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Abstract: In this article, we introduce a new method to detect transient trapping events within a single
particle trajectory, thus allowing the explicit accounting of changes in the particle’s dynamics over
time. Our method is based on new measures of a smoothed recurrence matrix. The newly introduced
set of measures takes into account both the spatial and temporal structure of the trajectory. Therefore,
it is adapted to study short-lived trapping domains that are not visited by multiple trajectories.
Contrary to most existing methods, it does not rely on using a window, sliding along the trajectory,
but rather investigates the trajectory as a whole. This method provides useful information to study
intracellular and plasma membrane compartmentalisation. Additionally, this method is applied to
single particle trajectory data of β2-adrenergic receptors, revealing that receptor stimulation results in
increased trapping of receptors in defined domains, without changing the diffusion of free receptors.

Keywords: single particle trajectory; stochastic processes; trapping; confinement

1. Introduction

Single particle methods, which track fluorescent molecules over time, allow for the
quantification of biological events with unprecedented spatial and temporal resolution.
In cell biology, the complex organisation of the plasma membrane significantly impacts
the lateral diffusion of membrane proteins, leading to non-stationary motion patterns. A
proper interpretation of these complex trajectories requires that we take into account the
changes in a molecule’s underlying motion mechanism. For example, transient trapping
of G-protein-coupled receptors and G-proteins is closely related to a restricted collision-
coupling model [1,2]. In this model, the association rates of molecules on the plasma
membrane are enhanced by the presence of confining nano-domains, where receptors
and G-proteins are more likely to encounter one another. However, using analysis tools
that assume the same molecular motion over time leads to incorrect interpretations of the
underlying biology. An intermittent process alternating between free Brownian motion and
trapping (as observed in [3]) can wrongly be interpreted as a case of anomalous diffusion
with an anomalous exponent α < 1.

In the present article, we introduce a method to detect transient trapping events within
a single trajectory. An advantage of analysing transient trapping events is the possibility of
quantifying the binding kinetics of a molecule through different cellular nano-domains.
Additionally, this approach does not require multiple visits of independent molecules to
the same nano-domain to assess trapping and does not assume trapping nano-domains
to be long-lived. Our strategy is to isolate different trapped portions of trajectories by
considering the spatial self-localization of consecutive points within a single trajectory.
We introduce local measures computed for each trajectory point, n ∈ [1, N], containing
information on neighbouring trajectory coordinates as a way to elucidate the structure of
the trajectory. For each trajectory position, the number of neighbours considered for the
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local measure is determined by the number of consecutive trajectory coordinates within
the range of the test lengthscale.

The detection of trapping is challenging and has been the subject of investigation
by several authors. A possible strategy, based on an ensemble of trajectories, consists of
evaluating trapping domains from the evaluation of local confining force [4–8]. On the
side of single trajectory analysis, techniques were based on the maximum square displace-
ment [9–11], although they are generally too sensitive to noise and local fluctuations of
trajectory dynamics. Following this, a number of methods were developed, including: im-
age analysis techniques [12], a model specific maximum likelihood estimator [13], random
forest models [14], back propagation neural network approaches [15], moment-scaling
spectrum analysis [16], and standardized maximum distance [17]. Another approach pro-
poses to detect confinement size based on first-passage times [18]. Closer to our approach,
Sikora et al. [19,20] have developed a method for transient confinement identification based
on recurrence statistics, and Verdier et al. [21] used a graphical representation of trajec-
tories to identify the diffusion mode of a whole trajectory. Most of the above-mentioned
techniques [9–11,14–16,19,20] rely on time window approaches. Alternatively, our method
is based on a recurrence matrix and investigates a trajectory as a whole, whilst still deter-
mining sub-trajectory dynamics.

Recurrence matrices are used in various areas of science. They can be used to recon-
struct protein structure [22] and are even used to detect structural changes in reaction-
diffusion systems [23]. In general, they are used for quantifying non-linear time-series
derived from dynamical systems, such as detecting protein conformation changes in molec-
ular dynamics [24] or for quantifying physiological measurements [25]. In the context
of dynamical systems, it has been shown that one can reconstruct the chaotic attractor
associated with a time-series [26]. Additionally, the influence of observational noise on
recurrence plots has been previously investigated [27], in addition to recurrence plots
being used for testing time-series stationarity [28]. Although the concept of a recurrence
matrix is not new, we construct it in a modified way that greatly limits the effect of outliers
and localisation error. Our central hypothesis is that a trapping event within a trajectory
is translated into a recurrence matrix as a square block structure along the diagonal of
the recurrence matrix. We introduce 3 new local measures that are particularly relevant
in detecting block structures along the diagonal, which are characteristic signatures of
molecular trapping. From both our construction and these newly introduced measures,
we derive a quantity that is invariant when the molecule is trapped and close to zero
everywhere else.

In Section 3, we performed extensive simulations and tests to assess the reliability of
our method and its robustness to noise for both 2D and 3D trajectories, comparing our
method to the ‘Divide and Conquer Moment Scaling Spectrum’ (DC-MSS) [16]. Finally,
in Section 4, we apply our method to single particle tracking data to trajectories of a
prototypical G-protein-coupled receptor (β2 adrenergic receptor), analysing the effects of
different pharmacological treatments on receptor trapping.

2. Methods

We consider either 2 or 3-dimensional trajectories composed of N successive coor-
dinates {x1, . . . , xN}, where bold face emphasises the multi-dimensionality of each data
point. To make our analysis independent of the trajectory scale, trajectory increments
(one-step displacements) are rescaled on each coordinate by their empirical standard devia-
tion. Therefore, the results obtained for Brownian motion are independent of its diffusion
coefficient. A recurrence matrix is then calculated from the distance between each pair of
points within the trajectory. For each trajectory (see Figure 1a), we construct a positive
matrix with Gaussian weights (see Figure 1b):

Mi,j = exp

(
−1

2

( |xi − xj|
λ

)2)
, (1)
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where |xi − xj| denotes distance between two points i and j, and λ is the test lengthscale.
Each element Mi,j is in the range [0, 1], taking values close to 0 when the distance |ri − rj| is
larger than λ. The weights are chosen to be Gaussian in such a way that each element, Mi,j,
remains close to 1 for |xi − xj|/ λ < 1 and decays fast when |xi − xj|/ λ > 1. Therefore,
the presence of a trapped portion of a trajectory of size ≈ λ translates in the matrix M
as a square block of near 1 entries whose diagonal is aligned to the matrix diagonal.
Due to the random nature of molecule displacement, Mi,j entries are noisy, making it
difficult to determine the transition between different phases of motion. To overcome
this, a local smoothing of the matrix is performed. This operation can be done with
computational efficiency by convolving the matrix M by a normalized and constant square
matrix (2µ + 1)× (2µ + 1), where µ is the smoothing parameter, through a fast Fourier
transform (FFT). An advantage of this is to greatly limit the effect of outliers, such as one-
step large jumps in position due to tracking errors within a particle’s trajectory. Whereas
locally averaging trajectory coordinates would greatly disturb the shape of the trajectory
and enhance the effect of outliers, zeroes in the Laplacian matrix induced by an outlier are
removed by local averaging if an outlier lies inside a trapping block.

The smoothed recurrence matrix is then thresholded to obtain a binary matrix B
by setting to one all the values larger than a critical value pc (see Figure 1c). Here, we
choose the critical value to be pc = exp(−1), so two points of a trajectory are considered
colocalizing if they are within a distance λ

√
2 from each other. The consequence of these

manipulations turns the problem of finding trapped regions in the trajectories into finding
square block structures along the diagonal of the binary matrix B.

From matrix B, one has to identify the individual block structures. This could be
achieved by employing a clustering algorithm, such as k-means or k-medoids algorithms;
however, these require known numbers of clusters. Even though empirical methods
exist to estimate the number of clusters, such as the ‘elbow’ or ‘silhouette’ methods,
they do not perform well when clusters are of a greatly differing number of entities [29].
Although spectral clustering [29] does not suffer from these limitations on cluster sizes,
detection of cluster numbers relies on spectral gap detection, which fails when blocks
overlap. Thus, it would not be suited for situations where a molecule jumps from one trap to
another (Hop-diffusion, described in [10]). We therefore introduce a new methodology that
is specific to the detection of block structures and solves all of the aforementioned issues.

We wish to detect if any trajectory step n ∈ [1, . . . , N] is a part of a block or not (i.e.,
trapped or not). For this purpose we define three measures that can be constructed from
each point along the matrix’s diagonal Bn,n (see Figure 1d for visual illustration). (i) t|(n):
The block time, which is the approximate trapping duration seen from the n-th trajectory
coordinate. It is computed as the number of matrix elements being both equal to 1 and
connected to Bn,n along the vertical line Bn±k,n. (ii) t⊥(n): The neighbouring time, which is
related to the size of the window 2t⊥(n) + 1 centred on time point n for which all points
colocalize. The neighbouring time is computed as the number of connected matrix elements
being equal to 1 along the line perpendicular to the matrix diagonal and going through
Bn,n. (iii) t‖(n): The persistence time, which is the segment formed by connected matrix
elements being equal to 1 that are parallel to the matrix diagonal and starting from the
extremity of the segment used to compute t⊥. This determines how many m frames in the
future the lower bound t⊥(n) ≤ t⊥(n + m) holds.

Let us consider an ideal case where the whole trajectory is trapped such that the
recurrence matrix is an N × N square with matrix elements being equal to 1 everywhere.
From these three measures, one can deduce an invariant quantity that is valid for any point
along the matrix diagonal (see proof in Appendix A):

ν(n) =
t|(n)

t‖(n) + t⊥(n)− 1
= 1. (2)

Figure 1e illustrates the computed block time as a function of time (red) and how
neighbouring (cyan) and persistence (purple) time compensate each other to verify the
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equality. This equality is a necessary condition for the point xn to belong to a square
block. Specific events or features related to trapping interruption will cause violation of
this equality.

For an ideal free portion, the matrix is diagonal (let us call it 1−diagonal). In the case
of a trapping event followed by free diffusion at n + 1, there is a sharp transition from
ν(n− 1) = 1 to ν(n + 1) = 1/N. Let us consider a special case, where two successive
trapping events are spatially separated such that their corresponding blocks, of size s1 and
s2, respectively, share only a single point (the transition point n) that lies on the matrix
diagonal. Given that the trajectory is longer than the two trapping events, N > s1 + s2,
there is a sharp transition at n because the increase of t‖ from s1− 2 to N is not compensated
by the increase of t| from s1 to s1 + s2 − 1 (see Figure 1f). In the case where two trapping
events occur successively at even closer locations, their corresponding blocks will overlap.
Even though the equality would be broken at the transition point, departure from ν = 1
may not be very sharp because the transition point is no longer on the matrix diagonal,
and accordingly, the persistence time is bounded by blocks sizes t‖ < s1 + s2. Adding
nd diagonal lines along each side of the matrix diagonal, such that an ideal free motion
for which B is a 1−diagonal matrix would become a (2nd + 1)−diagonal matrix, helps to
enhance the variation in ν at the transition point by changing the bound to t‖ < N − 2nd,
where nd is the number of diagonals. Adding sufficient numbers of lines makes the
persistence time t‖(n) almost as long as the trajectory duration itself, so that when the
invariant is violated, ν becomes very close to 0.

The number of diagonal lines that should be added depends on the lengthscale λ
and the smoothing parameter µ. In general, adding more diagonal lines allows one to
distinguish between traps that are very close to each other. In turn, a large number of
diagonal lines reduces the precision of change-point detection for isolated traps. In order
to decide the number of diagonal lines used, we performed simulations. Block time has
been calculated from M = 103 simulated trajectories of N = 2× 103 steps drawn from two
reference types of motion that mimic free diffusion.

In the first case, we simulated Brownian motion (Bm) as the classical model of a
freely moving molecule in a homogeneous medium. In the second case, we simulated
subdiffusive, fractional Brownian motion (fBm) [30] with anomalous exponent α = 0.7
(Hölder exponent H = 0.35) as a prototypical diffusion in a crowded environment at
percolation threshold [31–34]. In both cases, trajectories were simulated in both 2 and
3 dimensions. As a compromise between sensitivity and precision, the tenth percentile
values of block time are used for the rest of the paper for the numbers of diagonal lines to
be filled, independent of the dimension of the problem and of the user’s choice of reference
model (see Appendix D for a comparison of the effect on detection results of the number of
added lines).

It is possible that our invariant is broken because of lacunarities inside blocks due to
the random nature of molecules’ displacements, which can easily be avoided by filling
lacunarities inside block components along the diagonal (function imfill in MATLAB).
Figure 1g presents the three measures for the trajectory in Figure 1a. The graph shows that
inside a block, the pattern is very similar to the one presented in Figure 1e for the ideal case
and shows the large change in persistence time at a block transition.

We claim that the n-th point of the trajectory is in a block when ν(n) is larger than a
critical value νc. In practice, blocks are never perfect squares, so we choose νc = 3/4 as a
criterion such that blocks can be deformed as illustrated in Figure 1h. However, even in
the case of purely free motion (e.g., Brownian motion), some blocks would still be detected
because it takes a random finite time to escape a region of size λ. To ensure that a detected
block is due to trapping and not due to chance, we chose a p-value approach. For each
test lengthscale and each type of test motion (2D and 3D Brownian motion and fractional
Brownian motion), we simulated 103 trajectories and computed the matrices Bij before
adding diagonal lines based on our previous simulations. Those simulated trajectories
were very long (104 steps each) in order to ensure the capture of very large potential blocks
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as test lengthscale λ increases. Block size was computed as the number of consecutive
points for which our criterion ν(n) > νc is verified. From these simulations, we estimated
in each case the empirical cumulative probability density of block size. From a given
p-value pval , the hypothesis that a detected block is a real trapping event (compared to
the reference simulated motion: Bm or fBm) is then rejected if the cumulative probability
density associated with the tested block size is smaller than 1− pval .

Figure 1. (a). Simulated 2D trajectory alternating between free Brownian motion and reflected diffusion in a disk of radius
R = 1. Diffusion coefficient is D = 1/2 in both cases and duration of states in both cases is a Poisson distributed duration
with mean Tf = 5 and Tf = 30 for free and reflected motions, respectively. Red circle denotes beginning and blue square
the end of the trajectory. (b). Matrix M computed from trajectory in (a) with a test lengthscale λ = 1. (c). Binary matrix B
after thresholding M in (b), filling the lacunarities and adding diagonal lines. (d). Illustration of the the block time t| (red),
the neighbouring time t⊥(n) (purple), and the persistence time t‖(n) (cyan) computed at the step n = 3 of an ideal B
matrix illustrating a fully trapped trajectory of 8 steps. (e). Illustration of the inequality along the diagonal Bnn for a perfect
block t| = t‖(n) + t⊥(n)− 1. (f). Illustration demonstrating that at transition between two blocks, the persistence time
t‖(n) becomes as long as the trajectory itself. (g). Computation of t| (red), t⊥(n) (purple), and t‖(n) (cyan) based on (c).
(h). Block invariant ν(n) (blue) computed over time based on (g) against the threshold value νc = 0.75; green rectangles
underline misclassified trajectory portions. (i). Classified trajectory, where black represents free portions and different
colours represent distinct detected trapped portions.

3. Simulations

In this section, we present performance tests for our algorithm in 2D and 3D and
compare it to an alternative algorithm, DC-MSS [16], where possible (in 2D).

3.1. Fixed Parameters

For the analysis, the smoothing parameter µ, the number of lines to be filled along
the matrix diagonal, and the p-value needed to be set. We chose µ = 2 in such a way that
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high-frequency variability in the matrix Mij would be dampened without significantly
affecting the precision of change-point detection. Then, based on simulations on the effect
of different additional diagonal lines (see Appendix D), we added a number of diagonal
lines corresponding to the tenth percentile of block-times. Finally, reasoning that the tail of
a Brownian motion’s first-passage-time distribution from the centre to the border of a disk
spans over multiple timescales, choosing a p-value very close to 1 would exclude many
transient trapping events. Accordingly, we fixed the p-value pval = 0.05 as a compromise
between the sensitivity and reliability of the method and then varied simulation parameters
to assess the potential of our approach.

3.2. Simulation

To test our methodology, for each data point presented below, we simulated 103 of
either 2D or 3D trajectories of 103 steps each. Molecules alternate between a free diffusive
state and a trapped state in which the molecule remains within a region of set size. We
chose the free state to be Brownian motion with one-step diffusion lengthscale σ = 1,
corresponding to a diffusion coefficient D = 1/2. The trapped state was chosen to be
reflected Brownian motion inside a disk (2D) or sphere (3D) of radius R with the same
diffusion coefficient. Similarly, we produced another dataset (2D and 3D), where instead
of Brownian motion, we modelled free portions with fractional Brownian motion with
Hölder exponent H = 0.35, corresponding to an anomalous exponent α = 0.7. In all cases,
the random duration of each state was chosen to be Poisson distributed with mean τBm and
τtrap for the free and trapped states, respectively. White noise with standard deviation σerr
was added to trajectory coordinates to model the effect of the localisation error, starting
from low noise σerr = σ/10 to mild noise σerr = σ/2 and finally strong noise with an
equivalent standard deviation of trajectory one-step displacements σerr = σ.

3.3. Results

Figure 2a shows the results where both the time spent in free duration and in trap-
ping were varied while the trapping radius was always R = 1, and the test lengthscale
was λ = 1. Different levels of noise σerr = σ/10, σ/2, σ were added, respectively,
in Figure 2a–c. In these cases, the minimal duration for detecting a trapping event is
τp0.05 = 9 frames (see table in Appendix E). In these three cases, when there is no confine-
ment at all (τcon f /τp0.05 = 0), the recognition score is close to 1, meaning that the algorithm
is robust to false negatives and is able to confirm the absence of trapping. In most cases,
more than 90% of trajectories are correctly assigned to their state. The method performs
poorly when the trapping duration is close to or shorter than τp0.05 or when the time spent
between two trapping events is smaller than the time it takes to explore a distance larger
than the trap size. Both mild and strong noise does lower the recognition score, but only
marginally. Figure 2d–f test cases when radius R = 3 and the test lengthscale is λ = 3.
In this case, the conclusions are the same, but one has to keep in mind that the durations
are much longer because the minimum duration for detecting trapping with λ = 3 is
τp0.05 = 42 (see table in Appendix E).

The above presented cases are idealised because, except when searching for a partic-
ular trap size, one does not precisely know the size of traps a priori. A reasonable range
can instead be determined by observation of the experimental data. Taking advantage of
the robustness to false negatives offered by our p-value approach, we propose combining
the recognition for each lengthscale into a single one. We combine results by taking the
union of detected trapped frames, considering lengthscales in the range λ ∈ [1, λmax] by
increments of 0.5. We simulated trajectories alternating between free motion and trapping
of distributed sizes. Possible trap radii are uniformly distributed in the range [1, Rmax],
where Rmax = 1, 2, 3 in Figure 2g–i, respectively. The duration in each trapped state is set
to be τcon f = 6R2 + 50, so the trapping time takes into account the radius of the trapping
area plus an offset of 50 frames. Trapping was simulated as reflected Brownian motion
with an integration step dt = 1/2 unless the diffusion length during a step was larger than
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a third of the radius
√

2Ddt > R/3, in which case positions were approximated as being
uniformly distributed inside the trap.

Figure 2. Each panel presents the recognition score ∈ [0, 1] for 2D trajectories alternating between free and trapped motions.
(a–c) Trapping radius is R = 1, and test lengthscale is λ = 1. Shown are tested combinations of free Brownian motion of
mean duration τBm = [5, 10, 20, . . . , 70] and mean trapping duration τcon f ∈ [0, 60]; coordinates are perturbed with white
noise of level σerr = σ× [0.1, 0.5, 1] (a–c). (d–f) R = 3 and λ = 3. Each rectangle represents a combination of free Brownian
motion of mean duration τBm = [5, 10, 20, . . . , 70] and mean trapping duration τcon f ∈ [0, 210]; coordinates are perturbed
with white noise of level σerr = σ× [0.1, 0.5, 1]. (g–i) Free motion is Brownian motion; noise level σerr = 0.5σ was added to
trajectories. Trapping radius is in the range R ∈ [1, Rmax], where Rmax = 1, 2, 3 in (g–i). In each case, test lengthscales from
1/2 to λmax by increments of 1/2 are combined where λmax = 1, 2, 3 (dashed red, dotted-dashed blue, and dotted magenta).
Black line shows the recognition score obtained from DC-MSS algorithm. (j–l) Same as for (g–i) except that the free motion
is replaced by subdiffusive fractional Brownian motion with Hölder exponent H = 0.35.

For each of these three cases, noise level σerr = 0.5σ was added to trajectories, and we
then tested our combination scheme with three possible λmax = 1, 2, 3. For comparison, we
applied the DC-MSS algorithm [16] to our simulated data with the default parameters. DC-
MSS separates the data into four categories: immobile, confined, free, and superdiffusive.
To make it comparable to our scheme, we considered the two first categories as being
‘trapped’ and the two latter as being ‘free’. In Figure 2g the performance of DC-MSS is
better than ours when we overestimate the maximum test lengthscale λmax = 3, which
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overestimates three times the maximum trap size Rmax = 1. In turn, choosing λmax = 2
already significantly improves our classification, and λmax = 1 gives close to perfect
recognition. Then, in cases Rmax = 2 (Figure 2h) and Rmax = 3 (Figure 2i), DC-MSS had
a consistently lower score for any choice of parameters λmax. It can be surprising that in
Figure 2h,i, λmax = 1 outperforms the other λmax in all cases, while the size of the traps can
be larger than this. We explain this by the fact that the test lengthscale does not specify the
trap size to be discovered and instead describes distances between points to be considered
‘in the vicinity’. When a molecule spends enough time inside a trap of radius R = 3, then
even with λmax = 1, any trajectory point will colocalize with many other points in such
a way that the recurrence matrix Mi,j will be in ‘quasi-block’ form (a block with many
holes). In this case, the combination of the smoothing step and the lacunarities-filling will
complete the block and allow for accurate detection. In turn, larger lengthscales λmax will
tend to include, along with a trap, some free points in the vicinity of the confinement area,
thus lowering the recognition score.

We also considered the case in which trajectories alternate between subdiffusive frac-
tional Brownian motion and trapping. In the case of a single trap size, results were similar
to those obtained in Figure 2a–f (data not shown). In the case of multiple traps’ radii
(see Figure 2j–l) similar results were obtained, meaning that our approach can distinguish
subdiffusion due to molecular crowding from actual trapping in a nano-domain. In com-
parison, the DC-MSS algorithm tends to misclassify free portions as being trapped, thus
giving lesser scores. In Appendix C, additional simulations performed in 3D gave similar
results for both diffusive Brownian motion and subdiffusive fractional Brownian motions
as ‘free states’ (see Figure A1).

Lastly, we verified that trajectory duration has only negligible effects as long as
trajectory duration is longer than the minimum duration for trapping detection (not shown).

4. Application to Experimental Data

Based on our methodology, with λ = [0.5, 1, 1.5, 2], smoothing parameter µ = 2 and
pval = 0.05, and subdiffusive fBm as our reference for free motion, we investigated the
effect of different drugs on the diffusion and trapping of β2 adrenergic receptor (β2AR)
on the plasma membrane. We recorded fluorescently labelled β2AR molecules with total
internal reflection microscopy, as they diffuse in the plasma membrane of living cells (2D
recording) (see Appendix B for experimental methods). We first characterized receptors
under basal conditions (36 cells), without pharmacological stimulus. Next, we treated
the cells with a gold-standard agonist (isoproterenol) that activates receptors (47 cells).
Additionally, we probed receptors with a neutral antagonist (propranolol), which prevents
ligand-dependent receptor activation (29 cells). Figure 3a–c show, respectively, all of the
trajectories longer than 50 frames (for improved visibility) from a single cell for each
described treatment. Portions of trajectories are coloured according to their identified state
(trapped in red and free in blue).

It clearly appears that, although trapping is present in all cases, the prevalence of trap-
ping is increased upon agonist stimulation. This is quantitatively supported in Figure 3d,
where it is shown that under basal conditions, 39.2% of receptors at each frame were
trapped on the plasma membrane. Upon agonist stimulation, this percentage increased
to 52.2%, while it remained similar (45.5%) after neutral antagonist treatment. To test the
relevance of the observed change, we used a non-parametric Kruskal–Wallis test with
Tukey–Kramer correction for multiple comparisons. We found the change between basal
and agonist stimulation to be significant (p = 2× 10−4), clearly demonstrating an effect
of agonist stimulation on receptor diffusion dynamics. Contrarily, the change between
basal and neutral antagonist treatment was not significant (p = 0.74, while the difference
between agonist and neutral antagonist was significant (p = 9× 10−3), suggesting that the
drug employed directly influences the receptor trapping, an increase in which correlates
with activation of the receptors.
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We then sought to further explore the differences observed between these cases.
For each trapped trajectory portion, we computed the trapped radius as the distance from
the estimated centre of the trap (evaluated as the median of x and y coordinates for a
trapped portion) and the point further away than 95% of points within the trapped portion.
In Figure 3e, we binned all of the trapped radii into an empirical probability density
function (pdf) which was revealed to be similar for the three conditions, suggesting that the
trapping domains are of the same nature in all cases. In all cases, the pdf of trapped radii
could be fitted approximately with a Gamma distribution, highlighting the exponential
decay of the tail of the distribution. This was further reinforced by the computation of the
empirical pdf of trapped portions’ durations (see Figure 3f), from which we again obtained
a similar empirical pdf for all three conditions. The tails of the trapping duration pdf were
fitted to a stretched exponential distribution, thus encompassing the wide (yet finite) range
of trapping durations.

Figure 3. (a–c). All receptor trajectories longer than 50 frames from a single cell in each group; trajectory portions are
coloured according to whether they are detected as free (blue) or trapped (red). Cells are, respectively: (a) in basal state,
(b) stimulated with agonist, and (c) treatment with neutral antagonist. (d). Proportion of trapped molecules per frame;
each point corresponds to a cell for basal (black), agonist stimulated (yellow), and neutral antagonist treated (green).
(e,f). Empirical probability density function for basal (black), agonist stimulated (yellow), and neutral antagonist treated
(green) of (e) trap radius and (f) trapping duration. Grey lines denote fitting with Gamma distribution (e) and stretched
exponential (f). (g,h). Empirical probability density estimated for free trajectory portions longer than 50 frames of (g) the
anomalous diffusion exponent α and (h) the corresponding generalized diffusion coefficient Dα.
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Finally, we enquired into the dynamics of free trajectory portions. To do so, follow-
ing [35], we computed the time-averaged mean square displacement (TAMSD) of each
portion on each coordinate as

δ2(n, N) =
1

N − n

N−n

∑
k=1

(xk+n − xk)
2, (3)

and summed the result for both coordinates before performing a non-linear fitting, over the
lag-time range n ∈ [1, 5], with the formula for ensemble-averaged TAMSD for a 2D ergodic
anomalous diffusion process (e.g., fractional Brownian motion), with localisation error σerr

〈δ2(n, N)〉 = 4Dαnα + 4σ2
err, (4)

where α is the anomalous exponent, and Dα is the generalized diffusion coefficient. From
this, we obtained the empirical pdf for both anomalous exponent and generalized diffusion
coefficients for each condition and observed once again that it was remarkably consistent
among the tested conditions. The exponents for free portions of trajectories (see Figure 3g)
were distributed slightly over α = 1 (average exponent 〈α〉 = 1.04, 1.05, 1.04), correspond-
ing to simple Brownian motion. The generalized diffusion coefficients were very similar
in all tested conditions (see Figure 3h) with an average 〈Dα〉 = 0.173, 0.169, 0.168 µm2 s−1

for basal, agonist, and antagonist, respectively. For comparison, we computed the pdf
of exponent and Dα from simulated Brownian motion (see Figure 3g,h), using the same
parameters for trajectory duration and mean diffusion coefficient as the free portions found
in the case of the tested agonist. The distributions obtained from simulations match the
experimental for exponent (average exponent from simulation is 〈αsim〉 = 1.05). However
the experimental distributions of diffusion coefficients are wider that the simulated one.
We conclude that the distributed nature of the estimated exponent is mainly due to the
intrinsic randomness of the TAMSD applied to random trajectories [36,37] while the spread
of Dα highlights the heterogeneous nature of cell membrane.

Altogether, these results shed light on the effects of different drug treatments on
receptor dynamics. We observe that receptors do not slow down after agonist stimulation.
In fact, the change we observe is that receptors are more likely to be trapped, with the
nature of the trapping domains remaining the same. For the case of the antagonist, we do
not find a significant difference compared to the basal condition, which correlates with
the proposed model where neutral antagonists impart no intrinsic activity on the receptor
in the absence of an accompanying agonist. We conclude that on timescales longer than
our exposure time frame (30 ms), receptors alternate between free lateral diffusion that
could be modelled by Brownian motion with fluctuating diffusion coefficient [38–49] and
transient trapping in nano-domains of distributed size.

5. Conclusions

In conclusion, we present an algorithm (Code availability: MATLAB code can be
downloaded from https://github.com/YannLanoiselee/Transient_trapping_analysis, ac-
cessed on 9 August 2021) that can accurately detect transient trapping events from a single
trajectory either in two or three dimensions. Our approach is based on recognizing block
structures along the diagonal of a thresholded, smoothed recurrence matrix. To this end,
we introduced three local measures to be computed along the diagonal of the matrix from
which we deduced an invariant quantity inside blocks (trapped portions).

Then, based on a set of user-inputted test lengthscales and on simulations of Brownian
and fractional Brownian motions in 2D and 3D as reference processes, we could assess the
minimal size of blocks that could be interpreted as the molecule actually being trapped
and not a block due to chance, depending on a p-value. We tested our method on a set
of simulated data and verified the good performance in 2D and 3D when the free type
of motion is either Brownian motion of sub-diffusive fractional or Brownian motion with
anomalous exponent α = 0.7. We checked the robustness of our results against increasing

https://github.com/YannLanoiselee/Transient_trapping_analysis
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magnitudes of localisation error. We also compared our 2D results with the classification
obtained from the DC-MSS algorithm [16] and showed that our method is more accurate in
the task of detecting trapping in all tested cases.

Finally, we applied our analysis to single-particle trajectories of β2 Adrenergic G-
protein-coupled receptors recorded through total internal reflection microscopy. Three
conditions were tested: the basal state, stimulated with an agonist, and treatment with
a neutral antagonist. In all cases, we found that molecules explore traps with similar
distributions of size and duration. Instead, it was only the frequency with which molecules
were trapped that was different. TAMSD analysis of the free portions of trajectories
led to the conclusion that molecules were mostly undergoing Brownian motion, with a
variety of parameters indicative of cell membrane heterogeneity. The demonstration
of this technique on real biological data and delineation of pharmacological principles
using it (agonist = activation, antagonist = net 0 effect) suggest that our methodology to
detect trapping events can be used to study the complexity of both intracellular (3D) and
membrane proteins (2D) in live cells.
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Appendix A. Proof of the Square Block Invariant

To prove the equality in Equation (2), we proceed by two inductions. For a square
block of fixed side length c, we start by noting the symmetry with respect to the line
perpendicular to the matrix diagonal going through point c/2 (that lies between two
points for odd c). Then, we define n ∈ [1, c/2]; our relationship is verified for n = 1,
and we suppose it true for n. Then, observing that t|(n + 1) = t|(n), t‖(n + 1) = t‖(n)− 2,
and t⊥(n + 1) = t⊥(n) + 2, we deduce ν(n + 1) = ν(n) = 1. For the second induction,
we start by noting that our relationship is valid for c = 1, and we suppose it is true for
c = k. Then, for c = k + 1, we find that t⊥(n) remains unchanged, while both t|(n) and
t‖(n) increase by one, thus again verifying our equality. The relationship is thus valid for
arbitrary block sizes and at any point along the diagonal within the block.

Appendix B. Experimental Methods

Appendix B.1. Materials

Cell culture reagents, Lipofectamine 2000, and TetraSpeck fluorescent beads were
purchased from Thermo Fisher Scientific. Isoproterenol and Propranolol were from Tocris
Bioscience. The fluorescent SNAP-Surface 549 was from New England Biolabs. Ultra-
clean glass coverslips were obtained as previously described [50]. For single-molecule
experiments, Chinese hamster ovary K1 (CHO-K1) cells (ATCC) were cultured in phenol
red-free Dulbecco’s modified Eagle’s medium (DMEM)/F12, supplemented with 10% FBS,
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penicillin, and streptomycin at 37 ◦C, 5% CO2. Cells were seeded onto ultraclean 25 mm
round glass coverslips at a density of 3 × 105 cells per well. On the following day, cells
were transfected using Lipofectamine 2000 with N-terminally SNAP-tagged human β2AR
(SNAP-β2AR) [50] and N-terminally GFP-tagged clathrin light chain (GFP-CCP) (kindly
provided by Emanuele Cocucci and Tom Kirchhausen), following the manufacturer’s pro-
tocol. Cells were labelled with 1 µM SNAP-Surface 549 in complete culture medium for
20 min at 37 ◦C and imaged by single-molecule microscopy ≈ 4 h after transfection to
obtain low physiological protein expression levels [2,50]. Cells were washed with complete
culture medium and imaged in Hank’s balanced salt solution (HBSS) supplemented with
10 mM HEPES. The labelling efficiency was ≈ 90% ([50]) with non-specific labelling < 1%.
β2ARs were stimulated with either 10 µM Isoproterenol or treated with 10 µM Propranolol.

Appendix B.2. Single-Molecule Microscopy

Single-molecule microscopy experiments were performed using total internal reflec-
tion fluorescence (TIRF) microscopy on a custom system, based on an Eclipse Ti2 micro-
scope (Nikon, Japan) equipped with a 100× oil-immersion objective (NA 1.49, Nikon); 405,
488, 561, and 637 nm diode lasers; an iLas TIRF illuminator; quadruple band excitation and
dichroic filters; a quadruple beam splitter; 1.5× tube lens (Cairn Research); four EMCCD
cameras (iXon Ultra 897, Andor); and hardware focus stabilization. The sample and objec-
tive were maintained at 37 ◦C throughout the experiments. Multicolour single-molecule
image sequences were acquired simultaneously at full frame in frame transfer mode, cor-
responding to one image every 30 ms. Automated single-particle detection and tracking
were performed with the u-track software [51], and the obtained trajectories were further
analysed using custom algorithms in MATLAB environment as previously described [2].

Appendix C. Simulations for the 3D Case

In this section, we present the simulation results obtained in three dimensions.

Figure A1. Each panel presents the recognition score ∈ [0, 1] for 3D trajectories alternating between free and trapped
motions. (a–c) Free motion is Brownian motion with added noise level σerr = 0.5σ. Trapping radius is in the range
R ∈ [1, Rmax], where Rmax = 1, 2, 3 in (a–c). In each case, test lengthscales from 1/2 to λmax by increments of 1/2 are
combined, where λmax = 1, 2, 3 (dashed red, dotted-dashed blue, and dotted magenta). (d–f) Same as for (a–c) except that
the free motion is replaced by subdiffusive fractional Brownian motion with Hölder exponent H = 0.35.

Appendix D. Effect of the Number of Diagonal Filled

In Figure A2, we analysed 2D and 3D simulated trajectories alternating between either
Bm or fBm and reflected Brownian motion. Then, we computed the recognition score
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for three possible maximum lengthscales λmax = 1, 2, 3. Then, for each of these λmax, we
computed results depending on the number of lines that were added along to the matrix
diagonal of the binary matrix B. We considered no diagonal added at all (d0) or the tenth
percentile d10 or median d50 of the block time obtained from simulations of Bm or fBm
in either 2D or 3D. In all considered cases, the best maximum lengthscale was λmax = 1,
and the best recognition score was obtained with d10.The case d0 was similar to d10 for
Rmax = 1 but failed for larger trapping radii. On the other hand, d50 could not capture
change-points for a short duration of the free states as well as d10.

Figure A2. Each panel presents the recognition score ∈ [0, 1] for 2− 3D trajectories alternating between free and trapped
motions. Each column corresponds to a trapping radius range R ∈ [1, Rmax], where Rmax = 1, 2, 3, respectively. Rows
corresponds to different dimensionality and types of free motion 2D and Bm, 2D and fBm, 3D and Bm, and 3D and fBm,
respectively. For the two first rows, black lines correspond to predictions from DC-MSS. Red, blue, and magenta lines
correspond to λmax = 1, 2, 3, while crosses, circles, and squares indicate that lines along the diagonal of the binary matrix B
have been filled according to the zeroth, tenth, and median percentiles of block times computed from simulations for either
Bm or fBm according to the situation.

Appendix E. p Value Tables

In this section, we present the minimal trapped duration including the number of
filled diagonal lines (for d10) corresponding to p-values [0.1, 0.05, 0.01] for different test
lengthscales λ for fixed smoothing parameter µ = 2 and νc = 0.75 (see Table A1). Values
corresponding to each test lengthscale λ are obtained from 103 simulated trajectories of
104 steps. Simulations have been performed on 2-dimensional Brownian motion with diffu-
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sion coefficient D = 1/2 (although the result is independent of D because of rescaling) and
on 2-dimensional fractional Brownian motion (each coordinate generated independently)
with diffusion coefficient D = 1/2 and a Hölder exponent H = 0.35 corresponding to an
anomalous diffusion exponent α = 0.7, similar to what is found in diffusion in a crowded
molecular environment.

In the case of 3D diffusion (see Table A2), similar simulations have been performed
with one extra dimension. A table of the minimal trapped duration including the number
of filled diagonal lines corresponding to p-values [0.1, 0.05, 0.01] can be seen below. They
are generally shorter because a trajectory has one more degree of freedom to escape.
For Brownian motion, the mean square-displacement is increased 50%.

Table A1. Minimal size for a block to be considered a trapped portion for when reference motion is
2D Brownian motion (left) and 2D fractional Brownian motion with H = 0.35 (right).

2D Bm 2D fBm H = 0.35

λ pval = 0.1 pval = 0.05 pval = 0.01 pval = 0.1 pval = 0.05 pval = 0.01

0.5 4 5 6 5 5 7
1 8 10 14 10 13 18

1.5 17 20 28 28 35 52
2 26 32 46 54 68 103

2.5 38 46 68 88 112 176
3 45 57 87 131 169 272

Table A2. Minimal size for a block to be considered a trapped portion for when refence motion is 3D
Brownian motion (left) and 3D fractional Brownian motion with H = 0.35 (right).

3D Bm 3D fBm H = 0.35

λ pval = 0.1 pval = 0.05 pval = 0.01 pval = 0.1 pval = 0.05 pval = 0.01

0.5 4 4 5 4 4 5
1 5 6 8 6 7 8

1.5 10 11 15 13 15 21
2 14 17 23 24 28 40

2.5 21 25 34 39 48 69
3 28 33 46 60 74 109
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