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Acquired drug resistance is the major reason why patients fail to respond to cancer therapies. It is a challenging task to deter-

mine the tipping point of endocrine resistance and detect the associated molecules. Derived from new systems biology theory,

the dynamic network biomarker (DNB) method is designed to quantitatively identify the tipping point of a drastic system trans-

ition and can theoretically identify DNB genes that play key roles in acquiring drug resistance. We analyzed time-course mRNA

sequence data generated from the tamoxifen-treated estrogen receptor (ER)-positive MCF-7 cell line, and identified the tipping

point of endocrine resistance with its leading molecules. The results show that there is interplay between gene mutations and

DNB genes, in which the accumulated mutations eventually affect the DNB genes that subsequently cause the change of tran-

scriptional landscape, enabling full-blown drug resistance. Survival analyses based on clinical datasets validated that the DNB

genes were associated with the poor survival of breast cancer patients. The results provided the detection for the pre-resistance

state or early signs of endocrine resistance. Our predictive method may greatly benefit the scheduling of treatments for complex

diseases in which patients are exposed to considerably different drugs and may become drug resistant.
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Introduction

Breast cancer, one of the most common cancers, is a heteroge-

neous, complex, interrelated disease that involves multi-factorial eti-

ologies. The tumorigenesis of breast cancer is typically characterized

by a combination of interactions between environmental (external)

factors and a genetically susceptible host (internal factors) (Ou

et al., 2010). Seventy percent of breast cancers are categorized as

hormone-sensitive estrogen receptor (ER)-dependent tumors and

initially respond to endocrine therapy, as tamoxifen treatment.

However, approximately 30%–40% of tamoxifen-responsive

tumors eventually acquire endocrine resistance after long-term

treatment with this drug (Riggins et al., 2007; Musgrove and

Sutherland, 2009). Tamoxifen resistance has been intensively
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studied both in vivo and in vitro at the molecular level. As a

result, a number of mechanisms, such as the upregulation of

membrane receptor kinases or dysregulation of the ER or PI3K

pathways, have been proposed as the basis of tamoxifen resist-

ance (Campbell et al., 2001; Gee et al., 2001; Knowlden et al.,

2003; Creighton et al., 2008; Massarweh et al., 2008; Musgrove

and Sutherland, 2009). Those studies indicate that drug resist-

ance in breast cancer is caused by the modification of multiple

molecules in the molecular network rather than by the alteration

of individual molecules. In other words, drug resistance is the

result of a cellular transition in which a molecular network is

rewired to adapt to the drug environment. The prevalence of

breast cancer as well as the growing economic and societal bur-

den of treatment is making it urgently necessary to prevent the

relapse of breast cancer. From the nonlinear dynamics viewpoint,

the process of acquiring drug resistance typically has three

stages, i.e. from a non-resistance state, through a pre-resistance

state (or a tipping point) to a resistance state (Figure 1 and

Supplementary Figure S1). Generally, the pre-resistance state can

be reversed to the non-resistance state by appropriate treatment,

but it is very difficult to return to the non-resistance state from

the resistance state. Thus, the pre-resistance state is also the tip-

ping point, after which the system undergoes an irreversible

transition to the resistance state. In other words, acquiring drug

resistance is typically a nonlinear process, with gradual changes

during the non-resistance state but with drastic changes after the

pre-resistance state. However, detecting the pre-resistance state

or early signs of endocrine resistance is still a challenge because

there are no significant differences between the non-resistance

and pre-resistance states in terms of molecular signatures and

clinical phenotypes (Chen et al., 2012), while irreversible compli-

cations after the tipping point may develop rapidly before the

implementation of other treatment strategies (Saini et al., 2012).

Therefore, it is of great importance to predict the phase shift in

the response to tamoxifen treatment and to identify the related

network responsible for such a critical phase shift, which is also

crucial for a better understanding of drug resistance mechanisms.

The widespread utilization of high-throughput sequencing

data in healthcare and clinical studies brings unprecedented

opportunities to analyze disease progression at a system-wide

or network level by exploiting high-dimensional dynamic data.

However, the utility in leveraging these high-throughput data to

integrate readily available biological datasets to detect the drug

resistance transition has been relatively understudied. Prelimin-

ary studies have shown promising results in the biomedicine

and bioinformatics fields (Chen et al., 2012; Liu et al., 2014a).

In those works, the dynamic network biomarker (DNB) method

was developed to detect the tipping point just prior to the dras-

tic deterioration of complex diseases based on three statistical

conditions derived from nonlinear dynamical theory (Li et al.,

2015). The DNB method aims to identify the pre-disease state

rather than the disease state, which is different from traditional

biomarkers (Figure 1). Both theoretically and computationally, it

has been shown that a group of highly correlated and strongly

fluctuating molecules called DNB will appear when a biological

system approaches a pre-disease state from a normal state

(Chen et al., 2012; Liu et al., 2012). Such dynamic features can

reliably quantify an imminent critical transition from observed

data even if there is no significant difference in terms of the

molecular concentrations or clinical phenotypes between the

normal and pre-disease states (Figure 1). Indeed, a number of

studies have revealed the role of such features before cata-

strophic shifts during the progression of many chronic diseases

or biological processes (Litt et al., 2001; McSharry et al., 2003;

Venegas et al., 2005; Hirata et al., 2010; He et al., 2012). In

addition to the theoretical foundation, the DNB method has

recently been successfully applied to real biological data to

identify the early-warning signals of phase shifts during bio-

logical processes, such as the cell differentiation process (Rich-

ard et al., 2016), the process of cell fate decision (Mojtahedi

et al., 2016), the critical transition in the immune checkpoint

blockade-responsive tumor (Lesterhuis et al., 2017), the multi-

stage deteriorations of T2D (Li et al., 2014), acute lung injury

(Liu et al., 2014b), HCV-induced liver cancer (Liu et al., 2012),

and many others (Zeng et al., 2014; Liu et al., 2014a; Tan et al.,

2015; Chen et al., 2016). In this work, based on our mRNA

sequence data of ER-positive MCF-7 breast cancer cells that

were continually treated with tamoxifen up to 12 weeks

(Figure 2A), we systematically analyzed the drug resistance pro-

cess by the DNB approach from the aspects of both gene

expression and mutation aspects and identified the critical state

just before a tamoxifen-tolerance stage of the cancer cells. Spe-

cifically, by applying the DNB approach, a group of genes were

identified to signal the critical change in the cellular state asso-

ciated with the acquisition of drug resistance during 3–4 weeks

of continual exposure to tamoxifen. Those DNB genes function-

ing at the tipping point are associated with the regulation of the

cell cycle, DNA replication, and mismatch repair. Notably, by a

gene variant analysis of the sequence data, we also found a

number of mutations in the regulatory genes of the cell cycle,

apoptotic signaling pathways and ER over 4–5 weeks, indicating

that such a critical transition may be triggered by the interplay

between mutant genes and DNB genes. The accumulated muta-

tions eventually affect the DNB genes, which induce the drug

resistance. Actually, further pathway and network analyses

demonstrated that some mutant genes regulate the downstream

DNBs that subsequently cause the change of transcriptional

activities of other biomolecules, thereby enabling full-blown

drug resistance.

Actually, a number of studies on the molecular mechanisms

of tamoxifen resistance have indicated that there are slow

changes with a drastic phenotypic transition, during which the

interplay of multiple altered molecules as a form of a molecular

network, contributes to endocrine resistance (Campbell et al.,

2001; Gee et al., 2001; Knowlden et al., 2003; Creighton et al.,

2008; Musgrove and Sutherland, 2009), which also provide the

evidence for this work. To summarize briefly, as the first non-

linear study on the critical point in the tamoxifen resistance pro-

cess from a systems biology perspective, this work based on

DNB not only identified the tipping point of the drug resistance
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Figure 1 The multi-states and tipping point of the tamoxifen resistance process. (A) The study is based on a set of time-course mRNA

sequence data generated from the experiment of tamoxifen-treated ER-positive MCF-7 cell line. (B) According to the biological feature of the

time-dependent progression of MCF-7 breast cancer cells exposed to tamoxifen, the process to acquire drug resistance is divided into three

stages: i.e. a non-resistance state, a pre-resistance state (or the tipping point), and a resistance state. The non-resistance state is a steady

or stable state with strong resilience or robust for small perturbations, representing a drug-sensitive stage. The pre-resistance state is

defined as the limit of the non-resistance state but with a lower recovery rate or resilience from small perturbations. Such a pre-resistance

state is the critical stage of drug resistance, which is crucial to the resistance process. The resistance state is another stable state usually

also with strong resilience, where the system turns into a tamoxifen-insensitive stage and thus makes the drug ineffective. The DNB method

can quantitatively identify the tipping point of this nonlinear process. (C) Through the DNB approach, the study reveals that the DNB net-

work alteration is just prior to the observation of tamoxifen resistance, and follows the appearance of mutation genes. (D) Based on both

TCGA and EBI samples, the clinical data analysis is processed and prepared for further validation. (E) The survival analysis shows that a

higher level of the combined DNB score was significantly associated with poor survival in both TCGA and EBI datasets. The results suggest

that the early-warning signal provided by DNB may benefit the implementation of appropriate treatment strategies.
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Figure 2 Resistance acquisition and mRNA sequence data with long-term tamoxifen treatment of MCF-7 breast cancer cells. (A) MCF-7 cells

were continually treated with tamoxifen for 12 weeks, with five biological replicates for each week. As controls, tamoxifen-untreated MCF-7

cells are cultured for 12 weeks, with five biological replicates for each week. RNA Sequencing was used to characterize gene expression pat-

terns in 60 tamoxifen-treated samples and 60 control samples in this work. (B) Cell proliferation assay of parental control and TamR cells.

Cells were grown in the media in the presence or absence of 1 μM tamoxifen. The significance of the growth inhibitory effect of tamoxifen
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process from the observed dynamical data but also revealed the

crucial molecules that contribute to the resistance at the net-

work level.

Results

We generated a series of mRNA-seq data from MCF-7 cells after

tamoxifen administration to detect the tipping point during the

acquisition of drug resistance. MCF-7 cells were continually trea-

ted with tamoxifen (TamR cells) for 12 weeks, with five biological

replicates for each week. As controls, tamoxifen-untreated MCF-7

cells (control cells) were cultured for 12 weeks, with five bio-

logical replicates for each week. In total, the mRNA-seq data of

120 time-course samples were obtained using the HiSeq2500

(Illumina) sequencing platform (Figure 2A). An assay of the cellu-

lar phenotype associated with long-term TamR cells was per-

formed with triplicates (Figure 2B and C).

Gene expression patterns and functions change significantly at

approximately the 5th week based on traditional bioinformatics

analyses

We first used the mRNA-seq data to characterize the gene

expression patterns in 60 TamR samples and 60 control samples

over the 12-week period. Our analysis included 4135 genes

whose reads per kilobase per million mapped reads (RPKM)

values were dynamically diverse over the time-course in the

TamR samples, with a standard deviation >3. A hierarchical

clustering algorithm was used to group the samples based on

similarities in the patterns in which the expression varied over

these genes (Figure 3A). The detailed clustering of 120 samples

is shown in Supplementary Figure S1. As expected, the 60 con-

trol samples were found clustered together. Notably, two dis-

tinct clusters were observed in the 60 TamR samples. The first

cluster included all the samples from weeks 1 to 4, the expres-

sion patterns of which were quite different from those of the

second cluster, which included all the samples from weeks 5 to

12. However, the expression patterns at the 5th week exhibited

a different pattern between the two clusters, immediately after

the tipping point identified by DNB at the 4th week. Our ana-

lysis of the gene expression showed that in the tamoxifen-

treated samples, the 5th week marked a special stage after the

tipping point in the phenotypic traits in terms of the gene

expression.

We then divided the TamR samples into two groups, with the

first group consisting of all the samples from weeks 1–4 and the

second group consisting of all the samples from weeks 6–12 and

excluding the samples from the 5th week. Differentially expressed

genes between the two groups were identified using DESeq2

(Love et al., 2014); the top 1000 differentially expressed genes

are shown in Supplementary Table S1. We further applied the

tool Gene Set Enrichment Analysis (GSEA) (Subramanian et al.,

2005) to determine the functions enriched based on a pre-ranked

list of all the genes, which were sorted according to the statistical

significance of the differential expression defined by DESeq2.

Eight KEGG pathways (Kanehisa and Goto, 2000) with the FDR

q-value <0.01 (Figure 3B and C) were enriched, including the

DNA replication pathway and cell cycle pathway. This result sug-

gested that tamoxifen resistance in MCF-7 cells was triggered by

the ectopic re-activation of the cell cycle and DNA replication

together with other functions, resulting in rapid cell proliferation

and growth beginning at the 5th week.

To assess whether these pathways were statistically associated

with the occurrence of drug resistance, which began to occur at

the 5th week, we generated a series of fake points by setting

before-the-5th-week points b1, b2, and b3 (representing the 2nd,

3rd, and 4th weeks, respectively) or after-the-5th-week points a1,

a2, a3, a4, a5 and a6 (representing 6th, 7th, 8th, 9th, 10th, and

11th weeks, respectively). The cells were reclassified into two

groups based on the fake points, and the same analyses were per-

formed. We then investigated the enrichment functions by compar-

ing these fake points with the real point (the 5th week). Notably,

we found that the cell cycle pathway was significantly associated

with the occurrence of drug resistance, with a remarkably high FDR

q-value of –log10 at the 4th–5th weeks (Figure 3D). Most of the

genes functioning in the cell cycle pathway were highly expressed

after the 5th week, including CCND1, MCM6, MCM4, CDC6, and

CDC25A, which are shown in red (Supplementary Figure S2).

Among these, CCND1 is a known oncogene in breast cancer. The

mismatch repair pathway was shown to be specifically asso-

ciated with the 4th–5th weeks (Supplementary Figure S3). These

findings further demonstrated that the occurrence of tamoxifen

resistance in MCF-7 cells was represented by the activation of

functions such as the cell cycle pathway, DNA replication path-

way, and mismatch repair pathways.

Cell proliferation assays indeed showed that the TamR cells

grew slowly during the 1st–2nd weeks, but started to proliferate

rapidly from the 3rd–4th weeks in the presence or absence of

the re-administration of tamoxifen (Figure 2B). The TamR cells

began to be significantly insensitive to newly added tamoxifen

at the 5th week and then became stable from the 8th week

(P < 0.05). The parental cells were sensitive to the drug treat-

ment throughout the time period. The cell proliferation assays

thus suggested that the acquisition of tamoxifen resistance may

begin around the 4th–5th weeks. To gain more insight into the

relationship between the cellular phenotype and tamoxifen

was calculated with Welch’s test. Symbol * shows significant difference between the values with and without re-administration of tamoxifen

at the same time points (P-value <0.05). (C) Cell transformation assay. The number of cells with elongated edges (pseudopodia) was

counted. The percentage of the cells with pseudopodia in the total cell numbers was calculated. Symbol * indicates significant difference in

the numbers of pseudopodia compared with the prior time point (P-value <0.05, Weltch’s test). Clearly, there are significant differences

after the 5th week between TamR(−) and TamR(+), which indicates the phenotypic change or the tipping point around the 5th week for the

tamoxifen resistance.
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Figure 3 mRNA expression patterns and drug resistance-associated pathways by traditional bioinformatics analyses. (A) Gene expression

patterns over the time-course of both TamR and parental cells (120 samples with five replicates for each week over 12 weeks). Each row in

the heatmap represents a specific gene with standard deviation (SD) > 3, whose expression is normalized across the column, with high

expression shown in red and low expression shown in blue. Clearly, the gene expression pattern drastically changes at the 5th week, which

is different from other weeks. (B) Eight enriched pathways with the FDR q-value <0.01 and the output of GSEA for the top two pathways. (C)

GSEA graphs for two enriched pathways, cell cycle and DNA replication. (D) The cell cycle pathway is statistically associated with the occur-

rence of MCF-7 drug resistance, gaining the greatest statistical value at the 4th/5th week. The traditional bioinformatics analyses identified

the change in expression patterns and functions over 12 weeks.
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resistance, we examined the cellular phenotype. Pseudopodia is

a phenotypic marker associated with the invasiveness and

migration of cells; therefore, we quantified the number of cells

that had pseudopodia. The result indicated that the number of

cells having pseudopodia started to increase significantly from

the 5th week (Figure 2C).

The tipping point of tamoxifen resistance is the 4th week

identified by DNB

In this study, we identified the early-warning signal for the

critical transition of MCF-7 breast cancer cells to a drug-

tolerance stage, during continual treatment with tamoxifen. The

gene expression information from mRNA-seq was used to iden-

tify the pre-resistance state with the associated DNB prior to

the irreversible drug resistance state. The DNB method was

expected to detect the tipping point of the phase shift in the

response to drugs as well as improve the sensitivity and specifi-

city of the treatment strategy by delivering the longitudinal

trends in the data. Specifically, as shown in Figure 4, from the

observed mRNA-seq time-course data during the 12-week peri-

od, we identified the DNB (Supplementary Table S2) as well as

the tipping point around the 3rd–4th week after continual

exposure to tamoxifen. Clearly, the DNB score drastically

increased when the system approached the tipping point, indic-

ating the critical state; i.e. there were strongly amplified and

highly correlated fluctuations of DNB molecules near the pre-

resistance state, in contrast to the non-resistance and resistance

states (Figure 4A). DNB molecules are considered as the func-

tional genes for this critical state. In addition, by applying the

landscape DNB algorithm (Supplementary Information) to the

expression data of the tamoxifen-treated MCF-7 cells, we gener-

ated a local DNB score for each gene at each week. As shown in

Figure 4B, strong early-warning signals of the tipping point were

detected at the period of the 3rd–4th weeks, which validated

the result of Figure 4A. It should be noted that, the drastic

increase of the DNB score was detected at the period of the

3rd–4th weeks (Figure 4A and B), while cells from the 3rd and

4th weeks were cultured under the same condition (see section

Materials and methods). In other words, the tipping point at the

4th week was identified by the collective dynamical behavior of

DNB genes rather than the batch effects.

In Figure 4C, the radar plots present the dynamical change in

the local DNB scores of certain genes that were enriched in the

pathways that are closely related to cancer progression. The local

DNB scores of the TamR data increased considerably, while there

were no significant changes in those of the control data.

Furthermore, these identified genes showed that their collective

behavior might lead to the dysfunction of some signaling path-

ways and thus affect the cellular function of drug resistance.

Figure 4D illustrates the dynamical evolution of the entire group

of DNB molecules in terms of the network based on the observed

mRNA-seq data. We found a group of genes that were strongly

correlated with a high DNB score near the 4th week, while other

molecules showed no significant signal during the entire time per-

iod (also see Supplementary Figure S4). Interestingly, members of

the DNB group behaved similarly to other molecules after the sys-

tem transitioned to the resistance state after the 4th week, which

implied that these DNB genes mainly facilitated the biological

functions only around the tipping point at the 4th week.

To further reveal the functions of the critical transition at the

4th week, we analyzed differentially expressed genes between

the periods before and after the tipping point, i.e. the 1st–3rd
weeks vs. the 5th–12th weeks. As shown in Supplementary

Figure S8A, comparing with only 19.41% background turnover

rate, there were over 66.67% turnover genes (i.e. significant

changes of gene expressions from high to low or from low to

high values, Supplementary Table S3) in the DNB-associated net-

work (constructed from STRING) (Szklarczyk et al., 2015) just

after passing the tipping point, which indicated the drastic trans-

ition of the biological system mediated by the DNB. Furthermore,

in Supplementary Figure S8B, we present the statistical signifi-

cance of the identified DNB genes. The DNB group arose with dif-

ferential expression levels according to both Student’s t-test and

the fold change when the system approached the tipping point.

The computational results agree well with the experiment and

functional analysis. Immediately after the tipping point identified

by DNB at the 4th week, the expression patterns at the 5th week

were significantly different from those at other time points

(Figure 3A). The first significant change in the numbers of pseudo-

podia was observed at the 5th week (Figure 2C). Moreover, the

functional analysis suggested that the tamoxifen resistance in

MCF-7 cells was triggered by the ectopic re-activation of the cell

cycle and DNA replication together with other functions, resulting

in rapid cell proliferation and growth beginning at the 5th week.

Therefore, the DNB signaled the critical transition into drug resist-

ance state.

Drug-driven mutations are identified during the 4th–5th weeks

by mutation analyses

The evolving nature of human tumors enables the emergence

of new mutations in patients after drug administration, leading to

the development of drug resistance through the acquisition of a

growth advantage. Therefore, mutations aligned with the tipping

point of endocrine resistance can be considered as another type

of early-warning sign before full-blown drug resistance.

To identify such mutations, we next employed GATK to analyze

gene variants in the mRNA-seq data. In our case, there are three

types of mutations: random mutation, MCF-7 mutation, and drug-

driven mutation. Random mutations occur both in the control

samples and the TamR samples. MCF-7 mutations originally

occurred in the parental cell line, while drug-driven mutations spe-

cifically occur in the TamR cells (see section Materials and

methods).

We further examined those drug-driven mutations that may

confer drug resistance. The hypothesis was that these mutations

would appear around the tipping point and persistently exist over

the following weeks. Therefore, we focused on those drug-driven

mutations that occurred from the 4th–5th weeks and existed per-

sistently for at least 4 weeks thereafter (Supplementary Table S4).

In total, 290 drug-driven mutation sites were identified, of which
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Figure 4 The tipping point of drug resistance process revealed by DNB method. (A) The abrupt increase of the average DNB score clearly

signals that there is a tipping point located around 3–4 weeks after the exposure of tamoxifen, after which the system undergoes the drastic

transition to the resistance state. (B) The landscape curve of the local DNB method again indicates that 3–4 weeks after the exposure of

tamoxifen are the critical transition period from the tamoxifen non-resistance state into a resistance state. (C) Some genes with top signifi-

cant changes in local DNB scores around the identified transition period (3–4 weeks) are illustrated in three consecutive radar plots, in

which the local DNBs generated from case and control samples are showed. The red curve represents the local DNB scores from the case

samples while the green curve is that from the control data. At the pre-resistance stage, the DNB scores of case samples are significant. It

can be seen that these top significant genes are enriched in pathways closely relevant to breast cancer. Besides, the sensitivity is demon-

strated from the comparison between case and control local DNB curves. (D) Based on the mRNA-seq data of MCF-7 breast cancer cells, we

illustrate dynamical evolution of the whole gene network (the co-expressed network). DNB genes are intentionally put together. It can be

seen that by using DNB, an early-warning signal of the resistance from a network perspective can be detected at 3–4 weeks after the expos-

ure of tamoxifen. The whole dynamics across the 12 weeks are given in Supplementary Figure S4.
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197 were mutated from the 4th week and 93 were mutated from

the 5th week (Figure 5A). Among the 290 mutation sites, 108

were in the intergenic region and 182 were in the gene body

region covering 159 genes (Figure 5B, the left panel). An analysis

of the genes harboring these mutation sites showed that 85% of

the genes had a one-mutation site, 14% had two sites, and 1%

had three sites (Figure 5B, the right panel). Two of the mutant

genes were found to interact with the DNBs.

The regulations from drug-driven mutations to DNB genes

The interplay between the mutant genes and DNBs may pro-

mote the development of drug resistance. Since the functional

consequences of mutations occurring in the region of exons are

more predictable, we especially focused on 15 genes with drug-

driven mutations that occurred in the gene exons (Supplemen-

tary Table S5). Among them, there were nine genes (red-colored

genes in Supplementary Table S5) with functions associated

with expression regulation, cell death, or cell growth and

proliferation. Moreover, by investigating the KEGG pathways,

the following five genes were found to interact with the down-

stream of DNBs, potentially influencing the progression of drug

resistance with the DNB partners of these genes. Note that

some of mutant and DNB genes are overlapped, such as

PRICKLE2.

In Figure 6A, ZBTB17 encodes the zinc finger protein Miz1, a

Myc-interacting protein. In the resistant cells, two sites in the

region of the 14th exon, located in the zf-C2H2 domain, were

detected to have missense mutations (chr1: 16,270,973A→T

in the DNA resulting in Leu→His in the protein; chr1:

16,270,974G→C in the DNA resulting in Leu→Val in the protein).

Miz1 directly regulates the expression of p15, which is encoded

by the DNB gene CDKN2B. p15 is a direct repressor of cyclin D

(CCND1), a member of the cyclin protein family, which is involved

in regulating cell cycle progression. CCND1 has been identified as

an oncogene in breast cancer. In our data, CCND1 was signifi-

cantly upregulated in the resistant cells (P = 1.056e−282).
In Figure 6B, SPEN encodes a hormone transcriptional repressor.

In normal breast cells, SPEN binds ERα in a ligand-independent
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Mutation location 

 mutation sites in a gene

1 site
2 sites
3 sites

1% 
14% 

85% 

108 

182 

0 

50 

100 

150 

200 

250 

300 

Intergenic region Gene body 

Drug-driven mutation

Random mutation

MCF-7 mutation

WT

G
en

e

A

B

Figure 5 Drug resistance-associated mutations. (A) Drug-driven mutations consistently existing from the 4th/5th week that may confer drug

resistance, sorted by mutation occurrence time. Each row in the heatmap represents a specific mutation site, and each column represents a

week. (B) The genome location of these mutations and their distribution in gene: 108 mutations are in the intergenic region, and 182 muta-

tions are in the gene body region covering 157 genes; 85%, 14%, or 1% of genes contain one, two, or three mutations, respectively.
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Figure 6 The functional relations between mutation genes and DNB genes. (A) ZBTB17 with two missense mutations occurring in its

zf-C2H2 domain can directly regulate the expression of a DNB gene CDKN2B. By directly repressing Cyclin D (CCND1), CDKN2B is involved in
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manner and negatively regulates the transcription of ERα targets. In

our data, two types of SPEN nonsense mutations were detected in

the resistant cells (chr1: 16,257,217C→A in the DNA resulting in

Tyr→stop codon in the protein; chr1: 16,257,524G→T in the DNA

resulting in Glu→stop codon in the protein), resulting in a resist-

ance effect probably by the re-activation of ERα targets. Those ERα

targets include several DNB genes, including CEBPA, CREB1, FOSL2,

HSPA13, IER3, JUN, MMD, S100P, TAPBP, and TP53.

In Figure 6C, the mutant gene FBF1 is a Fas-binding factor.

The Fas cell surface receptor belongs to the TNF receptor family

of cell death-inducing molecules. In the JNK and p38 MAP kinase

pathways, Fas can activate p38 by successively activating DAXX,

ASK1, and MKK3/MKK6. As a mitogen-activated protein kinase,

p38 catalyzes the phosphorylation of certain transcription fac-

tors and induces the apoptosis by regulating the expression of a

number of genes. Among those transcription factors, two DNB

genes, ELK4 and DDIT3, are involved. In our data, a donor site

mutation (chr17: 73,922,367 GT→GG) of FBF1 was identified in

the resistant cells. This change could result in the production of

a non-functional protein, which may be associated with the

inhibition of apoptosis.

In Figure 6D, as a GTPase-activating protein, ARFGAP1 can

regulate the activity of ARF1. ARF1 is a small guanine

nucleotide-binding protein that plays a role in vesicular traffick-

ing as an activator of phospholipase D (PLD1). PLD1 catalyzes

the hydrolysis of phosphatidylcholine to yield phosphatidic acid

(PA) and choline. As a biosynthetic precursor, PA can activate

Raf-1, resulting in the activation of MAPK signaling cascades.

The gene MAPK1 encoding ERK is upregulated (P = 7.07e−55)
in the resistant cells. The activation of ERK increases cell growth

and proliferation by regulating some of the DNB genes down-

stream, including CEBPA, H19, JUN, etc. In our data, a mutation

at the 3′UTR region following the 14th exon of ARFGAP1 (chr20:

61,921,141C→A) was detected.

In Figure 6E, XIAP is an X-linked inhibitor of apoptosis. Two

sites in the region of 3′UTR following the 7th exon were identi-

fied to have mutations (chrX: 123,046,680A→G; chrX:

123,046,689A→G). XIAP inhibits at least two members of the

caspase family of cell death proteases, CASP3 and CAS7. The

subsequent repression of PARP results in low synthesis levels of

poly(ADP-ribose) and the occurrence of apoptosis. One of the

first-order neighbors of DNB in the STRING network, PARP2, is

one of the genes encoding the PARP protein. In Figure 6F–I, it
can be seen that from KEGG pathway analysis, the interplay

between mutant and DNB genes is involved in many signaling

pathways, which may induce the proliferation, cellular senes-

cence, and dysfunction of cell cycle.

Therefore, mutant ZBTB17, SPEN, FBF1, ARFGAP1, XIAP, etc.,

by directly or indirectly interacting with DNB genes upstream or

downstream, may contribute to the development of tamoxifen

resistance in MCF-7 cells. In particular, the mutant genes regu-

late the downstream DNBs, which subsequently cause changes

in the transcriptional landscape before and after the acquisition

of resistance, thereby enabling full-blown drug resistance.

The predictive ability of DNBs and drug-driven mutations in

clinical prognosis

To validate the roles of the identified DNB genes and mutant

genes in clinical prognosis, an integrative analysis using the

expression profile, mutation profile, and clinical information from

two independent datasets, TCGA and EBI, was applied towards

the general cohorts with breast cancer. The Kaplan–Meier sur-

vival analysis was used to assess the predictive ability of the

DNBs and the drug-driven mutations regarding the clinical out-

comes of ER-positive breast cancer patients. The results showed

that a higher level of the combined DNB score was significantly

associated with poor survival in both the EBI (Figure 7A) and

TCGA datasets (Figure 7B). Survival analyses for the individual

DNB members are given in Supplementary Figure S5, which

shows the significant functional effects of those DNB genes on

disease progression. Moreover, among the five mutant genes

above, the mutants ARFGAP1, FBF1, and ZBTB17 were identified

to be significantly associated with poor overall survival in

patients in the TCGA dataset (Figure 7C, D, and F). Notably, in the

EBI dataset, a homozygous gene mutation in FBF1 was asso-

ciated with poor survival compared with a heterozygous gene

mutation in FBF1 (Figure 7E). Combining the mutations above,

patients with ARFGAP1, FBF1, or ZBTB17 mutations were asso-

ciated with a poor survival (Figure 7G). These results validated

the functional effects of the DNB genes along with the associated

mutated genes on disease progression. The survival analyses for

the individual DNB members are shown in Supplementary

SPEN with nonsense mutations may re-activate ERα targets including DNB genes CEBPA, CREB1, FOSL2, etc. (C) A Fas-binding factor FBF1

has a mutation at the splicing site. Fas can induce the apoptosis by indirectly regulating some TFs. Among those TFs, two of DNB genes

ELK4 and DDIT3 are involved. (D) ARFGAP1 with a mutation at 3′UTR may stimulate cell growth and proliferation by indirectly activating ERK

for regulating some of DNB genes downstream, including CEBPA, H19, JUN, etc. (E) XIAP with two mutations at its 3′UTR encodes an X-

linked inhibitor of apoptosis. One of the DNB neighbors at the first level, PARP2, is involved in this pathway. (F) From KEGG pathway in can-

cer, DNB genes SMAD4 and c-Myc regulate the mutant gene ZBTB17, which in turn affects DNB genes CCND1, E2F1 and thus induces the

proliferation. (G) From PI3K–AKT signaling pathway, DNB genes LAMB1 and mutant genes JAK2, CHRM1 regulate the downstream DNB genes

FOXO3, CCNE1, CDK6, etc. (H) The interplay between mutant gene RPTOR and DNB gene EIF4 takes part in the protein synthesis process. (I)

The interplay between mutant genes HLA-B, RBBP4 and DNB genes FOXO3, CCNE1 is also involved in the cellular senescence pathway. The

mutant genes above may interplay with DNBs to promote the development of drug resistance. In other words, the accumulated mutations

eventually affect the DNB genes that subsequently cause the change of transcriptional landscape, enabling full-blown drug resistance.
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Figure 7 Survival analysis results of DNB genes and mutational genes on two independent datasets. (A and B) The higher level of the com-

bined expression index of DNBs is associated with the poorer survival in the TCGA dataset (A) and the EBI dataset (B). (C and D) Mutant

ARFGAP1 (C) or FBF1 (D) is associated with the poor survival in the TCGA dataset. (E) In the EBI dataset, homozygous gene mutation in FBF1

is associated with the poor survival comparing with heterozygous gene mutation in FBF1. (F) Mutant ZBTB17 is associated with the poor sur-

vival. (G) The patients with ARFGAP1, FBF1, or ZBTB17 mutation are associated with the poor survival. The survival analysis results on indi-

vidual DNB genes are given in Supplementary Figure S5. Survival analyses validate that DNB genes and mutant genes are associated with

poor survival of breast cancer patients.
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Figure S5; based on these data, the collective group of DNB

genes clearly performs better in predicting prognosis.

Discussion

Based on the time-course transcriptome data of the tamoxifen-

treated MCF-7 breast cancer cells, we identified the critical cellu-

lar state associated with the acquisition of tamoxifen resistance

by applying the data-driven DNB approach.

The DNB method is based on network and nonlinear theories,

and is aimed at detecting the early-warning signals of a critical

transition. By signaling the onset of the critical transition at an

early stage, the DNB method provides a solution to the problem

caused by the acquisition of drug resistances, and can thus

guide the allocation of resources to better manage effective

treatment. In our study, we used the time-course data obtained

from an in vitro cell culture system, but the method is applicable

to clinical datasets as well. In fact, although patients progress

into the critical state before beginning to acquire drug resist-

ance, it is difficult to determine such a stage using traditional

biomarkers because there is no significant difference between

the resistance and pre-resistance states in terms of clinical phe-

notypes, particularly for breast cancer. This fact, lamentably, is

the barricade of reaching the early diagnosis of drug resistance

in clinics. However, the DNB method provides a new way of

using crucial regulators to explore the underlying mechanism of

the acquisition of drug resistance, thus achieving an early

adjustment of treatment. This approach to understanding drug

resistance is one main contribution and value in the potential

applications of the DNB method from a long-term point of view.

This method can be used to simplify the process by which clini-

cians identify and screen patients using the omics data obtained

from their non-invasive clinical samples for detecting drug

resistance during cancer therapies.

In addition, based on both the TCGA and EBI datasets, the

identified DNB molecules were validated using survival ana-

lyses, which demonstrated clear differences between the DNB-

overexpressed and DNB-underexpressed samples. Indeed, an

indicative early-warning signal was revealed by the DNB method

around the 4th week during continual tamoxifen exposure, coin-

cident with the experimental observation, which validates the

effectiveness of the DNB method in one aspect and, more

importantly, provides a clue to explain the underlying mechan-

ism of the progression to the drug-tolerance stage. In clinics,

the occurrence of such an early-warning sign may help screen

out patients with the possibility of resistance to a specific drug,

and thus achieve better management of effective treatment.

Indeed, in a dynamic way, the DNB method reveals the exist-

ence of the pre-resistance state during continual exposure to a

specific drug; however, such a state cannot be shown by indi-

vidual molecular variables due to the ‘dynamics and network’

nature of these variables. Therefore, the benefits from using the

DNB method in signaling the pre-resistance state make the iden-

tification and management of high-risk patients more effective.

Our model was validated specifically with both the TCGA and

EBI clinical samples, most of which had underexpressed DNB

features and had relatively longer survival expectations, allow-

ing the generalization of our method to this type of understud-

ied drug-specific monitoring. In addition, rather than the

correlation analysis (including both direct and indirect correla-

tions) in DNB, we can further adopt the direct association ana-

lysis (Riggins et al., 2007; Musgrove and Sutherland, 2009) for

DNB to improve the sensitivity.

In the molecular network perspective, the study reveals some

interesting details during the process of drug resistance devel-

opment in breast cancer cells. First, following the appearance of

mutation genes, the DNB module in the molecular network

changes significantly at the 4th week (Figure 4D), resulting in

the global alteration of gene expression at the 5th week

(Figure 3A) and triggering the ectopic re-activation of the cell

cycle and DNA replication together with other functions. This

may provide new insights into the underlying mechanism of

drug resistance acquisition. Second, by considering that a high-

er level of the DNB score was significantly associated with poor

survival (Figure 7A and B), the identified DNB genes may serve

as markers for prognosis.

Our predictive method may greatly benefit the scheduling of

treatments for complex diseases in which patients are exposed

to considerably different drugs and may become drug resistant.

Two common reasons for healthcare provider burnout are the

prevalent use of complicated, error-prone devices and the rapid

accumulation of patient data that must be processed in a timely

and effective manner.

Materials and methods

Cell culture

The human breast adenocarcinoma MCF-7 cell line was pur-

chased from American Type Culture Collection and propagated

in Dulbecco’s Modified Eagle’s Media (Gibco) supplemented

with 10% fetal bovine serum and antibiotics (100 units/ml peni-

cillion, and 100 μg/ml streptomycin, Nacalai Tesque). For the

chronological study of tamoxifen resistance, cells were seeded

at 1 × 106 cells/100-mm dish in medium containing or lacking

1 μM tamoxifen (Sigma-Aldrich) and were continuously cultured

for 3 months. The tamoxifen-untreated control cells were pas-

saged with trypsin-EDTA (0.05% trypsin and 0.53 mM EDTA,

Nacalai Tesque) once a week when they reached to confluence.

The tamoxifen-treated (TamR) cells were passaged after one

week when the cells reached to 70%–80% confluency. During

weeks 2–4 of tamoxifen treatment, the cells grew slowly; there-

fore, only the medium was changed once a week instead of pas-

saging the cells. From week 5, the tamoxifen-treated cells were

passaged once a week in the same way as the control cells until

week 12.

RNA extraction and cryopreservation

Cells were exposed or unexposed to tamoxifen for the indi-

cated time periods in sextuplicate. Control cells from the 1st

week to the 12th week and tamoxifen-treated cells of the 1st

week and from the 5th week to the 12th week were re-plated at

a density of 2 × 106 cells/100-mm dish and grown for 2 days to

Identifying the tipping point of tamoxifen resistance process | 661



reach the log phase (∼50% confluent). For the 2-, 3-, and 4-

week tamoxifen-treated cells, the medium was changed instead

of re-plating the cells, and the cultures were grown for 2 days.

Therefore, the RNA samples from the 2-, 3-, and 4-week

tamoxifen-treated cells were prepared from cultures in log

phase but at a different confluency (20%–80% confluent). The

tamoxifen exposure period was defined as up to the day of sam-

ple preparation. Quintuplicate samples (quadruplicate for the

2-week control sample) were used for total RNA extraction with

Qiashredder (QIAGEN) and an RNeasy mini kit (QIAGEN). RNA

concentration and integrity was evaluated using a Bioanalyzer

2100 (Agilent). For the validation study, the remaining cells

were trypsinized, re-suspended in Cell Banker I (TaKaRa) freez-

ing medium, and frozen in liquid nitrogen.

mRNA sequencing

mRNA (1 μg) was used for poly (A+) mRNA sequencing using

the TruSeq Stranded mRNA Sample Prep Kit (or mRNA-Seq Sample

Preparation Kit) (Illumina) according to the manufacturer’s proto-

col. One hundred-base pair-end reads or 36-base single-end reads

were obtained using a HiSeq2500 (Illumina) instrument and ana-

lyzed using the analysis software provided by Illumina. The reads

that were mapped to the ribosomal RNA were removed. For each

time point, five samples were sequenced for the tamoxifen-treated

(TamR) and untreated (control) cells.

Cell growth assay

MCF-7 cells were seeded at 1 × 106 cells per 100-mm dish in

medium containing or lacking 1 μM tamoxifen (Sigma-Aldrich)

as described above. Both the tamoxifen-treated and untreated

cells were passaged after a week with trypsin-EDTA (0.05% tryp-

sin and 0.53 mM EDTA, Nacalai Tesque) regardless of the cul-

ture confluency. Quantities of 2 × 105 cells/well were plated on

6-well plates in tamoxifen-containing (1 μM) medium or without

tamoxifen and grown for the designated time period. The assay

was performed with triplicates.

Cell transformation assay

Pseudopodia is a maker of aggressive cell phenotypes, which

are likely to migrate (Cardone et al., 2005). We counted the num-

bers of cells with elongated edges (pseudopodia) in five image

areas in a picture of cultured cells and calculated the percentage

of cells with pseudopodia in the total number of cells in the area.

RNA-seq data processing

The RNA-seq reads were mapped to the hg19 reference genome

using STAR (v2.4.0j) (Dobin et al., 2013). The read count for each

gene was calculated using HTSeq (v0.6.1) (Anders et al., 2015).

The RPKM values were quantified using Cufflinks (v2.1.1)

(Trapnell et al., 2010). Differential gene expression analyses were

performed using the DESeq2 (Love et al., 2014) package of

Bioconductor in the R statistical software (http://www.

bioconductor.org/packages/release/bioc/html/DESeq2.html).

Variants for each sample were called by GATK (v3.4.0)

(McKenna et al., 2010) using standard hard filtering parameters

according to the GATK Best Practices recommendations

(DePristo et al., 2011; Van der Auwera et al., 2013).

Hierarchical clustering, heatmap visualization, and GSEA

We calculated the SD of each gene across tamoxifen-treated

samples obtained over a period of 12 weeks and used the gene

expression profiles of 120 individual samples with genes that

had an SD ≥3 under a condition of tamoxifen treatment to gen-

erate a hierarchical clustering and heatmap with the ‘pheatmap’

package in R. The GSEA (Subramanian et al., 2005) was

employed to determine the KEGG pathways (Kanehisa and Goto,

2000) enriched by a pre-ranked list of all genes, which were

sorted by the statistical significance of the differential expres-

sion defined by DESeq2.

DNB method for detecting the tipping point

The process of acquiring drug resistance can be modeled by

three states or stages (Figure 1) similar to disease progression

(Chen et al., 2012; Liu et al., 2012; Sa et al., 2016; Li et al., 2017;

Yang et al., 2018): the non-resistance state, which is a stable

state with high resilience and robustness to perturbations; the

pre-resistance state, which is the tipping point just before the

catastrophic shift into the irreversible resistance state and is thus

characterized by low resilience and robustness due to its critical

dynamics, but is still reversible to the non-resistance state with

appropriate treatments; and the resistance state, which is

another stable state that acquires endocrine resistance generally

with high resilience and robustness and is thus usually very diffi-

cult to return to the non-resistance state even with advanced

treatments. Clearly, it is of great importance to predict the pre-

resistance state, which not only holds the key to elucidating the

molecular mechanisms of irreversible drug resistance at the

dynamics and network levels but can also directly apply to the

re-optimization of anti-resistance strategies from the clinical and

therapeutic viewpoint.

However, different from the resistance state, it is a difficult

task to identify the pre-resistance state or the early-warning

signs of pre-resistance because there are generally no signifi-

cant differences between the non-resistance state and the pre-

resistance state in terms of the molecular signatures and clinical

phenotypes (Chen et al., 2012), which leads to the failure of

traditional biomarkers. In contrast, the DNB method was devel-

oped to quantitatively identify the tipping point or pre-disease

state during disease progression based on the observed data.

Theoretically, when a biological system is near the critical point,

there exists a dominant group defined as the DNB molecules,

which satisfy the following three conditions based on the

observed data (Chen et al., 2012):

• The correlation (PCCin) between any pair of members in the

DNB group rapidly increases;

• The correlation (PCCout) between one member of the DNB

group and any other non-DNB molecule rapidly decreases;

• The standard deviation (SDin) or coefficient of variation for

any member in the DNB group drastically increases.
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In other words, the above conditions can be approximately

stated as: the appearance of a strongly fluctuating and highly

correlated group of molecules implies the imminent transition to

the resistance state. Then, these three conditions are adopted

to quantify the tipping point as the early-warning signals of dis-

eases, and further, the identified dominant group of molecules

consists of DNB members. The DNB theory has been applied to

a number of analyses of disease progression and biological pro-

cesses to predict the critical states as well as their driven factors

(Chen et al., 2012; Li et al., 2014; Mojtahedi et al., 2016;

Richard et al., 2016; Lesterhuis et al., 2017; Sa et al., 2016; Li

et al., 2017; Yang et al., 2018). In this work, by considering the

acquisition of drug resistance as a nonlinear dynamics process,

we further applied the DNB method to reveal the tipping point

of endocrine resistance and the regulatory factors of this resist-

ance. To quantify the critical state, the following criterion IDNB
was used as the signal of the critical point by combining the

above three statistical conditions:

IDNB ¼ PCCin

PCCout
SDin:

Thus, from the observed data of a sample, whenever there is a

group of molecules appearing with a high IDNB score, this group

of molecules is the DNB group of molecules and the state of this

sample is considered to be near the tipping point. Therefore,

from the observed data (e.g. omics data) of each sample, we can

identify the DNB members and further quantify whether or not

this sample is near the critical state using the IDNB score.

To further reliably identify the critical state, we developed a

new method called the landscape DNB, which explores both the

local and global gene expression data as well as the network

structure, and the detailed algorithm is provided in the Supple-

mentary Information.

Drug-driven mutation detection

GATK (The Genome Analysis Toolkit, https://software.broadinstitute.

org/gatk/) was used to call mutations from our sequencing data.

For each mutation site detected by GATK, we compared its geno-

type in the TamR samples with the genotype respectively in three

conditions: in control samples at the same time point, in refer-

ence genome and in MCF-7 cell line, to determine the mutation

type. By the multiple comparisons of the genotypes above, the

mutations were further classified as drug-driven mutation, ran-

dom mutation, and MCF-7 mutation (Supplementary Figure S6).

We defined those drug-driven mutations that started from around

the tipping point and continually existed at least the following

four time points as drug resistance-associated mutations.

Survive analysis

Clinical survival data of ER-positive breast cancer patients

and their corresponding expression and mutation data were

obtained from the TCGA dataset and EBI (EGAS00000000083)

dataset. We carry out the survival analysis on the collection of

DNB genes through a linear regression model

δ ¼ β1x1 + β2x2 +⋯+ βixi +⋯+ βnxn;

where xi is the expression value of the ith DNB gene and βi is a

risk coefficient which is estimated by Cox regression model, a

proportional hazards regression model, which allows analyzing

the effect of several risk factors on survival. The analysis was

established in R (http://cran.r-project.org) using the survival

package.

Based on the status of a mutant gene, patients were divided

into two groups with the first group harboring mutant gene and

the second group harboring wild-type gene. Survival analysis

between two groups was also assessed using survival package

in R.

Availability of data and material

The raw sequence data reported in this paper have been

deposited in the Genome Sequence Archive in BIG Data Center,

Beijing Institute of Genomics (BIG), Chinese Academy of

Sciences, under accession number CRA000580, which are pub-

licly accessible at http://bigd.big.ac.cn/gsa. The source codes

of the algorithm are provided at https://github.com/rabbitpei/

drug-resistance-of-breast-cancer.

Supplementary material

Supplementary material is available at Journal of Molecular

Cell Biology online.
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