving 1,752 categories, which were grouped into 184 subgroups according
to the first three ATC levels (Fig. 1 and Supplementary Fig. 2). Supplementary
Data 1 provides the active ingredient(s) and ATC code information for the 1,752
categories.

UKB genotyping, quality control and participants selection. Genotyping details
for UKB participants have been reported previously36. Briefly, 49,950 participants
were genotyped using the UK BiLEVE Axiom Array and 438,427 participants were
genotyped using UK Biobank Axiom Array. The Haplotype Reference Consortium
(HRC) and UK10K was the imputation reference sample. A European subset
(456,414 participants) were identified by projecting the UKB participants onto the
1000 Genome Project principal components coordination. Genotype probabilities
were converted to hard-call genotypes using PLINK2 (--hard-call 0.1) and single
nucleotide polymorphisms (SNPs) with minor allele count <5, Hardy-Weinberg
equilibrium test P value < 1 × 10−6, missing genotype rate >0.05, or imputation info
score <0.3 were excluded. Following the phenotype extraction pipeline for UKB
participants provided in Supplementary Fig. 3, 318,177 participants of European
ancestry with both genotype and medication records available were selected for
further analysis.

Case-control genome-wide association study (GWAS) designs. Case group
and control group were generated according to case medications, similar medi-
cations and control medications. Medications with the same ATC levels (at the first
two, the first three and the first four levels) were defined as case medications and
those taking case medications were assigned to the corresponding case group.
Medications of which the first two ATC levels is the same as that of the case
medication active ingredients or medications containing case medication active
ingredients were defined as similar medications. After excluding participants taking
both case medications and similar medications, the remaining participants were
assigned to corresponding control group (those taking “99999” category were
removed). A total of 23 case-control medication category traits were selected for
analysis. Case-control GWAS analyses were conducted using BOLT-LMM38 with
age, sex, assessment centre and 20 genetic principal components fitted as covari-
ates. 543,919 SNPs generated by linkage disequilibrium (LD) pruning (r2 < 0.9)
from Hapmap3 SNPs were used to control for population structure and polygenic
effects. The effect size (β) and standard error (se) from BOLT-LMM on the
observed 0-1 scale were transformed to odds ratio (OR) and corresponding stan-
dard error (SE) using log OR= β/(P*(1−P)) and SE= se/(P *(1−P)), where β=
linear regression coefficient, se= standard error from BOLT-LMM and P= case
fraction. 7,288,503 SNPs with minor allele frequency (MAF) > 0.01 were analysed.
Quasi-independent trait-associated regions were generated through LD clumping
retaining the most associated SNP in each region (PLINK (v1.90b)39,40 --clump-p1
5e-8 --clump-p2 5e-8 --clump-r2 0.01 --clump-kb 1000). If associated, the MHC
region (25Mb-34Mb) was considered as a single locus represented by its most
associated SNP. To explore how many SNPs associated with taking medications
have been previously linked to their corresponding medication-specific related
indications/traits, GCTA (v1.91) was used to perform analyses (--cojo-cond) of
10 medication GWAS summary statistics, conditioning on the given lists of SNPs
associated with relevant indications/traits41,42. The GWAS Catalog43 was used to
search published GWASs on relevant indications/traits, with studies selected based

on number of independent SNPs reported. To check whether medication-taking
associated SNPs were also associated with the main indications for that medication
category, GCTA (v1.91) was used to perform analyses (--mtcojo-file) of the 10
medication GWAS summary statistics, conditioning on the related main indica-
tions GWAS summary statistics in UKB. The indication phenotype were generated
using self-reported non-cancer illness code (Data Field: 20002), main ICD10
diagnoses (Data Field: 41202) and secondary ICD10 diagnoses (Data Field: 41204).

Genetic risk score (GRS) prediction. Of the 23 medication-taking traits, related
published GWAS summary statistics (discovery data) were available for nine of
these medication-taking traits (target data), based on eight discovery GWAS stu-
dies (Supplementary Table 3). Discovery data were selected as traits related to
target data phenotypes, cohort ancestry and with no sample overlap with UKB. The
discovery data SNPs were matched with the target data SNPs, then LD pruned and
“clumped”, discarding variants within 1,000 kb of, and in r2 ≥ 0.1 with, another
(more significant) marker using SNPs with MAF > 0.01 from 10,000 random
sampled unrelated UKB European-ancestry individuals as the LD reference. GRS
of target sample individuals were generated for a range of discovery data asso-
ciation P value thresholds (5 × 10−8, 1 × 10−5, 1 × 10−4, 0.001, 0.01, 0.05, 0.1, 0.5).
For each discovery-target pair, four outcome variables were calculated. (1) The
P value of case-control GRS difference was calculated by logistic regression. (2) The
proportion of variance explained (Nagelkerke R2) was calculated by comparison
of a full model (phenotype~GRS) with a null model (phenotype~1). (3) Area
under the receiver operator characteristic curve using R package pROC44, which
can be interpreted as the probability of ranking a randomly chosen case higher
than a randomly chosen control. (4) Odds ratio and 95% confidence interval for
the 2nd to 10th GRS deciles group compared with 1st decile. GRS were converted
to deciles from lowest (1) to highest (10) GRS.

LD score regression. Heritability attributable to genome-wide SNPs estimated on
the sample scale (SNP-based heritability or h2SNP) were estimated using LD score
regression11 from the GWAS summary statistics of 23 medication-taking traits. To
evaluate the extent of shared common variant genetic architectures between the 23
medication-taking traits and a range of human traits, disorders and diseases8,10,45–55

(Supplementary Table 3), the bivariate genetic correlations24 attributable to
genome-wide SNPs (rg) were also calculated using LD score regression.

Linking GWAS findings to gene expression. LD score regression for cell type
specific analysis12 was applied to test the enrichment heritability in different tissues
for each of the 23 medication-taking traits. Gene expression data of 205 tissues
(53 from GTEx56 and 152 from Franke lab57,58) were used for analysis. Summary-
data-based Mendelian Randomization (SMR)13 was used to identify the causal
relationship between gene expression and trait. Westra expression quantitative trait
loci (eQTL) data59 were used in the SMR analysis.

Gene-based association and gene sets analysis. MAGMA (v1.06)14 was used
to compute mean association P values for a gene-based test. SNPs with MAF >0.01
from 10,000 random sampled unrelated UKB European-ancestry individuals were
used as the LD reference. The window size used was 35 kilobase (kb) upstream and
10 kb downstream to include regulatory elements. The SNPs were mapped to a
total of 18,348 genes for each trait using gene locations (build 37) file. For gene sets
analysis, curated gene sets (c2.all) and gene ontology sets (c5.bp, c5.cc, c5.mf) from
MSigDB (v5.2)15,16 were tested for each of the 23 traits. Competitive test P values
for each gene set were computed; correcting for gene size, density, minor allele
count and gene-gene correlations14. We generated FDR-adjusted P values for
biological pathways using Benjamini and Hochberg’s method to account for
multiple testing60.

Analyses linking GWAS results to drug target and disease. To check whether
associated genes from MAGMA and SMR encode effect-mediating targets for
FDA-approved medications or corresponding indications, we used information
from Santos et al.,5 based on medication approved by the U.S. Food and Drug
Administration (FDA) before June 2015. For those approved later, we used the
ChEMBL database20. To check whether associated genes encode trait-relevant
effect-mediating targets for drugs in clinical trial, we used ClinicalTrials.gov
(https://www.clinicaltrials.gov/). The CLUE Touchstone tool (https://clue.io/
touchstone)61 was used to check the correlation between signatures of drugs and
knocking down a gene.

Mendelian Randomization (MR). MR was used to investigate the causal rela-
tionship between the 23 medication-taking traits and other significantly correlated
traits. The correlated traits were selected from Supplementary Table 3. We required
that the data samples all had ≥7 genome-wide significant loci to use as MR
instruments; the median number of SNP instruments was 65. 15 correlated traits
were used to conduct MR analysis using Generalized Summary-data-based MR
(GSMR)25, which includes a heterogeneity test to exclude highly pleiotropic loci.
The other parameters were set as default in GCTA-GSMR.
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URLs. UK Biobank: http://www.ukbiobank.ac.uk/about-biobank-uk/; ChEMBL:
https://www.ebi.ac.uk/chembl/; ClinicalTrials.gov: https://www.clinicaltrials.gov/;
Electronic Medicines Compendium: https://www.medicines.org.uk/emc/; Drugs:
https://www.drugs.com/; NetDoctor: https://www.netdoctor.co.uk/; CLUE Touch-
stone tool: https://clue.io/touchstone.

Data availability
Summary statistics are available at http://cnsgenomics.com/data.html. The data that
support the findings of this study are available from UK Biobank (http://www.ukbiobank.
ac.uk/about-biobank-uk/). Restrictions apply to the availability of these data, which were
used under license for the current study (Project ID: 12514). Data are available for bona
fide researchers upon application to the UK Biobank.
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