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Objectives: Half of the patients who have tailored resection of the suspected
epileptogenic zone for drug-resistant epilepsy have recurrent postoperative seizures.
Although neuroimaging has become an indispensable part of delineating the
epileptogenic zone, no validated method uses neuroimaging of presurgical target area
to predict an individual’s post-surgery seizure outcome. We aimed to develop and validate
a machine learning-powered approach incorporating multimodal neuroimaging of a
presurgical target area to predict an individual’s post-surgery seizure outcome in
patients with drug-resistant focal epilepsy.

Materials and Methods: One hundred and forty-one patients with drug-resistant focal
epilepsy were classified either as having seizure-free (Engel class I) or seizure-recurrence
(Engel class II through IV) at least 1 year after surgery. The presurgical magnetic resonance
imaging, positron emission tomography, computed tomography, and postsurgical
magnetic resonance imaging were co-registered for surgical target volume of interest
(VOI) segmentation; all VOIs were decomposed into nine fixed views, then were inputted
into the deep residual network (DRN) that was pretrained on Tiny-ImageNet dataset to
extract and transfer deep features. A multi-kernel support vector machine (MKSVM) was
used to integrate multiple views of feature sets and to predict seizure outcomes of the
targeted VOIs. Leave-one-out validation was applied to develop a model for verifying the
prediction. In the end, performance using this approach was assessed by calculating
accuracy, sensitivity, and specificity. Receiver operating characteristic curves were
generated, and the optimal area under the receiver operating characteristic curve
(AUC) was calculated as a metric for classifying outcomes.

Results: Application of DRN–MKSVM model based on presurgical target area
neuroimaging demonstrated good performance in predicting seizure outcomes. The
AUC ranged from 0.799 to 0.952. Importantly, the classification performance
DRN–MKSVM model using data from multiple neuroimaging showed an accuracy of
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91.5%, a sensitivity of 96.2%, a specificity of 85.5%, and AUCs of 0.95, which were
significantly better than any other single-modal neuroimaging (all p ˂ 0.05).

Conclusion: DRN–MKSVM, using multimodal compared with unimodal neuroimaging
from the surgical target area, accurately predicted postsurgical outcomes. The
preoperative individualized prediction of seizure outcomes in patients who have been
judged eligible for epilepsy surgery could be conveniently facilitated. This may aid
epileptologists in presurgical evaluation by providing a tool to explore various surgical
options, offering complementary information to existing clinical techniques.

Keywords: machine learning, epilepsy, neuroimaging, epilepsy surgery, outcome

INTRODUCTION

Surgery for drug-resistant focal epilepsy has been shown to be
superior to medical management (Engel, 2008; Ryvlin et al., 2014;
Moshe et al., 2015; Devinsky et al., 2018). The recommended
surgical treatment is to remove the brain area necessary and
sufficient for generating spontaneous seizures or epileptogenic
zone (EZ, the concept of an EZ represents a theoretical region of
the cortex that if removed would result in seizure freedom)
(Engel, 2008; Ryvlin et al., 2014). Risks of serious adverse
events and surgical failure could be minimized by accurately
locating EZ (Engel et al., 2003b; Andrews et al., 2019). Thousands
of more patients with drug-resistant focal epilepsy underwent
brain surgery to stop their seizures, but half of the patients, on
average, who had tailored resection of the suspected EZ have
recurrent postoperative seizures (Jobst and Cascino, 2015; Jehi
et al., 2015). Therefore, in addition to accurately localizing EZ,
another serious challenge in epilepsy surgery is to accurately
predict surgical outcomes to achieve a favorable patient
risk–benefit balance.

It has been reported that several outcome predictors were
associated with postoperative seizure outcomes (Huang et al.,
2016; Esteva et al., 2017a; Esteva et al., 2017b). However, for any
individual patient considering surgery for epilepsy, the key
question was the individual’s rates of seizure outcomes rather
than a summary of predictors. Multimodal neuroimaging has
become an important and indispensable part of preoperative
delineation of EZ or surgical target area in clinical practice
(LoPinto-Khoury et al., 2012; Burneo et al., 2015; West et al.,
2015; Devinsky et al., 2018; Tang et al., 2018; Yu et al., 2019). To
date, no validated approach has incorporated multimodal
neuroimaging of presurgical target area to predict an
individual’s post-surgery seizure outcome. The differences in
multimodal neuroimaging (Barba et al., 2016; Chassoux et al.,
2017; Gleichgerrcht et al., 2018), different location and size of
surgical target brain regions, and the fusion among multimodal
features made the prediction of surgical outcomes a nontrivial
task (Andrews et al., 2019). In cases like these, machine learning-
powered techniques may be useful because such techniques could
perceive obscure associations between multimodal preoperative
results and postsurgical outcomes in epilepsy surgery candidates
(Gleichgerrcht et al., 2018; Roy et al., 2019).

The subsequent task was how to extract discriminative
features from the different modalities of the volume of interest
(VOI) and combine these features effectively. A deep residual
network (DRN) was adopted as the backbone network due to its
efficiency and stability. A key advantage of DRNwas the ability to
manipulate multimodal data objectively and allow to produce
interim results that the algorithm can readily revise as more data
become available (Bernhardt et al., 2015; Jehi et al., 2015;
Memarian et al., 2015). A multi-kernel support vector
machine (MKSVM) was adopted for the information fusion by
kernel combination, which provided a more effective way to
integrate multiple views of biomarkers (Direito et al., 2017).
DRN–MKSVM applied to multimodal neuroimaging of
surgical target VOI for individualized predictions of seizure
outcomes may be optimally used for this goal and powerful
enough to improve clinical management (Ryvlin et al., 2014;
West et al., 2015; Barba et al., 2016; Dwivedi et al., 2017; Devinsky
et al., 2018; Sidhu et al., 2018; Andrews et al., 2019). Therefore, we
aimed to develop the DRN–MKSVM-derived approach
incorporating multimodal neuroimaging of presurgical target
VOI to predict individual’s postoperative seizure outcomes
and to evaluate the performance of our method with extensive
experiments.

MATERIALS AND METHODS

Patients
Informed consent was obtained from all participants. All
procedures were approved by the Xiangya Hospital, Central
South University institutional review board. The primary
cohort was evaluated according to the medical records from
January 2016 to August 2018. We retrospectively studied the
patients according to the diagnosis of drug-resistant epilepsy
following the International League Against Epilepsy criteria (Berg
et al., 2010) and comprehensive presurgical assessment, including
detailed clinical history and neurological exam, video
electroencephalogram monitor, high-resolution brain magnetic
resonance imaging (MRI), and 18F-fluorodeoxyglucose positron
emission tomography/computed tomography (18F-FDG PET/
CT), neuropsychiatric test, and invasive electroencephalogram
(EEG) monitor when indicated.
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The decision for brain surgery was a consensus of the
comprehensive epilepsy team at the surgical conference. We
excluded patients with hemispherectomy, multilobar
resections, or reoperations. For patients who had multiple
surgeries during the study period, we included only the first
surgery. Routine postoperative follow-up was performed 3 and
12 months after surgery and at yearly intervals after that. All
patients were interviewed in detail for seizure recurrence, if any,
and the date of recurrence. Surgical outcomes were classified as
either seizure-free (SZF, Engel class I) or seizure-recurrence (SZR,
Engel class II through IV) at least 1 year after surgery according to
the Engel surgical outcome scale (Engel et al., 2003a; Engel et al.,
2003b; Berg et al., 2010; Engel and Engel, 2013; Memarian et al.,
2015; Gleichgerrcht et al., 2018).

Image Acquisition and Processing
All patients underwent a structural MRI scan using 3-Tesla
Siemens MAGNETOM Trio, A Tim system. A high-resolution,
three-dimensional (3D) magnetization-prepared rapid
acquisition with gradient-echo T1-weighted sequence was
used to identify structural abnormalities and for co-
registration with PET/CT images [repetition time �
2,300.0 ms, echo time � 3.0 ms, field of view (FOV) � 256 ×
256 mm, slice thickness � 1.0-mm thick contiguous slices, 176
sagittal slices, voxel size 1.0 × 1.0 × 1.0 mm]. Axial and coronal
T2- and fluid-attenuated inversion recovery weighted images,

an oblique-coronal diffusion-weighted imaging sequence, an
oblique coronal T2 mapping sequence, and functional MRI
data were collected for routine clinical investigation and
surgical planning. MRI scans were performed before and
1 month after surgery. 18F-FDG PET/CT examination was
performed on the Discovery Elite PET/CT scanner (GE
Healthcare) before the surgical resection. 18F-FDG was
injected at a mean dose of 3.7 MBq/kg. The acquisition
parameters of CT were as follows: 120 kV; 180 mAs; 0.5-s
rotation time; detector collimation: 40 × 3.75 mm; FOV,
500 × 500 mm2; matrix, 512 × 512. PET images were
acquired in three dimensions; the full width at half
maximum of the scan was 5.4 mm. All images were
reconstructed into a 256 × 256 trans-axial matrix (FOV of
350 mm) using the 3D VUE point ordered-subset expectation-
maximization algorithm with six iterations and six subsets
(Tang et al., 2018; Tang et al., 2020).

Target Volume of Interest Segmentation
We used postoperative T1-weighted MRIs to segment actually
targeted VOI rather than VOI delineated in presurgical
evaluation for each patient. Preoperative MRI, PET, CT,
and postoperative MRI were coregistered using SPM12
software (Wellcome Department of Cognitive Neurology,
London, United Kingdom) on MATLAB. The targeted VOI
of preoperative multimodal neuroimaging was segmented

FIGURE 1 | Illustration of surgical target brain volume of interest (VOI) segmentation. Registration of pre-/postoperative neuroimaging and then used ITK-SNAP
software to segment surgical target VOI. Surgical records further refined final target VOI.
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using ITK-SNAP software (Yushkevich et al., 2006) (www.
itksnap.org). An initial VOI was delineated around the low
signal area of postoperative T1-weighted MRI, and the final
target VOI was further refined by the surgical records
(Figure 1).

Deep Residual Network Training
The DRN structure is shown in Table 1, which had 34 layers
(ResNet-34), 36 convolutions, 36 batch normalization, 34 ReLU,
and 1 Ave Pooling full connection layer. The feature dimension of
the output of the penultimate layer was 512. We pretrained the
network based on the Tiny-ImageNet dataset (https://tiny-
imagenet.herokuapp.com/) to utilize its powerful/
discriminative representation. The image size was 64 × 63 × 3.
To facilitate training, we conducted grayscale processing for the
image. A well-trained DRN had strong representational power
and could capture discriminative features in images by learned
convolution filters (He et al., 2015). Then, we transferred this
DRN to our proposed neuroimaging data as a feature extractor
(Figure 2).

Volume of Interest Multi-View Slice
Extraction
Deep learning methods have substantial challenges remaining in
the specific 3D tasks due to the curse of dimensionality. The
method of multi-view slice extraction could obtain features with
higher information density from the multi-slice images (Xie et al.,
2019). We cropped a minimum circumscribed cube for the parcel
VOI such that it would always be completely in the cube and
reshaped it into a 64 × 64 × 64 cube. Then, we extracted nine 2D
slices from the 3D cube on the transverse, sagittal, coronal, and six
diagonal planes, respectively. In this way, we obtained nine views
of slices with size 64 × 64 for each VOI. For each modal data, we
could collect 4,608-dimensional features by concatenating the
features obtained from the nine slice images.

Attention-Based Mechanism
The cube method might not make good use of the effective
information inside the VOI. We further optimized the process of
feature acquisition using the mask of VOI to perform attention-
based mechanism operations on the images. To improve the
representative information, we achieved such nonuniform
resolution and sparsity by mask-based attention operation
through enhancing the signal inside the mask but reducing the
signal outside the mask (Chariker et al., 2016). The amplifying
factor and suppressing factor were set as 1 and 0.7, respectively,
for appropriate visual effect. After reentering to the ResNet-34,
new features of three models were obtained.

Multi-Kernel Support Vector Machine and
Validation
The information combination provides a more effective
approach to integrating multiple views of biomarkers. The
simplest method was to splice the feature directly. However, it
can be ill-posed due to the high-dimensional curve and the

TABLE 1 | ResNet-34 model structure.

Layer Output size Convolution structure

Input 64 × 64, 1
Conv1 32 × 32, 64 3 × 3, 64, stride 2
Conv2_x 16 × 16, 64 [ 3 × 3, 64

3 × 3, 64
] × 3

Conv3_x 8 × 8, 128 [ 3 × 3, 128
3 × 3, 128

] × 4

Conv4_x 3 × 3, 256 [ 3 × 3, 256
3 × 3, 256] × 6

Conv5_x 2 × 2, 512 [ 3 × 3, 512
3 × 3, 512] × 3

Average Pool 1 × 1, 512
Fc

FIGURE 2 | Illustration of deep residual network (DRN) as feature extraction and transfer. DRN was pretrained on Tiny-ImageNet dataset. Then, backbone of well-
trained DRNwas transferred on different modality images for feature extraction. In the end, feature can be put into a full connection layer or shallow classifier (i.e., Support
Vector Machine, SVM).
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small sample sizes. Moreover, the modality with more
dimensions can easily submerge the modality with fewer
dimensions (Zhang and Parhi, 2015). To address these
issues, we concatenated the MKSVM following to the full
connection layer for information combination. According to
statistical learning theory (Vapnik, 1999), the SVM introduced
a large margin across two classes. Both tight hypothesis and
large margin theory (Joachims, 1998) could effectively
decrease the generalization error and further alleviate the
high-dimensional curve to some extent, which could
effectively decrease the generalization error and further
reduce the risk of overfitting (Direito et al., 2017). In
addition, we calculated the single-kernel DRN-SVM
classification performance of each single-mode
neuroimaging. Due to the small sample size, leave-one-out
cross-validation with MKSVM was performed, which provides
an optimistic estimate of the classification accuracy because all
except one of the subjects are used to train the classifier and has
been used in a similar sample size in many previous studies
(Wee et al., 2012; Dyrba et al., 2015; Rondina et al., 2018; Li
et al., 2019). The performance of different methods was
evaluated by four quantitative measures, including accuracy,
sensitivity, specificity, and area under the receiver operating
characteristic curve (AUC). A diagram that summarizes this
algorithm is shown in Figure 3. The existing models and
analysis process described earlier can be integrated into one,
and data input and results output could be achieved in
one step.

Statistical Analysis
Descriptive statistics were expressed as mean ± standard
deviation or median and interquartile range. Significant
differences between groups were evaluated with the

Student’s t-test or Mann–Whitney U test, when
appropriate, for quantitative variables and with the χ2 test
or Fisher’s test for qualitative variables. Differences between
various AUCs were compared using a Delong test (Delong
et al., 1988). p-values less than 0.05 indicated statistical
significance.

RESULTS

Baseline Characters
As shown in Table 2, 141 patients met the inclusion criteria
after more than 1-year follow-up: 76 men and 65 women;
mean age, 22.3 ± 11.1 years. Seventy-nine of the 141 patients
(56%) obtained an Engel class I outcome. Between SZF and
SZR cohorts, neither all baseline characters (p > 0.05) except
the history of past illness (p � 0.05) nor the location of brain
lobe and histopathology had significant differences.

Overall Prediction Accuracy
In the analysis of this cohort, DRN–MKSVM with the
attention mechanism demonstrated the highest prediction
accuracy compared with all other methods of SZF and SZR
classification. The leave-one-out cross-validation for the
DRN–MKSVM procedure showed that the accuracy,
sensitivity, and specificity were 91.49, 96.20, and 85.48%,
respectively, which demonstrated that MKSVM was
universally better than other methods, including single-
kernel, with/without a mask and multi-kernel without a
mask. It also demonstrated the highest AUC (0.952) and
was significantly better than all single-kernel DRN-SVM
methods (all p < 0.01, Table 3 and Figure 4). There was

FIGURE 3 | Flowchart of algorithm. Manually segment target volume of interest (VOI) in multimodal neuroimaging. Then, automatically extract multi-view slice of
each modal VOI, transfer and fuse features using a well-trained deep residual network (ResNet-34, DRN) and multi-kernel support vector machine (MKSVM) to provide
individualized predictions of seizure outcomes after epilepsy surgery. After that, classification performance of different methods was evaluated by quantitative measures,
including accuracy, sensitivity, specificity, and area under receiver operating characteristic curve. Differences between various areas under receiver operating
characteristic curve were compared using a Delong test. Abbreviations: SZF, seizure-free (Engel class I); SZR, seizure recurrence (Engel class II through IV).
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no significant difference between the AUC of DRN–MKSVM
with a mask and without a mask (0.9520 vs. 0.9036; p > 0.05).

Prediction Accuracy Versus Mode of
Neuroimaging
Prediction accuracy for each different unimodal neuroimaging is
shown in Table 3. For the single-kernel DRN-SVM without a
mask, when each mode independently adopted PET, MRI, and
CT prediction performance of each patient to assess seizure
outcomes, the functional neuroimaging of PET showed the
highest accuracy (78.72%) and AUC (0.8754) compared with
both two structural modes. However, they showed no significant

differences in classifying SZF and SZR (all p > 0.05); the receiver
operating characteristic curves overlapped each other (Figure 4),
which indicated that the sensitivity and specificity of a single-
kernel DRN-SVM had no obvious correlation with the mode of
neuroimaging. These data were confirmed in both with and
without mask methods (all p > 0.05).

For the single-kernel DRN-SVM using the mask of VOI, the
sensitivity of PET was 84.81%, slightly lower than that of CT
(87.34%). The performances of neuroimaging did not show
significant differences between PET and other modes (all p >
0.05). AUCs of MRI, CT increased from 0.7997, 0.8176 to 0.8699,
0.8644, respectively, but AUC of PET had no variation
(0.8754–0.8715). For each mode of neuroimaging, the

TABLE 2 | Baseline characters of patients.

Variable ALL
(n = 141)

SZF
(n = 79)

SZR
(n = 62)

Stat p-value

Sex, female (%) 46.1 34 50 x2 � 0.678 0.41
Age at surgery (mean, SD) 22.3 (11.1) 21.9 (11.1) 22.7 (11.3) t � −0.459 0.636
Age at onset (mean, SD) 11.0 (9.2) 11.7 (10.1) 10.0 (8.1) t � 1.124 0.157
Duration of epilepsy (mean, SD) 11.4 (8.4) 10.2 (8.2) 13.0 (8.5) t � −1.943 0.243
Histopathology (%) x2 � 6.203 0.102
HS 31.9 36.7 25.8
Tumour 2.8 5.1 0
FCD 26.2 21.5 32.3
Others 29 36.7 41.9

MRI result, positive (%) 90.1 92.4 87.1 x2 � 1.094 0.295
Aura (%) 45.4 45.6 45.2 x2 � 0.005 0.946
Family history of epilepsy (%) 2.1 1.3 3.2 x2 � 0.045 0.836
Psychiatric complication (%) 7.1 6.3 8.1 x2 � 0.005 0.946
Lobe of surgery (%) x2 � 2.683 0.612
Parietal lobe 6.4 6.3 6.5
Frontal lobe 19.9 15.2 15.2
Temporal lobe 63.8 67.1 59.7
Occipital lobe 5.7 6.3 4.8
Insular lobe 4.3 5.1 3.2

History of past illness (%) x2 � 7.859 0.05
FS 17 20.3 12.9
Injury 7.1 3.8 11.3
History of CNS infection 4.3 1.3 8.1
Without 71.6 74.7 67.7

Months since surgery (mean, SD) 23.7 (10.7) 21.8 (9.4) 26.2 (11.8) t � −2.453 0.076

NOTE. p-value is derived from univariable association analyses between each of clinicopathologic variables and surgical outcome. Abbreviations: CNS, central nervous system; FCD, focal
cortical dysplasia; FS, febrile seizure; HS, hippocampal sclerosis; m, month; MRI, magnetic resonance imaging; SD, standard deviation; SZF, seizure-free (Engel class I); SZR, seizure-
recurrence (Engel class II through IV).

TABLE 3 | Prediction performance of different predictive methods.

Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC

CT 70.92 73.41 67.74 0.8176
MRI 71.63 73.41 69.35 0.7997
PET 78.72 82.27 74.19 0.8754
Multi-Kernel 85.11 91.14 77.42 0.9036
CT + Mask 80.14 87.34 70.96 0.8644
MRI + Mask 80.14 83.54 75.81 0.8699
PET + Mask 82.27 84.81 79.03 0.8715
Multi-Kernel + Mask 91.49 96.20 85.48 0.9520

aThe bold values indicate the maximum value of the column.
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performance of single-kernel DRN-SVM with and without mask
had no significant difference.

DISCUSSION

Advances in neuroimaging and the development of methods for
data postprocessing had made the delineation of EZ more
accurate, which could improve the likelihood for postsurgical
seizure freedom (Chassoux et al., 2010; West et al., 2015; Sidhu
et al., 2018). Moreover, many predictors of surgical prognosis
have been identified, and multi-informative indicators have been
used to generate predictive models of seizure outcome (Jehi et al.,
2015; Memarian et al., 2015; Gleichgerrcht et al., 2018). However,
studies have shown that some comprehensive predictors of
neuroimaging and clinical characteristics were often complex
and multiple contradictory and only effective for groups rather
than individuals (Englot and Chang, 2014). An instrument based
on patient or foci centered on providing individualized
predictions of seizure outcomes assessment measure does not
exist, and at present, a high proportion of patients who have
resective brain surgery for drug-resistant epilepsy have recurrent
postoperative seizures (de Tisi et al., 2011; Jehi et al., 2015). In this
study, we sought to probe whether we could predict individual’s
seizure outcomes after epilepsy surgery based on combining
patient or foci-centered neuroimaging with a machine
learning-derived approach, which demonstrated good
performance in predicting seizure outcomes.

Once the target VOI of neuroimaging was identified during
presurgical assessment, our deep learning approach could
automatically obtain an individualized prediction of seizure
outcomes. The representational feature learning and the
classification model played two key roles in such prediction.
DRN provided a competitive way to detect strong
representational power features of images. In addition, the
residual network framework was easier to optimize and gain
accuracy from considerably increased depth (He et al., 2015), not

only exhibiting high effectiveness in several general image
classification tasks when the dataset was large but also easily
transferring its knowledge to perform specific tasks or solve small
sample problem (Bengio et al., 2011; Guyon et al., 2012; Zhang
et al., 2017). Here, we transferred DRN from Tiny-ImageNet to
extract features to identify better patterns of multimodal
neuroimaging associated with seizure-free vs. seizure-
recurrence in a patient population. In particular, to utilize the
available multimodal data to predict surgical outcomes, we
concatenated MKSVM after DRN for a better fusion of the
information from different modalities (Zhang and Parhi, 2015;
Direito et al., 2017). Despite variations in seizure type, underlying
pathology, volume, and location of intractable EZ, excellent
performance (AUC ranged from 0.799 to 0.952) of this
approach in the cohorts valued its usefulness.

MKSVM method was for better application in clinical
practice. In the absence of one or more preoperative data
modalities, even when only one modality was available, this
method could still be used to predict the surgical outcomes.
However, there were no significant differences among those
three modes in classifying SZF and SZR. 18F-FDG PET might
show the highest accuracy and AUC in the assessment of
metabolic features compared with MRI and CT (with mask,
accuracy, 82.27, 80.14, and 80.14% and AUC, 0.8715, 0.8699,
and 0.8644, respectively; p ˃ 0.05). Some studies have indicated
that 18F-FDG PET could provide more relevant information
about the EZ extent and improved surgical outcomes compared
with MRI (Choi et al., 2003; Chassoux et al., 2010; Guedj et al.,
2015; Chassoux et al., 2017), and the predictive values of
18F-FDG PET and electroclinical features were consistent
(Chassoux et al., 2004; Rusu et al., 2005; Guedj et al., 2015;
Chassoux et al., 2016). DRN with single-kernel SVM of PET
only showed a similar trend, most likely because the population
size and follow-up were insufficient (Choi et al., 2003; Chassoux
et al., 2004). Existing practices and guidelines for epilepsy
surgery demonstrated that CT might not be recommended
solely for preoperative localization of EZ for the restricted

FIGURE 4 | Comparison of receiver operating characteristic curves between different methods. (A) Multi-/single-kernel deep residual network without mask
attention operation; (B)multi-/single-kernel deep residual network with mask (MK + M); (C) all receiver operating characteristic curves fuse together. Multi-kernel fusion
and introduction of mask can effectively improve prediction effect of prognosis because multi-kernel mode utilizes information from different modes more effectively and
provides greater information support, whereas introduction of mask can provide more precise and accurate information and reduce impact of noise. Multi-kernel
and mask attention operation (MK +Mask) are more favorable than other single-modemethods [p-values are 0.00006 (CT), 0.00003 (MRI), 0.0104 (PET), 0.00141 (CT +
mask), 0.00007 (MRI + mask), and 0.00692 (PET + mask), respectively, at a confidence level of 0.05] using Delong test. Multi-kernel methods without attention
mechanism are also significantly improved compared with other single-mode methods using Delong test [p-values are 0.017 (CT), 0.0003 (MRI), and 0.0103 (PET),
respectively]. Abbreviations: FPR, false-positive rate; TPR, true-positive rate.
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contrast resolution (Engel et al., 2003a; Engel et al., 2003b;
Ryvlin et al., 2014). As CT data were available after 18F-FDG
PET/CT examination, CT could serve as an important model for
surgical outcomes in patients with epilepsy using
DRN–MKSVM. Based on the MKSVM approach, kernel
function and regularization parameters of the classifier could
be flexibly customized, and the best prediction results could be
obtained by freely combining the available data at hand.

Although more epilepsy surgery centers have been established,
clinical guidelines recommend more systematic assessment on
presurgical assessment than is seen at present; a huge unmet need
in the decision-making of analytic model among physicians is
also likely to preclude many patients from surgery (Erba et al.,
2012). This modeling needs to apply some of the scientific rigor to
the decision-making of patients and neurosurgeons, particularly
when the decision in question is as significant as brain surgery.
For any individual patient considering surgery for epilepsy, the
crucial question for deciding resection of suspected EZ is the
individual’s odds of postoperative freedom from seizures. For

epileptologists, they could potentially send an earlier referral to
epilepsy surgery for patients who are deemed favorable
candidates. Patients have the opportunity to achieve seizure
freedom, which was generally unpredictable before surgery.
Previous studies suggested that overestimation of risks and
underestimation of postoperative freedom from seizures by
neurologists and patients were barriers to wider surgery for
patients (Erba et al., 2012; Hrazdil et al., 2013); thus, surgical
treatment for epilepsy failed to expand during the past decade and
remained one of the most underused but effective therapeutic
interventions in medicine (Engel, 2008; Gomez-Alonso, 2012;
Cloppenborg et al., 2016).

Overall, we demonstrated that the optimal classificationmodel
derived from a combination of multimodal neuroimaging and
DRN–MKSVM had an accuracy of 91.49%, which provided an
objective and quantifiable estimate of postoperative seizure
outcome. According to the predicted results, the presurgical
planning was revised in time to facilitate simultaneous control
of epilepsy and minimize complications (Figure 5). Those, in
turn, would likely reduce the psychosocial burden and improve
the quality of life for patients. Given that only half of the patients
achieve seizure control based on current presurgical evaluation,
our approach was almost 40% more accurate than clinical
assessment alone in predicting surgical outcomes (Englot and
Chang, 2014; Ryvlin et al., 2014; Moshe et al., 2015; Barba et al.,
2016; Devinsky et al., 2018; Andrews et al., 2019). In fact, some
algorithms using some clinical variables or brain connectome of
functional MRI of patients showed approximately 70–80%
accuracy (de Tisi et al., 2011; Jehi et al., 2015; Gleichgerrcht
et al., 2018; Bharath et al., 2019), whereas some studies revealed
that outcomes were predictable with an estimated accuracy of as
much as 90% in temporal lobe epilepsy (Armananzas et al., 2013;
Memarian et al., 2015; Bharath et al., 2019). However, these were
not patient or foci-centered and had no guiding effect on how to
optimize preoperative area (Engel et al., 2003a; Engel et al., 2003b;
Ryvlin et al., 2014).

The most important argument for the use of our approach
was focused on the interpretation of the individual need of
epileptologist and presurgical assessment. The decision to
undergo surgery for epilepsy depended on multiple factors,
not solely the chances of freedom or recurrence from seizures.
Our approach showed a moderate specificity of 85%,
indicating that some patients are predicted by our
algorithm to SZR after surgery, and the true seizure
outcome may be SZF. This requires us to fully integrate
the clinical data of each patient in the clinical application
of this approach, including the coincidence of clinical
symptomology with EEG and imaging, the effect of drug
treatment, and the necessity of surgery. Some patients may
reduce the frequency or severity of epilepsy and may also
benefit from epileptic surgery. Of course, this needs to be
combined with an epileptologist to fully evaluate and
communicate with the patient before considering surgical
treatment. Our approach was not meant to replace the clinical
judgment but rather to enrich it by providing an objective and
quantifiable estimate for one key decision driving factor
(postoperative seizure outcome). In addition, the use of a

FIGURE 5 | Flow chart of DRN–MKSVM clinical application. Patient’s
preoperative multi-neuroimaging is coregistered, and surgical target volume of
interest (VOI) can be segmented during presurgical assessment. Then, we can
obtain individualized prediction of seizure outcomes based on deep
residual network and multi-kernel support vector machine (DRN–MKSVM) of
multimodal neuroimaging VOI. presurgical VOI could be timely revised
according to predicted results so that patients could avoid postoperative
epilepsy recurrence and reduced complications caused by excessive
lobectomy. Proposed method is objective, automated, and fast. Both patients
and epileptologists may benefit from optimizing VOI of surgery planning,
objective and quantifiable prediction of seizure outcomes. Abbreviations: SZF,
seizure-free (Engel class I); SZR, seizure-recurrence (Engel class II through IV).
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patient-specific prediction approach by an epileptologist,
surgical planning, or VOI of resection can be adjusted in
time to ensure the favorable overall outcome of the surgery.
Therefore, the DRN–MKSVM approach might have the
potential, if used correctly, to increase the number of
patients with epilepsy referred for surgical treatment in a
timely manner; even those who are not candidates for surgery
might benefit from giving up surgical treatment and choosing
other medical management.

There are several limitations in the current study that must be
considered when interpreting our findings. Our data were
collected retrospectively and derived from a limited number of
patients. In addition, preoperative EEG data and results of more
sophisticated diagnostic tests such as ictal single-photon emission
computed tomography and invasive EEG were not analyzed in
the study. Such data might contribute to better identification of
EZ and interpretation of surgical failures (Barba et al., 2007; Ohta
et al., 2008; Ryvlin et al., 2014; West et al., 2015; Bartolomei et al.,
2017; Devinsky et al., 2018; Andrews et al., 2019), but they were
rarely used in the delineation of surgical target VOI during the
presurgical assessment. Our instrument did not include other
important outcomes of interest after epilepsy surgery, such as
quality of life, mood, and psychosocial functioning. Moreover, we
used an inferior outcome metric of 1 year Engel class I, as
opposed to 5 years Engel Ia (or International League Against
Epilepsy 1a), which is known to be a better marker for true long-
term success in surgery (Jehi et al., 2015). It is known that patients
who have an initially good outcome over time go into relapse; it is
well documented that short-term (i.e., 1-year outcomes) are often
overly optimistic compared with longer-term outcomes. We
excluded a few types of specific surgery such as
hemispherectomy and multilobar surgeries or reoperations
because they are rarely done and have specific outcome
indicators that probably require another individual instrument.
And finally, we only applied leave-one-out validation to verify the
prediction without external validation. Further investigation
focusing on external verification, handling small and
imbalanced data will be our future work; we will continue to
use some sophisticated machine learning algorithms and patient’s
clinical and imaging data, cooperating with other epilepsy surgery
centers to develop more internal and external validation, which
may better predict prognosis of epilepsy surgery and serve
patients with refractory epilepsy who have the opportunity to
undergo surgery.

CONCLUSION

This study demonstrated that DRN–MKSVM, using
multimodal compared with unimodal neuroimaging from
the surgical target area, accurately predicted postsurgical
outcomes. The preoperative individualized prediction of

seizure outcomes in patients who have been judged eligible
for epilepsy surgery could be conveniently facilitated. This
may aid epileptologists in presurgical evaluation by providing
a tool to explore various surgical options, offering
complementary information to existing clinical techniques,
which should be allowed to harmonize best practices and
translated into safer and more effective epilepsy surgery.
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