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A B S T R A C T   

Multiple myeloma (MM) is a heterogeneous plasma cell proliferative disorder that arises from its premalignant 
precursor stages through a complex cascade of interactions between clonal mutations and co-evolving micro-
environment. The temporo-spatial evolutionary trajectories of MM are established early during myelomato-
genesis in precursor stages and retained in MM. Such molecular events impact subsequent disease progression 
and clinical outcomes. Identification of clonal sweeps of actionable gene targets in MM could reveal potential 
vulnerabilities that may exist in early stages and thus potentiate prognostication and customization of early 
therapeutic interventions. We have evaluated clonal evolution at multiple time points in 76 MM patients enrolled 
in the MMRF CoMMpass study. The major findings of this study are (a) MM progresses predominantly through 
branching evolution, (b) there is a heterogeneous spectrum of mutational landscapes that include unique 
actionable gene targets at diagnosis compared to progression, (c) unique clonal gains/ losses of mutant driver 
genes can be identified in patients with different cytogenetic aberrations, (d) there is a significant correlation 
between co-occurring oncogenic mutations/ co-occurring subclones e.g., with mutated TP53+SYNE1, 
NRAS+MAGI3, and anticorrelative dependencies between FAT3+FCGBP gene pairs. Such co-trajectories may 
synchronize molecular events of drug response, myelomatogenesis and warrant future studies to explore their 
potential for early prognostication and development of risk stratified personalized therapies in MM.   

Introduction 

Multiple myeloma (MM) is a plasma cell malignancy characterized 
by a complex genomic landscape, heterogeneity in response to therapy 
and clinical outcomes [1]. Myelomatogenesis is a multistep process that 
is initiated and driven by accumulation of composite genomic aberra-
tions [2–7]. The primary cytogenetic aberrations include translocations 
involving IgH locus (found in about 55% patients) and hyperdiploid 
trisomies of odd numbered chromosomes (found in about 40% patients) 
[8,9]. While IgH translocations t(4;14) (partner FGFR3), t(14;16) (MAF) 
and t(14;20) (MAFB) have been associated with high risk disease and 
poor prognosis; other translocations t(11;14) (CCND1), t(6;14) (CCND3) 
and trisomies are considered to be associated with standard risk [10]. 
Deletion 13q is also considered to be an early event and is observed in 
about 35% of the patients. There are additional multiple secondary 

events that evolve gradually and include mutations in RAS/NFkB 
pathway genes, haploinsufficiency of p73, high expression of MYC, 1q 
gain, 1p loss and others. Recently, 8 copy number subtypes [11] and 12 
RNA subgroups [12] of MM, have also been characterized from the 
Multiple Myeloma Research Foundation (MMRF) CoMMpass study [13]. 

Molecular analysis of myeloma genome through conventional cyto-
genetics and fluorescence in situ hybridization (FISH), gene expression 
profiling, Whole Genome Sequencing (WGS), Whole Exome Sequencing 
(WES) and microarrays has provided novel insights into the genomics of 
MM [14–17], role of driver genes [18–22] and chromothripsis [23,24], 
in risk prediction strategies and identified different oncogenic events 
involved in the immunity-malignancy equilibrium in MM [25,26]. 
Multiple mechanisms involving deregulated signaling cascades can 
derail oncogenic pathways [27,28] and their evaluation can lead to 
development of pathway directed therapies [29] for MM. 
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A series of studies have established clonal heterogeneity in MM 
[30–33]. There is evidence that as disease progresses from its prema-
lignant stages of MGUS (Monoclonal Gammopathy of Undetermined 
Significance) and SMM (Smouldering MM) to MM [34], the (sub)clones 
tend to evolve new mutations and CNAs (copy number alterations), 
imposed by positive selection pressure, and sweep to dominance 
[35–39]. It has been reported that the genomic landscapes of SMM are 
very similar to those at MM with two major patterns of progression [35]. 
While the static progression model retains the subclonal architecture as 
disease progresses to MM, a spontaneous evolution model supports 
changes in subclonal composition. A recent study [37] evaluated both 
Darwinian positive selection and neutrality in evolution in WGS 
CoMMpass data and surmised that neutral mutations might occur in a 
few tumors but Darwinian evolution appears to be the overall dominant 
trajectory of MM. 

The temporal and spatial clonal trajectories established by the time 
of SMM are thus preserved and can predict the course of subsequent 
tumor evolution and contribute to drug resistance [35–37]. This also 
provides a unique opportunity to revisit and deploy prognostication at 
premalignant stages and adopt early intervention. There is limited in-
formation available on subclonal evolution associated with progression 
in MM and, in particular, on clinically relevant actionable targets. 
Moreover, there is no report on associations between co-occurring clonal 
gains/ losses in MM. This enthused us to evaluate clonal landscapes of 
the MMRF CoMMpass WES data at baseline time point (TP1) and 
compare to subsequent time points of progression (TP2, TP3, TP4 and 

TP5). We have analyzed 76 MM patients for whom multiple time point 
WES data were available in the MMRF IA12 dataset, and compared 
clonal mutational landscapes and pathways, at baseline with those at 
progression. 

This study has shown that clonal expansion to progression in MM 
follows predominantly branching pattern of evolution, with differential 
waxing and waning of mutated (sub)clones. A series of subclonal mu-
tations in driver and actionable genes could be identified, some of which 
showed patterns of mutational/ subclonal co-occurrence or exclusions 
with significant correlations. Identification of serial correlative clonal 
trajectories of drivers and actionable targets in MM may advance 
prognostication and assist in personalization of targeted therapies 
particularly at early stages of myelomatogenesis. 

Materials and methods 

A complete workflow of data analysis starting from selection of 
MMRF CoMMpass IA12 dataset to generation of FISH plots showing 
patterns of clonal evolution and interpretations is summarized in Fig. 1. 

Selection of dataset 

In this study, we have used the WES data obtained from the MMRF 
CoMMpass database (IA12) (https://themmrf.org/finding-a-cure/our- 
work/the-mmrf-commpass-study/), which includes whole genome/ 
exome sequencing data of over 1000 newly diagnosed MM patients with 

Fig. 1. Overall study design and workflow. Data on WES was mined for 76 MM patients sampled at multiple time points TP (ranging between 2 and 5) in the MMRF 
CoMMpass study IA12. Nonsynonymous mutations and copy number alterations were collated with PERL and CNVkit respectively. Data was converted into cellular 
prevalence with QuantumClone and analyzed further for mutation clustering and clonal assignments. Fishplot was used to deduce patterns of clonal evolution while 
corrplot was used to compare pairwise correlations among clonal shifts. 
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enriched tumor and matched constitutional samples. The variant file 
(MMRF_CoMMpass_IA12a_All_Canonical_NS_Variants.txt) and the copy 
number file (MMRF_CoMMpass_IA12a_CNA_Exome.seg) were used for 
this clonal evolution study. Clinical and demographic details were ob-
tained from the Clinical_Flat_Files and are summarized in Table 1. The 
MM subjects (n = 76) having multiple time points data on Non Synon-
ymous (NS) variants and CNAs (at 2 time points, n = 70; at 3 time points, 
n = 4; at 4 time points, n = 1; at 5 time points, n = 1) were selected and 
included in this study. 

Evaluation of multiple time point whole exome data for cellular prevalence 

We developed in house PERL (practical extraction and report lan-
guage) scripts to parse single nucleotide variant / copy number variant 
(CNV) files for selected subjects at all timepoints. The CNVkit program 
(version 0.9.9; https://github.com/etal/cnvkit [40]) was used to extract 
absolute copy number from the copy number segment files 
(MMRF_CoMMpass_IA12a_CNA_Exome.seg). The output obtained from 
the CNVkit program was used to assign genotype information for each 
variant. The data obtained was further processed with QuantumClone 
[41] (https://www.rdocumentation.org/packages/QuantumClone/ 
versions/0.15.11). Somatic variants along with their genotype infor-
mation were used to infer the clonal progression in MM. The cellular 
prevalence values θ′ of each cluster were calculated as follows: 

θ̂ = VAF ×
NCh + NCh(Normal) ×

1− p
p

NC  

where NCh is the number of copies of the corresponding locus in cancer 
cells, NCh(Normal) is the number of copies of the corresponding locus in the 
normal cells (NCh(Normal)= 2 for autosomes), VAF is the Variant Allele 
Frequency and NC is the number of chromosomal copies bearing the 
variant and p is the tumor purity [41]. 

Assessment of patterns of clonal evolution 

The values of cellular prevalence obtained from QuantumClone were 
subjected to Fish plot R package [42] in order to visualize the patterns of 
clonal evolution (https://github.com/chrisamiller/fishplot). Cellular 
prevalence values higher than 1 were set to 1 as suggested [41]. Clonal 
lineage was inferred by following sum rules and cross rules as described 
in earlier studies [43,44]. Patterns of evolution [45] were classified as 
branching if characterized both by the gain and loss of mutational 
clusters at relapse or as linear if characterized by the gain of mutations at 
relapse but no evidence of clonal loss. Stable evolution pattern was 
characterized by a preserved clonal structure at both the time points. 
Stable with loss patterns had a predominantly preserved clonal structure 
at relapse but with some loss of cluster of mutations. 

Estimation of clonality and subclonality 

Based on the value of estimated cellular prevalence percentage, gene 
variants were classified into four categories: Clonal (C, cellular preva-
lence > = 85%), High Sub Clonal (HSC, cellular prevalence > = 25% 
and < 85%), Low Sub Clonal (LSC cellular prevalence > = 0.6% and 
<25%), Very Low Sub clonal (VLSC, cellular prevalence <0.6%)] [46]. 

Identification of mutated genes and gene functions 

Genes found to be mutated were classified as drivers/ oncogenes/ 
tumor suppressor/actionable genes as defined by intOgen [47] 
(https://www.intogen.org/search); OncoKB [48] (https://www. 
oncokb.org/); cBioPortal [49,50] (https://www.cbioportal.org/) and 
COSMIC actionability data v93 (https://cancer.sanger.ac.uk/cosmic). 

Computation of pairwise correlations between subclones 

Pearson correlation between pairwise subclonal mutations was 
evaluated and visualized with corrplot function of the corrplot package 
v0.90 (https://cran.r-project.org/web/packages/corrplot/index.html). 

Analysis of biological pathways 

The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
relating to mutations at TP1 and TP2 (time point 2) were deduced by 
gene enrichment approach using Enrichr (https://maayanlab.cloud/ 
Enrichr/) as described [51] while MSigDB [52] was used to compare 
molecular signatures at both timepoints respectively. 

Results 

NS mutational spectrum at baseline compared to progression 

A median of 60 NS mutations (range 2 to 414) and 65 NS variations 
(range 2 to 312) were identified per patient at baseline and on pro-
gression respectively. Supplementary Table ST1 lists 915, 1173 and 
2444 genes that were found to have NS mutations in whole exomes of 
samples evaluated at TP1 or TP at progression (TP2) or in common at 
both the time points respectively. 

Among these, 16 genes (ALK, ATR, AXL, BIRC3, BRIP1, CSF3R, 
DDR1, MERTK, MET, PTPN11, RAD52, RICTOR, RPTOR, TET2, U2AF1, 
XRCC3) and 14 genes (BLM, ETV6, FANCM, FLT4, JAK2, KMT2A, 
PIK3R1, POLE, RAD51C, RFC1, RFC2, SLX4, SMO, TSC1) were 

Table 1 
Clinical, laboratory parameters and cytogenetic aberrations found in 76 MM 
patients.  

Parameter No. of patients % 

Median Age (Range) In Years 67 (35 to 93)  
Gender   
Male 43 56.6 
Female 33 43.4 
Hemoglobin (g/dL)   
≤10 76 100 
>10 0 0 
Platelet Count (/dL)   
<100 3 3.9 
≥100 73 96.0 
Serum creatinine (mg/dL)   
≤2 66 86.8 
>2 10 13.2 
Serum albumin (g/dL)   
<3.5 31 40.8 
≥3.5 44 57.9 
NA 1 1.3 
ISS 1/2/3/NA 22/26/26/2  
RISS I/II/III/NA 8/38/6/24  
Serum calcium, mg/dL   
0–11 76 100 
>11 0 0 
IgG Isotype   
IgA 9 11.8 
IgG 18 23.6 
NA 49 64.5 
BM plasma cells,%   
≤40 48 63.2 
>40 6 7.9 
NA 22 28.9 
Serum LDH (IU/L)   
≤420 47 61.8 
>420 13 17.1 
NA 16 21.1 
β2-microglobulin, mg/L   
<3.5 29 38.2 
≥3.5 45 59.2 
NA 2 2.6 

NA = Not available. 
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actionable genes and were identified only at baseline or on progression 
respectively. A group of 32 actionable genes (APC, ASXL1, ATM, ATRX, 
BRAF, CBFB, CCND1, DAXX, DDR2, ERBB3, ERBB4, ERCC3, FGFR3, 
FGFR4, GNAQ, KIT, KRAS, MLH1, MLH3, MTOR, MYC, NRAS, NTRK2, 
NTRK3, PML, POLD1, PRKDC, RB1, SF3B1, SMARCA4, TEK, TP53) were 
found to be mutated at both the time points (Supplementary Table ST1). 

Gains and losses of mutated genes in subclones with progression 

A comparison of clonal gains or losses of mutated genes from base-
line to progression in patients is shown in Supplementary Table ST2. The 
most commonly mutated actionable genes included NRAS followed by 
KRAS, TP53, BRAF, GNAQ, NTRK3, APC, RB1 and FGFR3 in descending 
order while mutations were also common in other genes such as TTN, 
RRBP1, FAT3, DNAH5, MUC16, DIS3, USH2A and IRF4 (Supplementary 
Table ST2). 

The genes that showed topmost number of clonal gains or losses with 
progression in MM patients are shown in Fig. 2a. The topmost frequent 

clonal gains were observed in NRAS, RRBP1, TP53, FCGBP, SYNE1, 
KCNMA1, BRAF and MAGI3 while the most frequent clonal losses on 
progression were found among ZFHX3, LAMA1, MASP1 and PTPRF 
(Fig. 2a). All these mutated genes were observed at comparable high 
subclonal levels except RRBP1 that was found at low subclonal levels at 
both the time points (Fig. 2b). Heatmaps in Fig. 3 and Supplementary 
Fig. 1 depict frequencies of clonal losses or gains of mutated actionable 
and non actionable genes in each of the 76 MM patients respectively as 
well as their cytogenetic profiles. 

Comparison of cellular prevalence of mutated genes at baseline with 
progression 

Average%CP of mutated genes at baseline (TP1) and second TP of 
progression (TP2) were calculated with QuantumClone and are plotted 
in Fig. 4. Some of the genes that were clonal (average%CP > = 85%) at 
diagnosis dropped down to low subclonal levels (LOXHD1%CP =
24.871), or high subclonal levels (ICOSLG%CP = 28.972, VCAN%CP =

Fig. 2. Comparison of topmost clonal gains and losses associated with progression of MM. (a) Genes showing largest numbers of clonal gains and losses, and (b) 
parallel comparison of cellular prevalence of genes shown in (a). 
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47.3278, DST%CP = 41.394, RYR2%CP = 66.980, ZNF462%CP =
69.204, GNAQ%CP = 65.122, EGR1%CP = 66.450 and TRRAP%CP =
68.803) on progression (Supplementary Table ST2 and Fig. 4). 
Conversely, a rise in cellular prevalence with progression was also 
observed for other set of genes. The average%CP of MAGI3, PCDHA3, 
COL6A5 and TUSC3 at baseline were 0, 55.157, 61.372,79.871 and 
increased to 55.356, 92.269, 91.531 and 86.732% on progression 
respectively (Supplementary Table ST2 and Fig. 4). 

Patterns of clonal evolution in MM 

QuantumClone analysis revealed most of the patients had 2 founder 
clones (51.3%) followed by 3 (26.3%) and 1 (21.1%) while 4 founder 
clones were rarely observed only in 1.3% of the patients (Fig. 5a). Four 
different patterns of clonal evolution were identified (Fig. 5). Among 

them, branching pattern was the most predominant found in 75% pa-
tients, followed by Linear in 15.8%, Stable in 5.3% and stable with loss 
of clone in 3.9% patients. 

Further casewise details on clonal heterogeneity, individual patterns 
of clonal evolution, trajectories of founder clones and subclones iden-
tified for each of the 76 patients are shown in Supplementary Fig. 2. This 
figure shows fish plots, evolution plots as well as the clinical, therapy 
and demographic details for each patient included in this study. Each 
subclone had unique cluster of mutations that evolved from baseline to 
progression, their detailed molecular profiles, cellular prevalence, 
functional implications and consequences are summarized for each 
sample in Supplementary Table ST3. 

Fig. 3. Heatmap depicting distribution of clonal shifts in actionable genes and cytogenetic aberrations in 76 MM patients categorised on the basis of branching/ non 
branching evolution and number of founder clones. DRV = Driver, DRV_MM = Driver known for MM, ONC = Oncogene, TSG = Tumor suppressor gene. 
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Clonal sweeps and correlations of their co-occurrences 

Fig. 6 shows a corrgram of individual and concomitant clonal shifts 
of pairwise mutated genes with disease progression in MM. Strength of 
Pearsons correlation coefficient r is depicted in lower triangle in Fig. 6 
and in Supplementary Table ST4 while the significant p values are 
shown in upper triangle in Fig. 6 and in Supplementary Table ST5. 

Trajectories of clonal co-gains were identified in at least 3 patients for 
NRAS+MAGI3 genes (p = 0.023, r = 0.283), KRAS+TP53 (p = 0.070, r 
= 0.228), TP53+ SYNE1 (p = 0.003, r = 0.365), while gain of FCGBP was 
observed along with reciprocal loss of FAT3 (p = 2.969E-10, r = 0.689). 
Similar corrplots were also generated for patient subsets grouped on the 
basis of their cytogenetic aberrations (Fig. 6b–f) including hyperdiploid, 
del(1)p, 1q21+, del(17)p and t(11;14) respectively. Fig. 7a shows 

Fig. 4. A comparison of changes in average% Cellular prevalence (%CP) of mutated genes at two time points. Gene mutations were considered as clonal if the%CP 
was ≥ 85%, high subclonal if between <85 to 25% and low subclonal if between <25 to 0.6%. 

Fig. 5. Four types of clonal evolution patterns observed in MM patients. A representative Fishplot corresponding to each of the four patterns of clonal evolution is 
shown in (a) Branching, (b) Linear, (c) Stable, and (d) Stable with loss of clone. 
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Fig. 6. Corrplot showing pairwise Pearson correlation coefficient r values for co-occurrences of clonal shifts in lower triangle and p values of significance in upper 
triangle. *p<0.05 **p<0.01 ***p<0.001. Corrplot (a) refers to total patient cohort; (b) patients with Hyperdiploidy (HD); (c) 1p del; (d) 1q gain; (e) 17p del; and (f) 
samples with t(11;14). 
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Fig. 7. Molecular profiles of mutational land-
scapes and ‘Double hits’ of subclonal shifts 
observed during progression of myelomato-
genesis. (a) Depicts list of co-occurrences of 
mutations in same clones or in different clones 
in patients and the cytogenetic abnormalities, 
(b) Summary of drug pathway genes that may 
act as target genes or are involved in regulating 
drug sensitivities, (c) Cartoon showing three 
types of subclonal shifts (Co-occurring sub-
clonal gains, Co-occurring subclonal gains with 
loss and mutually exclusive) that can be 
observed either within same clone or separate 
clones.. The co-occurring clonal shifts (Co- 
occurring subclonal gains or Co-occurring sub-
clonal gains with loss) act like ‘Double hits’ and 
when present in same clone may promote pro-
gression by altering multiple pathways syner-
gistically whereas mutually exclusive clonal 
shifts tend to result in antagonist synthetic le-
thal interactions that prevent tumorigenesis. 
The pathways triggered by such clonal shifts 
could be explored for development of novel and 
risk appropriate combinatorial therapies.   
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subclonal mutational landscapes of MM patients and co-occurring mu-
tations in same or different subclones, their probable impact on drug 
sensitivities (Fig. 7b) and how the subclonal double hits/ loss of double 
hits and mutual exclusivities could impact myelomatogenesis (Fig. 7c). 

Pathway enrichment analysis at two time points 

The KEGG biological pathways predicted by Enrichr to be altered 
significantly in MM at baseline and on progression are shown in Sup-
plementary Table ST6. The top 10 KEGG pathways significantly 
enriched at TP1 and TP2 are shown in Supplementary Fig. 3a and c 
respectively. These included ECM receptor interaction, Focal adhesion, 
PI3K.Akt signaling, calcium signaling and others. 

The KEGG pathways that were uniquely perturbed at baseline 
included Adherens junction, Hippo signaling pathway, Lysine degrada-
tion and ATP-binding cassette (ABC) transporters while those altered at 
progression exclusively included MAPK signaling, autophagy, cellular 
senescence, apoptosis, protein digestion and others. Similarly, KEGG 
pathways that were predicted to be altered throughout baseline to 
progression included ECM receptor interaction, focal adhesion, Calcium 
signaling, PI3K-Akt signaling, Gap junction and others (Supplementary 
Table ST6). 

Similarly, the top ten hallmark molecular signatures related to 
various cellular processes at baseline and progression are shown in 
Supplementary Table ST6 and Supplementary Fig. 3b and d respectively. 
The topmost significant MSigs included Epithelial mesenchymal transi-
tion, UV response downregulation, Mitotic spindle, Myogenesis and G2- 
M checkpoint at TP1 while Mitotic Spindle, Myogenesis, Epithelial 
mesenchymal transition, UV response downregulation, Apical junction, 
TNF alpha signaling and apoptosis at the time of progression. 

Discussion 

One of the major reasons for why MM remains undetectable at pre-
malignant precursor stages and why it remains incurable is the extent of 
huge interpatient heterogeneity in genomic composition of malignant 
plasma cells and their differential abilities to respond to treatment. This 
highlights the need to identify and better understand clonal evolution of 
mutational landscapes during myelomatogenesis over time. This would 
help dissect out drivers and clinically relevant targets of action spanning 
earliest stages of MGUS/SMM to malignant MM or its relapse. 

We have evaluated evolution of clonal mutational signatures with 
progression in MM. One strength of our study is that we have datamined 
WES of 76 MM patients that have been sampled at multiple time points 
in the largest ever genomic study on MM (MMRF CoMMpass). We have 
used a novel approach of comparing subclonal gains and losses across all 
the patients (Supplementary Tables ST2, ST3), and for the first time 
interpreted pairwise correlations of subclonal co-occurrences and ex-
clusions with progression (Fig. 7). For example, in patient MMRF1137, a 
simultaneous co-gain of mutations in DIS3 and IRF4 was observed within 
the same clone which was also significant in the correlation plot in 
Fig. 6. This patient ultimately died from disease progression. This study 
has, therefore, provided a novel insight on how paired driver mutations 
may preferentially coexist and interact in the same subclones in patients 
with different cytogenetic aberrations. Their subclonal oncogenic de-
pendencies may have a double hit impact, drive drug resistance and 
worsen outcomes. Analysis of differential cytogenetic subgroups 
revealed a few unique significant pairwise correlations (Fig. 6). These 
correlation profiles included BRAF+FAT3, TP53+FAT3, DNAH5+G-
NAQ, BRAF+KCNMA1, MUC16+RRBP1 among patients with hyper-
diploidy; NRAS+DNAH5, RB1+FCGBP, USH2A+FCGBP with 1q gain; 
TP53+FCGBP, NRAS+KCNMA1, RRBP1+KCNMA1, DNAH5+KCNMA1 
with 1pdel; NRAS+DIS3, MUC16+KCNMA1 with 17pdel; and 
BRAF+MUC16, RRBP1+MUC16, APC+FCGBP, FCGBP+MUC16 with t 
(11;14). Further studies will be needed in future to understand the 
biological and clinical impact of such subclonal correlations in MM. 

Our study has revealed three categories of clonal shifts (Fig. 7c). 
Firstly, co-occurring gains of mutations in drivers such as KRAS+TP53, 
SYNE1+TP53, MAGI3+NRAS that may occur in different clones or 
within the same clone and result in collaborative oncogenic ‘Double 
Hits’. The second category is represented by co-occurring subclonal 
gains with gradual loss among FCGBP+FAT3 that may result in loss of 
‘Double hits’ yet oncogenic. The third category includes mutual exclu-
sion of driver genes e.g., NRAS and BRAF (Fig. 7c). In line with earlier 
studies [21], subclonal gains of ‘double hits’ of driver mutations may 
lead to synergistic interactions across different oncogenic pathways and 
promote tumorigenesis. Gradual loss of ‘Double hits’ may also trigger 
different collaborating oncogenic cascade of events and favor progres-
sion. On the contrary, mutual exclusion of other drivers such as NRAS 
and BRAF may jointly activate either redundant or incompatible diver-
gent pathways resulting in oncogenic stress, synthetic lethality and 
prevent tumorigenesis [21]. Mutations in BRAF, NRAS and KRAS genes 
are frequently encountered in MM at frequencies of about 20%, 25% and 
8% respectively. These are involved in the MAPK pathway [53], regulate 
proteasome assembly [54], and are potential targets for checkpoint 
therapy and IMiDs [55]. The mutual exclusion propensities of NRAS and 
BRAF are also well established in case of melanoma [56] and our study 
like others suggests it is operational in MM as well. However, these 
mutually exclusive genes may tend to co-emerge on treatment with RAF 
inhibitors. Co-operativity between KRAS and TP53 has been reported in 
pancreatic cancer [57] and substantiates our findings in the context of 
MM. 

The genes identified to be involved in synergistic or antagonistic 
interactive clonal ‘double hits’ leading to progression in MM in this 
study are key regulatory genes involved in oncogenesis and foster 
further investigations. Gene SYNE1 (alias Nesprin1) Spectrin Repeat 
containing nuclear envelope protein1 is located on chromosome 6q25.2. 
It links actin cytoskeleton to organelles, maintains nuclear polarity, 
spindle orientation and subcellular cellular organization. It has a role in 
nucleotide binding, cell cycle, mitosis, meiosis and DNA damage 
response. It is known to be somatically mutated or silenced by methyl-
ation in breast, prostate, colon, lung cancers, head and neck squamous 
cell carcinoma suggesting its loss of function may promote tumorigen-
esis. It has been reported in an isolated case of MM with drug resistance 
to Bortezomib [58] and needs to be explored further. MAGI3 gene (alias 
KIAA1634) (1p13.2) is a membrane associated guanylate kinase that 
cooperates with PTEN to modulate kinase activity of AKT1. It regulates 
JNK signaling, Ras signaling and phospholipase C pathways. Aberrations 
in MAGI3 have been associated with ovarian cancer and MAGI3-AKT3 
fusions occur in breast cancer. It is a known level 3 presumptive evi-
dence based gene implicated in MMSET group of myeloma [59]. FAT3 
(alias KIAA1989) (11q14.3) is a FAT atypical cadherin3 involved in 
FAT-Hippo signaling and calcium ion binding. It has been associated 
with TMB and poor prognosis in oesophageal carcinoma. It is found in 
4–7% MM patients [60]. The FCGBP (Fc fragment of IgG binding pro-
tein) (19q13.2) gene has been implicated in melanoma and it forms an 
integral component of transcriptional networks in MM [61]. 

In addition to above, we have also analyzed genewise cellular 
prevalence during clonal shifts and shown presence of trajectories 
ranging from clonal to subclonal levels for genes such as LOXHD1 and 
ICOSLG (Fig. 4). Another novel finding of our study is that we have been 
able to compare the actionable mutational blueprints of subclones at 
multiple time points in each patient (summarised in Supplementary 
Table ST3, Supplementary Fig. SF1) that provides a direction to even-
tually infer personalized genome prescribed combinatorial therapies in 
future. This study has analyzed association of subclonal mutational 
gains with probable drug resistance (Fig. 7b). For example, subclonal 
mutations in BRAF, IRF4, NFKB2 and TP53 may affect response to 
Lenalidomide. Similarly, mutations in ATM, CCND1, RB1 etc. are 
involved in Bortezomib response pathway. Hence, regular monitoring of 
subclonal sweeps of driver mutations at diagnosis and at every relapse 
may help predict responsiveness to different drugs. 
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Parallel studies carried out on clonal evolution of MM by others also 
lend support to predominance of branching evolution [30,35,62] as 
observed in our analysis. A similar analysis of sequential WES of 10 
patients from MGUS to MM highlighted that the transformed subclonal 
PC populations identified at MM are already present in asymptomatic 
MGUS/SMM stages and are thus reflective of clonal stability [36]. 
Another study [38] on WES of 19 patients enrolled in MMRF CoMMpass 
genomic project study showed that stable/resistant clones were char-
acterized by concurrent 17pdel and 13qdel, and/or mutations in NRAS, 
DIS3, FAM46C, ROBO1 and CCND1. A longitudinal follow-up of clonal 
trajectories from early initiation or time of diagnosis to malignant 
transformation / relapse may therefore allow identification of subclones 
that are stable/resistant or sensitive to line of treatment [36]. 

A recent study [37] has further proposed that alternate punctuated 
episodes of emergence of new subclones driven to dominance followed 
by their static expansion under positive selection continue across mul-
tiple time windows of myelomatogenesis. This process during early 
initiation prior to SMM leads to preservation of a clonal architecture 
with malignant potential that might expand and evolve further until 
clinical significance. It has been suggested that retention of a parallel 
architecture in MM as of SMM could be probed for better prognostica-
tion and early intervention [37]. 

Conclusions 

The differences in oncogenic genes and associated pathway networks 
at two time points of evaluation reflect a continuum of clonal evolution 
that may be explored as an additional independent mechanism of drug 
resistance observed in clinical practice. Besides, these findings are 
important conceptually as they highlight the need for (1) molecular 
testing immediately before initiating a new therapy especially if aiming 
at a targeted or immune therapy, (2) estimation of cellular prevalence to 
predict the likelihood of the depth of response achievable with targeted 
therapy and rationalized approach on combining multiple therapeutics 
and (3) single cell mutation spectrum profiling at least for patients under 
evaluation in clinical trials with novel therapeutics and to explore the 
relevance of subclonal double hits. 
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