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Abstract: Recent technological developments in single-cell RNA-seq CRISPR screens enable high-throughput 
investigation of the genome. Through transduction of a gRNA library to a cell population followed by 
transcriptomic profiling by scRNA-seq, it is possible to characterize the effects of thousands of genomic 
perturbations on global gene expression. A major source of noise in scRNA-seq CRISPR screens are ambient 
gRNAs, which are contaminating gRNAs that likely originate from other cells. If not properly filtered, ambient 
gRNAs can result in an excess of false positive gRNA assignments. Here, we utilize CRISPR barnyard assays 
to characterize ambient gRNA noise in single-cell CRISPR screens. We use these datasets to develop and train 
CLEANSER, a mixture model that identifies and filters ambient gRNA noise. This model takes advantage of the 
bimodal distribution between native and ambient gRNAs and includes both gRNA and cell-specific normalization 
parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of 
CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient 
distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes 
and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy. 
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Introduction 
Single-cell RNA-seq CRISPR (e.g., perturb-seq)1 screens are powerful tools to conduct high-throughput 
functional genomic mapping2. Perturb-seq screens have proven to be instrumental in efforts to understand both 
basic biology (i.e. gene function and cellular behavior) and human disease (i.e. cancer biology and complex 
genetic disorders)1,3–6. In droplet-based perturb-seq, cells are typically transduced with lentivirus encoding a 
gRNA library and then partitioned into distinct droplets so that transcripts from each cell can be tagged with a 
unique molecular identifier (UMI) and cell barcode (CB)7. At a low multiplicity of infection (MOI), the majority of 
cells contain only one gRNA integration. Alternatively, in experiments where cells are transduced at a high MOI, 
there are multiple gRNA integrations per cell. This allows for fewer cells to be profiled in order to obtain the same 
coverage of each gRNA. In both methodologies, cells expressing a gRNA are compared to cells harboring 
alternate targeting gRNAs and/or negative control gRNAs to determine the impact of a perturbation on gene 
expression8–10. 
 
In perturb-seq experiments, gRNAs can be captured and identified through the use of CROP-seq11 or direct 
capture lentiviral vectors12. Following lentiviral integration into the target cell genome, the CROP-seq vector 
expresses both an RNA polymerase III (pol III)-transcribed gRNA and an RNA polymerase II (pol II)-transcribed 
poly-adenylated transcript containing the corresponding gRNA. While pol III gRNAs are not captured by typical 
scRNA-seq methods using polyT priming, the CROP-seq pol II mRNA is captured alongside all other poly-
adenylated transcripts, allowing for the assignment of gRNAs to each cell. Alternatively, the direct capture system 
expresses a modified gRNA harboring a capture sequence in the hairpin region that is targeted by sequence 
probes during RNA tagging. In both CROP-seq and direct capture systems, two libraries are generated from 
each cell: (1) the gene expression library containing cellular mRNA and (2) the CRISPR feature library containing 
sequences representing the gRNAs. 
 
Previous studies have demonstrated the presence of ambient mRNAs represented by low UMI counts in gene 
expression libraries generated from single-cell RNA-seq experiments that confound downstream analyses13,14. 
These ambient mRNAs are attributed in part to cell lysis, exosome transfer between cells, PCR chimeras, and/or 
barcode swapping13,15–18. Similarly, the presence of ambient noise in CRISPR gRNA libraries generated during 
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perturb-seq screens is supported by the overabundance of low UMI transcripts observed in these libraries9,10,19. 
These contaminating transcripts include both ambient mRNAs within CROP-seq gRNA libraries and ambient 
gRNAs within direct capture gRNA libraries, referred to herein collectively as 'ambient gRNAs'. The presence of 
these ambient gRNAs contributes to false positive gRNA-cell assignments and a decrease in the sensitivity of 
downstream differential expression analyses. Single-cell experiments mixing human and mouse cells, known as 
‘barnyard’ experiments, have been used to investigate the abundance and sources of ambient mRNA 
contamination13. However, ambient gRNAs in perturb-seq libraries have yet to be systematically characterized 
to understand the abundance and source of ambient gRNA contamination. As a result, the accurate filtering of 
ambient gRNA noise while retaining native (integrated and expressed) gRNA transcripts during bioinformatic 
assignment of gRNA to cells continues to be a statistical challenge in perturb-seq screens. 
 
Several filtering strategies have been used to remove ambient gRNA noise in perturb-seq libraries. The most 
commonly used approach applies a singular UMI threshold as a requisite cutoff for assignment to any cell.10,20 
However, this method is ad hoc and does not capture possible gRNA-specific or cell-specific biases. More 
recently, a number of mixture proportion methods have been developed, including the gRNA assignment 
modules in SCEPTRE, FBA, and Cellranger (10x’s Mixture Model)21–23. These methods improve upon the strict 
UMI cutoff by addressing gRNA- and/or cell- specific biases. However, to our knowledge, no gRNA assignment 
method uses mixtures that are fit to experimental data where ambient gRNAs are known. Experimental data with 
ground truth information can be used to improve model accuracy and gain biological insight regarding variables 
important to a model’s performance. In addition, the 10x Mixture Model fails to address cell-specific biases and 
has a restrictive license, making it unmodifiable to fit unique experimental considerations. Although all models 
can be applied to both CROP-seq and direct capture datasets, it is unclear how the accuracy of each model 
varies for each capture system. Therefore, there is a need for an ambient gRNA filtering method that (1) takes 
into account gRNA- and cell-specific biases, (2) is trained on a dataset of ground-truth ambient gRNAs for both 
CROP-seq and direct capture libraries, and (3) is open source to be further modified as new CRISPR 
methodologies are developed. 
 
Here, we develop CRISPR Library Evaluation and Ambient Noise Suppression for Enhanced scRNA-seq 
(CLEANSER), a gRNA-cell assignment method that uses a mixture of two distinct distributions to model ambient 
and native gRNA presence in perturb-seq CRISPR libraries. We conducted a scCRISPR barnyard experiment, 
in which human and mouse cells are transduced with distinct gRNA libraries and mixed to experimentally 
characterize ambient gRNA contamination in perturb-seq experiments. The components of CLEANSER are 
trained on CROP-seq and direct capture scCRISPR barnyard datasets. CLEANSER takes into account gRNA- 
and cell-specific biases and generates a probability value of whether or not a gRNA is expressed natively in a 
cell or is likely ambient and therefore removed from analysis. We benchmark CLEANSER against current filtering 
methods on publicly available CROP-seq10 and direct capture20,24 perturb-seq datasets. We quantify the 
presence of ambient gRNA noise in single-cell CRISPR libraries and determine ideal approaches for increasing 
gRNA-cell assignment accuracy through a combination of experimental and computational approaches. We 
show CLEANSER is compatible with both CROP-seq and direct capture experimental platforms and can improve 
the sensitivity of downstream differential gene expression analysis compared to a strict UMI cutoff and the 10x 
Mixture Model. CLEANSER is publicly available and packaged in a command-line interface. 
 
Results 
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Discordance of gRNA-cell assignments using current ambient filtering methods 
 
We first aimed to compare the gRNA-cell assignments produced by current ambient filtering methods. We 
applied a 5 UMI cutoff (≥5 UMIs/gRNA and ≥1% of total gRNA UMIs in the cell) and the 10x Mixture Model 

(provided in the CellRanger package from 10x Genomics) to a high MOI CROP-seq dataset profiling K562 
dCas9KRAB cells10,20,25. The resulting MOIs ranged from 16.5 for the 5 UMI cutoff to 18.1 for the 10x Mixture Model 
(Figure 1A). Although 818,207 gRNA-cell assignments were concordantly assigned by both methods, we 
observed 93,292 additional assignments identified only by the 10x Mixture Model, and only 2 assignments 
uniquely detected by the 5 UMI method (Figure 1A). Overall, these data demonstrate a substantial discordance 
in the outputs generated by commonly used gRNA-cell assignment methods and underscore the current gap in 
our understanding of how to accurately filter ambient gRNAs. 
 
UMI variability between CROP-seq and direct capture CRISPR feature libraries 
 
To better understand the variability of filtering methods across different perturb-seq platforms and cell types, we 
systematically characterized the distribution and abundance of gRNA UMIs across two widely used 3' scRNA-
seq gRNA capture methods, CROP-seq and direct capture perturb-seq, in HEK293T (human) cells and NIH3T3 
(mouse) cells which had both been engineered to express the dCas9KRAB transcriptional repressor. We generated 
two distinct non-targeting libraries of 100 gRNAs each (gRNA library #1 and gRNA library #2, Tables S1-2) that 
were both cloned into either a CROP-seq or direct capture vector. For both CROP-seq and direct capture 
barnyard experiments, gRNA library #1 was transduced into HEK293T dCas9KRAB cells, while gRNA library #2 
was transduced into NIH3T3 dCas9KRAB cells at an estimated MOI of 10 (Figure 1B). Samples were processed 
in separate channels of a 10x Genomics Chromium X platform, resulting in 7,299-9,864 high-quality cells per 
replicate (Figure S1A). To initially evaluate the distribution of all captured gRNAs, we assigned gRNAs to cells 

based on the presence of a UMI count of ≥1 within each cell. 
 
We observed that gRNA UMI counts generated from the CROP-seq system exhibited a ~20-fold lower magnitude 
and smaller variance (Figure 1C, Figure S1B) compared to those generated by the direct capture system in 
both cell types (Figure 1D-E, Figure S1C). The differences in the number of detected UMIs per gRNA-cell 
pairing between the two systems may be due to variability in the expression, stability, and/or capture efficiencies 
of RNA pol II transcripts captured through the CROP-seq system and RNA pol III transcripts captured using the 
direct capture perturb-seq system. To assess differences in the relative RNA levels of pol II and pol III transcripts 
in the CROP-seq vector, we transduced HEK293T dCas9KRAB cells with a single non-targeting gRNA (sgNT-73). 
This gRNA demonstrated a 20-fold increase in mean direct capture UMIs per cell compared to CROP-seq in the 
HEK293T dCas9KRAB perturb-seq datasets, representing characteristics of a typical library #1 gRNA (Figure 
S1D). Using RT-qPCR, we show that the sgNT-73 pol III transcript was ~10x more abundant than the pol II 
transcript (Figure 1F), which likely explains the differences in magnitude that are detected between CROP-seq 
and direct capture vectors. 
 
To examine the variability of gRNA UMIs detected in the CROP-seq and direct capture perturb-seq datasets, we 
partitioned gRNAs into quantiles based on their mean observed UMIs across all cells within each dataset. For 
the CROP-seq dataset, the distribution of gRNA UMI counts was relatively consistent across gRNA quantiles in 
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NIH3T3 dCas9KRAB (Figure 1G) and HEK293T dCas9KRAB cells (Figure S1E), with an increase of 1.2-fold across 
quantiles for both cell lines. Conversely, the direct capture dataset distribution of gRNA UMI counts across 
quantiles differed by 5-13 fold in both NIH3T3 dCas9KRAB (Figure 1H) and HEK293T dCas9KRAB cells (Figure 
S1F). These biases may be due in part to variability in gRNA expression, stability, and/or capture efficiency of 
the pol III transcript. This indicates that the gRNA-to-gRNA biases are more pronounced for the pol III transcript, 
and therefore are a more significant concern for direct capture compared to CROP-seq libraries. 
 
We evaluated the concordance of current methods of ambient gRNA removal across both CROP-seq and direct 
capture systems. gRNA-cell assignments were compared after filtering out ambient gRNAs using (1) a 5 UMI 
cutoff (≥5 UMI and ≥0.5% of total gRNA UMIs in the cell) or (2) the 10x Mixture Model10,20,25. The majority of 
gRNA-cell pairs were concordantly assigned for both CROP-seq (42,242 and 46,771 gRNA-cell assignments, 
Figure 1I, Figure S1G) and direct capture (38,829 and 15,575 gRNA-cell assignments, Figure 1J, Figure S1H). 
For CROP-seq, the 10x mixture model uniquely identified 271 and 9,346 additional gRNA-cell pairs and the 5 
UMI cutoff identified no additional gRNA-cell pairs (Figure 1I, Figure S1G), similar to our analysis of the 
published CROP-seq dataset10 (Figure 1A). For direct capture, a maximum additional 628 and 2,370 gRNA-cell 
pairs were uniquely identified by either the 10x Mixture Model or the 5 UMI cutoff, respectively (Figure 1J, Figure 
S1H). This suggests the 5 UMI cutoff may overestimate the number of gRNA-cell assignments for direct capture 
experiments, likely a result of the higher expression level, detection rate, and UMI count variance of the pol III 
transcript (Figure 1F, Figure S1D). Increasing the stringency of the UMI cutoff decreased the number of unique 
assignments identified by the strict UMI cutoff method (Figure S1I-J). However, this results in a corresponding 
increase in the number of unique assignments identified by the 10x Mixture Model. The non-overlapping 
categorization of gRNA-cell assignments using different filtering methods is substantial and may have significant 
effects on downstream differential gene expression analysis of perturb-seq screens. 
 
CRISPR barnyard assay for detection of ambient gRNAs 
 
To more accurately characterize the abundance, distribution, and source of ambient gRNAs in CROP-seq and 
direct capture perturb-seq screens, we conducted scRNA-seq CRISPR barnyard assays. In these experiments, 
we profiled ~5,000 human HEK293T dCas9KRAB cells transduced with gRNA library #1 (CROP-seq or direct 
capture) that were mixed with ~5,000 mouse NIH3T3 dCas9KRAB cells transduced with gRNA library #2 (CROP-
seq or direct capture) at an estimated MOI of 10 gRNAs/cell. This design provides ground truth confidence in 
distinguishing transduced (native plus ambient) and non-transduced (ambient) gRNA distributions. The human-
mouse cell mixtures were prepared by two approaches: (1) immediate mixing just prior to loading the 10x chip, 
referred to as “non-co-cultured”, and (2) pre-mixing followed by a three-day co-culture, referred to as “72 hour 
co-cultured” (Figure 2A). Each cell was assigned to a species, either mouse or human, when >90% of the gene 
transcripts mapped to only one species. The remaining cells were assigned as human-mouse multiplets. The 
number of high quality individual cells ranged from 7,217-7,887 per experiment and the proportion of multiplet 
cells ranged from 0.9-12.7% (Figure S2A). 
 
Characterizing ambient RNAs in CRISPR feature barcode libraries 
 
To determine the prevalence of ambient gRNA-cell assignments in perturb-seq screens, we calculated the total 
fraction of non-transduced/transduced gRNA library transcripts in each mouse and human cell. The fraction of 
non-transduced gRNA assignments in a cell ranged from 0-100% for the CROP-seq and direct capture libraries, 
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indicating considerable variation in the presence of ambient gRNA library noise across cells in perturb-seq 
screens (Figure 2B, Figure S2B). The direct capture dataset had a smaller median fraction of non-transduced 
gRNA library transcripts (0.0%-0.1%) relative to the CROP-seq dataset (1.5%-8.9%). This is likely due to 
increased library complexity as a result of increased expression of the pol III transcript (Figure 1F, Figure S1D), 
and therefore, decreased sequencing depth of the direct capture gRNA libraries. Overall, we did not observe a 
significant increase in non-transduced transcript abundance in the 72-hour co-cultured samples relative to the 
non-co-cultured samples, indicating the majority of ambient contamination occurred during droplet generation 
and/or the single-cell library preparation, rather than exchange of gRNAs between cells during co-culture (Figure 
S2B). The mean UMI count of transduced gRNAs compared to non-transduced ambient gRNAs was 7-13-fold 
greater for CROP-seq (Figure 2C) and 50-266-fold greater for direct capture (Figure 2D, Figure S2C-D). These 
data support the conclusions that ambient gRNA assignments are characterized by low UMI counts, ambient 
gRNAs originate from other cells, and the direct capture platform produces a higher range of separation between 
native and ambient gRNAs compared to CROP-seq. 
 
Given the observation of global gRNA-to-gRNA biases in our non-barnyard direct capture datasets (Figure 1G-
H, Figure S1E-F), we determined if the transduced and non-transduced gRNA profiles observed in the barnyard 
datasets also exhibited gRNA-to-gRNA biases. The median UMI counts for transduced and non-transduced 
CROP-seq gRNA assignments were approximately consistent across gRNA quantiles (Figure S2E-F). However, 
the median UMI counts for transduced and non-transduced direct capture gRNA assignments varied across 
quantiles, indicating substantial gRNA-to-gRNA bias (Figure S2G-H). This is consistent with our previous 
observation of gRNA-to-gRNA biases in the non-barnyard direct capture perturb-seq datasets. 
 
Previous studies have demonstrated a correlation in UMI abundance of native and ambient mRNA transcripts13. 
Therefore, we determined if gRNAs with a larger abundance in the plasmid pool (prior to lentiviral packaging) 
and/or gRNAs with a larger number of DNA integrations after lentiviral transduction contribute more to the non-
transduced ambient population. The relative abundance of each gRNA in the four plasmid pools (CROP-seq 
library #1 and #2; Direct capture library #1 and #2) was correlated with the relative number of genomic DNA 
(gDNA) integrations for both HEK293T dCas9KRAB and NIH3T3 dCas9KRAB cells (Figure S2I-J). The relative 
number of gDNA integrations was strongly correlated with non-transduced UMI counts for the CROP-seq dataset 
(Figure 2E). However, we observed a discrepancy in direct capture libraries, where gRNAs with larger and 
smaller mean total UMI counts had more and fewer non-transduced UMI counts, respectively, compared to their 
corresponding gDNA counts (Figure 2F). We did not observe this trend for CROP-seq gRNAs (Figure 2E). This 
indicates the pol II transcript correlates well with vector DNA integration number, while the pol III transcript does 
not. This may reflect gRNA-to-gRNA biases in transcription efficiency and stability of the pol III transcript that are 
not reflected in the pol II transcript. This is consistent with our observation of larger gRNA-to-gRNA bias in the 
direct capture libraries compared to CROP-seq libraries (Figure S2E-H). In addition, we found gRNAs with larger 
transduced UMI counts contribute more to the non-transduced distribution in CRISPR feature libraries. The 
number of transduced UMI counts at the gRNA level was highly correlated to non-transduced UMI counts for 
both CROP-seq (Figure 2G) and for direct capture (Figure 2H). Together, these data support that gRNAs that 
are more highly represented in the original gRNA library plasmid pool are also more often integrated in 
transduced cells, which ultimately leads to higher ambient contamination of those gRNAs in other cells. 
 
To further characterize the source of ambient gRNA contamination, we compared non-transduced gRNA profiles 
detected in cell-containing droplets to empty droplets. We distinguished empty droplets from cell-containing 
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droplets based on the total number of UMI counts detected in the gene expression libraries (Figure 2I). We find 
a similar abundance of gRNA UMI counts in empty droplets compared to non-transduced gRNAs in cell-
containing droplets, indicating that gRNAs present in the experimental buffer are the main contribution to ambient 
noise in CRISPR feature libraries (Figure 2J-K). We wash cells 3x before loading onto the 10x chip (Methods), 
which indicates that this degree of washing is not sufficient to remove ambient gRNA contamination. This is in 
line with previous findings for ambient mRNAs present in gene expression libraries13. 
 
Next, we reasoned that the number of gRNAs with low UMI counts detected in a cell is a representative metric 
for cell-to-cell biases such as variation in capture efficiency, reaction efficiencies, and sequencing depth given 
that deeper sequencing of an individual cell will uncover rarer transcripts. We compared the sum of low UMI 
count gRNAs to the sum of non-transduced gRNA UMI counts detected in each cell, finding a significant 
correlation for both the CROP-seq (Figure S2K) and direct capture datasets (Figure S2L). This indicates that 
cell-to-cell biases in sequencing depth influence the number of non-transduced gRNA UMI counts detected in a 
cell. 
 
Through an experimental approach, we have determined the factors that influence native and ambient gRNA 
UMI distributions (Figure 2L). These single-cell CRISPR barnyard screens provide evidence for four major 
contributors to a gRNA’s native UMI abundance: (1) the gRNA capture system, (2) a gRNA’s abundance in the 
plasmid library and/or transduced pool of cells, (3) a gRNA’s bias in expression and/or capture efficiency, and 
(4) cell-to-cell biases in reaction efficiencies and sequencing depth. gRNAs that are expressed from a direct 
capture vector, gRNAs that are more abundant in the transduced pool of cells, and gRNAs with higher capture 
efficiencies generate a larger number of native UMI counts. These native gRNA transcripts are subsequently 
released into the experimental buffer if cell lysis occurs during the experiment, transitioning into ambient gRNAs. 
Ambient gRNA UMI counts are highly correlated with native gRNA UMI counts as they originate from native 
gRNA transcripts. 
 
Statistical analysis of gRNA assignments for scRNA-seq CRISPR screening using a mixture model 
 
To target and remove ambient gRNAs from perturb-seq libraries, we developed CLEANSER, a mixture model-
based method that removes ambient gRNA contamination. A mixture model is capable of binning gRNA-cell 
pairs into two distributions, and when applied to a perturb-seq experiment, it can be used to distinguish native 
from ambient gRNA-cell pairs. For a given gRNA, we observed two distributions in the CRISPR barnyard 
datasets: (1) a low UMI distribution of non-transduced (ambient) gRNA transcripts and (2) a UMI distribution of 
transduced (ambient + native) gRNAs (Figure 3A). The latter distribution is bimodal, as it is made up of both 
ambient and native gRNA UMIs, further supporting the use of a mixture model to remove ambient gRNA noise. 
This bimodal distribution is present throughout all of the datasets we analyzed (Figure 1A,C-D; Figure S1B-C; 
Figure 2C-D; Figure S2C-D). However, we find significant differences in gRNA UMI count distributions between 
the CROP-seq and direct capture perturb-seq datasets (Figure 3A), indicating that vector-specific mixture 
models are required to effectively bin ambient and native gRNA-cell assignments across distinct capture 
methods. This is consistent with our previous observations in the CRISPR barnyard datasets (Figure 2C-D, 
Figure S2C-D). 
 
We observed overdispersion of gRNA UMIs in both the CROP-seq and direct capture CRISPR barnyard 
datasets. This is consistent with a negative binomial distribution, which successfully models Poisson-

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611293doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?jQqhXt
https://doi.org/10.1101/2024.09.04.611293
http://creativecommons.org/licenses/by-nc/4.0/


 

overdispersed datasets such as RNA-seq data. Therefore, we chose a negative binomial distribution to model 
the gRNA UMI count distributions for both ambient and native gRNAs in CLEANSER (Figure 3B; Figure S3A)26. 
We isolated non-transduced gRNA transcripts in the CRISPR barnyard dataset to better understand the 
distribution of ambient UMI counts. While the non-transduced gRNA UMI counts for each gRNA in the direct 
capture perturb-seq datasets showed a large variance compared to the mean, the non-transduced gRNA UMI 
counts for each gRNA in the CROP-seq datasets showed a similar mean and variance and less overdispersion 
compared to the direct capture datasets (Figure 3B; Figure S3A). Therefore, we chose to model the ambient 
gRNA distribution as a Poisson distribution (a negative binomial distribution with one parameter modeling both 
mean and variance) in CROP-seq experiments (Figure 3C) and as a negative binomial in direct capture perturb-
seq experiments (Figure 3D) to allow for different mean and variance parameters. 
 
Separate priors were added to CROP-seq CLEANSER (csCLEANSER) and direct capture CLEANSER 
(dcCLEANSER). In the csCLEANSER model, weakly informative priors allow a small parameter for the noise 
distribution (λ), and the mean of the signal negative binomial component (μ) is always larger than λ (Figure 3C). 
In the dcCLEANSER model, the dispersion parameter (φ) for the two negative binomial distributions allows for 
the larger variance observed in the barnyard perturb-seq experiments (Figure 3D). A normalized cell-specific 

parameter (L) allows for confounding technical factors that affect individual cells such as sequencing depth and 

batch effects. These cell-specific values contain information about the number of gRNA UMIs ≤2 detected in a 

cell and are used to normalize the mean values of the two distributions (Figure S2K-L). To increase speed and 
efficiency, the model conditions on the input gRNA UMI being larger than zero, therefore analyzing only non-
zero gRNA UMIs. CLEANSER produces a probability value for each gRNA-cell pair, which is the probability of 
the pair in the native distribution over the ambient distribution (Methods). 
 
To ensure that CLEANSER is not generating a large number of false negative assignments or presenting with 
significant identifiability issues, we observed the general trend of the gRNA-cell pair assignment probability and 
the gRNA UMI count in the cell. gRNA-cell pairs with very high UMI counts generally have high assignment 
probabilities, indicating no obvious cases of false negative assignments (Figure 3E,F; Figure S3B,C). To test 
the accuracy of the model, the barnyard data can act as ground truth for the ambient component, as gRNAs from 
the library transduced into one cell type should not be assigned as native in the other cell type. We observed the 
number of assigned gRNAs from each library in NIH3T3 dCas9KRAB cells and HEK293T dCas9KRAB cells 
independently using different gRNA assignment methods (CLEANSER, a 5 UMI threshold, or the 10x Mixture 
Model) that are representative of the most widely adopted thresholding and mixture model gRNA assignment 
methods. In both CROP-seq and direct capture experiments, CLEANSER outperformed one or both assignment 
methods by assigning a smaller number of ambient gRNAs and not under-assigning native gRNAs, indicating 
minimal false positive assignments (Figure 3G,H; Figure S3D,E). 
 
Benchmarking ambient gRNA filtering tools 
To benchmark CLEANSER against existing ambient gRNA removal methods, we analyzed publicly available 
CROP-seq10 and direct capture20,24 datasets after filtering with (1) CLEANSER, (2) a strict UMI cutoff, or (3) the 
10x Mixture Model (Figure 4A). For the CROP-seq dataset, we obtained CRISPR feature and gene expression 
libraries from a high MOI CRISPRi screen conducted in K562 dCas9KRAB cells screening 1,119 candidate 
enhancers10 (Figure 4B). We obtained both CRISPRi and CRISPRa direct capture datasets at low and high 
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MOI, respectively. The low MOI CRISPRi dataset profiled 32 validated gRNAs targeting promoters of genes 
encoding transcription factors and 8 non-targeting gRNAs transduced into CD8+CCR7+ human T cells from 
three donors24 (Figure 4C). The high MOI CRISPRa screen profiled a library of 493 gRNAs composed of 
candidate promoter-targeting, enhancer-targeting, and non-targeting gRNAs transduced into K562 dCas9KRAB 
cells20 (Figure 4D). 
 
To effectively assign gRNAs to cells using CLEANSER, we first determined an optimal filtering pipeline. In both 
of the K562 CROP-seq and direct capture perturb-seq experiments, each sample was profiled across multiple 
lanes. We hypothesized that sequencing depth, cell number, amount of cell lysis, and reaction efficiencies could 
impact ambient gRNA presence across technical replicates. Therefore, we tested whether CLEANSER is 
influenced by lane-specific batch effects. We compared μ (mean of signal) and 𝜇! or λ (mean of noise) across 
technical replicates in each K562 screen and found that they were only weakly correlated by lane (Figure S4A-
D). To reduce these lane-specific batch effects, we applied all filtering methods at a lane-by-lane level. Another 
important factor when implementing CLEANSER is choosing an appropriate posterior cutoff. For our analysis, 
we opted for posterior cutoffs of 0.8 for the K562 CROP-seq dataset and 0.5 for the K562 direct capture dataset 
(Figure S4E-G), as they were shown to be stringent filters when applied to the barnyard datasets (Figure 3G-
H, Figure S3D-E). We used a less stringent cutoff of 0.08 for the T cell direct capture dataset due to the low 
number of UMI counts. We observed a unimodal distribution of UMI counts even when using this relatively low 
CLEANSER threshold (Figure 4C). 
 
After establishing thresholds for ambient gRNA filtering, we compared gRNA-cell assignments produced from 
the three ambient gRNA filtering methods. As predicted, we found that gRNA-cell assignments differed across 
distinct filtering methods (Figure S4H-J). For all datasets, we found that the 10x Mixture Model generated the 
largest number of gRNA-cell assignments (Figure S4H-J). Alternatively, the smallest number of gRNA-cell 
assignments were assigned by the strict UMI cutoff in the K562 CROP-seq and T cell direct capture datasets 
(Figure S4H-I) and by CLEANSER in the K562 direct capture dataset (Figure S4J). This is consistent with our 
prior findings that the 10x Mixture Model generates more gRNA-cell assignments in CROP-seq datasets than a 
strict UMI cutoff (Figure 1A,I; Figure S1G). However, this is in contrast with our prior observation of a larger 
number of gRNA-cell assignments using a strict UMI cutoff relative to the 10x Mixture Model in direct capture 
datasets (Figure 1J; Figure S1H), indicating variability in assignment outcomes using these filtering methods. 
 
Upon further investigation at the gRNA level, we found that differences in gRNA-cell pairings in the CROP-seq 
dataset were uniformly spread across gRNAs (Figure 4E). In contrast, the direct capture datasets had high 
variability in cell assignments across gRNAs, with some gRNAs having large differences in gRNA-cell 
assignments and some having minor differences (Figure 4F-G). This is likely due to the minimal gRNA-specific 
biases found in CROP-seq gRNA UMI counts, which results in a more consistent filtering across gRNAs after 
applying the three methods. In agreement with this observation, we found significant gRNA-to-gRNA bias in the 
number of UMI counts for direct capture CRISPR feature libraries, but minimal gRNA bias for CROP-seq libraries 
(Figure S4K-M). 
 
Effect of ambient gRNA noise removal on differential gene expression 
 
In order to better understand the effects of ambient gRNA filtering on differential gene expression analysis, we 
conducted differential expression testing on the CROP-seq10 and direct capture20,24 datasets filtered by 
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CLEANSER, a UMI cutoff, or the 10x Mixture Model. In the CRISPRi K562 CROP-seq and T cell datasets, we 
observed a similar number of significant positive control gRNA-gene pairs for data filtered by the three methods 
(Figure S5A-B, Table S3-4). Likewise, we observed a strong correlation in the p-values generated during 
differential expression testing (Figure S5C-D). This finding is consistent with our observation that the CROP-
seq dataset was filtered similarly by the three methods (Figure 4B,E). However, this is inconsistent with the 
large differences we observed in gRNA-cell assignment for the T cell direct capture dataset (Figure 4C,F). This 
may be due in part to the small number of gRNAs tested in the T cell dataset. We found that non-targeting gRNAs 
in the T cell dataset were often differentially assigned by the three filtering methods, with one non-targeting gRNA 
only receiving assignments when filtered with the 10X Mixture Model (Figure S5E). As a result, in comparison 
to CLEANSER, the number of non-targeting gRNA-gene pair (false-positive) hits was 1.4-fold higher for the 10X 
mixture model and 1.3-fold higher for the strict UMI cutoff (Figure S5F). These results support that the differential 
expression results produced by CLEANSER assignments for positive controls are comparable to those of 
alternate ambient gRNA filtering methods for these datasets. In addition, filtering with CLEANSER reduced the 
total number of false-positive hits. 
 
For the direct capture K562 CRISPRi dataset, we compared the differential expression results produced by the 
three ambient filtering methods and found that CLEANSER detected more gRNA-gene hits relative to both the 
strict UMI cutoff and the 10x Mixture Model (Figure 5A-B, Table S5). Notably, CLEANSER hits encompassed 
more gRNA-gene pairs in both categories of promoter- and enhancer-targeting gRNAs, the majority of which 
upregulated their predicted gene targets, defined by the putative transcriptional start site (TSS) or previously 
identified enhancer-gene links in K562 cells20 (Figure 5C). In contrast to CLEANSER, the 10x Mixture Model 
identified the fewest significant gRNA-gene pairs (Figure 5A-B) with only 8 of these hits belonging to a set of 
gRNA-gene links previously identified in a K562 CRISPRi screen10, while CLEANSER yielded 11 of these gRNA-
gene links (Figure 5D). When examining gRNAs upregulating their predicted gene targets, we observed larger 
changes in gene expression and smaller p-values for CLEANSER relative to the UMI cutoff and the 10x Mixture 
Model (Figure 5E, Figure S5G). We find similar results for the 32 gRNA hits identified concordantly through the 
three filtering methods (Figure 5F, Figure S5H). The observed increase in differential expression testing 
sensitivity indicates an increase in gRNA-cell assignment accuracy after implementing CLEANSER as opposed 
to alternative methods. 
 
The six hits that are unique to CLEANSER included four gRNAs that upregulated their predicted gene target and 
two gRNAs that upregulated an alternate gene (Figure 5G-H, Table S5). We noted that CLEANSER 
assignments for these six gRNAs contained a smaller proportion of low UMI counts and were more unimodal 
using CLEANSER than gRNA-cell assignments generated by alternative filtering methods (Figure 5G). As a first 
example, one of the  unique CLEANSER hits included a previously linked gRNA-gene pair identified in a K562 
CRISPRi perturb-seq screen, chr6.702_479_Gasperini_enhancer gRNA and RNF18210. This previous study 
used a strict UMI cutoff to show that CRISPRi of this enhancer leads to down-regulation of RNF18210. However, 
only CLEANSER (not a strict UMI cutoff) detected  CRISPRa of this same enhancer results in a significant 
upregulation of RNF182 (Figure 5H). As a second example, we found evidence that one unpredicted gRNA-
gene pair hit was identified only after filtering with CLEANSER, TCF4_370_Flashfry_promoter upregulating 
RPL7, and was a result of the presence of an alternate binding site for this gRNA in an intronic region of C8orf89 
on chromosome 8 (Figure 5H, Figure S5I). The genomic coordinates of this alternate binding site of this gRNA 
and the RPL7 gene match a Hi-C chromatin interaction in a publicly available K562 dataset, supporting that it is 
a valid target27 (Figure S5I). We examined the differentially assigned gRNA-cell pairs for the 
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chr6.702_479_Gasperini_enhancer and TCF4_370_Flashfry_promoter gRNAs and found that the gRNA-cell 
pairs uniquely assigned by CLEANSER included fewer cells with relatively low expression of RNF182 and 
included more cells with higher expression of RPL7 than gRNA-cell pairs differentially assigned by the alternative 
methods, respectively (Figure S5J-K). This indicate that CLEANSER’s increased sensitivity may be due to a 
mixture of the removal of false-positive gRNA-cell assignments, inclusion of true-positive gRNA-cell assignments 
filtered by alternative methods, or the removal of gRNA assignments to cells with low expression of the gRNA, 
in which the effects of the gRNA may be weaker. These two examples of gRNA-gene hits identified solely by 
CLEANSER demonstrate the importance of accurate gRNA assignment in perturb-seq screens to aid in the 
detection of subtle but biologically and/or therapeutically relevant changes in gene expression, such as 
identification of non-coding regulatory elements or off-target effects. 
 
Discussion 
 
In this study, we characterized ambient gRNA contamination and quantified its impact on downstream differential 
gene expression analyses in perturb-seq screens. Our side-by-side comparison of gRNA-cell assignments 
generated by widely used ambient filtering methods using both CROP-seq and direct capture perturb-seq 
datasets underscores the discordance of current methods and the knowledge gap surrounding ambient gRNA 
filtering. Our findings shed light on the characteristics of ambient gRNAs and introduce a novel computational 
tool, CLEANSER, to efficiently target and remove ambient noise from CRISPR screening libraries. 
 
Our findings from scCRISPR barnyard experiments highlight the differences in the distribution of gRNA UMI 
counts in CROP-seq and direct capture perturb-seq datasets. We observed a larger number of gRNA UMI counts 
in direct capture libraries compared to CROP-seq, likely linked to expression or stability differences in pol III vs 
pol II transcripts. This underscores the need for vector-specific characterization of ambient gRNA noise. While 
we show differences in pol II CROP-seq versus pol III direct capture transcripts, we note that CROP-seq also 
generates pol III gRNA transcripts that are not detected in this analysis. While pol III transcripts do not affect 
gRNA-assignment in the current CROP-seq system, it is likely that these transcripts share similar characteristics 
with direct capture pol III transcripts. Therefore the potency of perturbation on gene expression would be similar 
with both approaches, even if there are stark differences in detection of the gRNA. Additionally, we characterize 
ambient gRNAs by their significantly lower mean UMI counts compared to native gRNAs in both detection 
methods. Nevertheless, these UMI counts vary across gRNAs and cells, emphasizing the need for ambient 
removal methods that account for both gRNA- and cell-specific biases (Figure 2L). 
 
We observed that more abundant gRNAs in the CRISPR libraries were more likely to contribute to ambient 
contamination, in line with previous studies characterizing ambient mRNAs14. Furthermore, our analyses 
revealed that ambient gRNA profiles from co-cultured, non-co-cultured cells, and empty droplets are similar, 
which supports that ambient gRNAs are consistently present in experimental solutions. Further investigation into 
more stringent washing or alternative strategies to experimentally reduce ambient gRNA noise are needed, and 
the methods we describe here provide a blueprint to evaluate those new experimental methods. 
 
To address the limitations of current gRNA-cell assignment methods, we introduced the CLEANSER mixture 
model, which leverages the distinct bimodal distribution of ambient and native gRNA UMIs to differentiate signal 
from ambient noise. To our knowledge, CLEANSER is the first mixture model gRNA assignment method trained 
on experimental data with known ambient gRNA distributions. Our benchmarking results demonstrated that 
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filtering a direct capture dataset with CLEANSER produced a larger number of significant gRNA-gene pairs 
compared to a UMI cutoff or the 10X Mixture Model due to the removal of false positive assignments. The gRNA-
gene pairs uniquely discovered by CLEANSER exhibited more subtle regulatory relationships than pairs 
discovered by all methods (Fig. 5B), which may be particularly critical for CRISPR screening studies designed 
to dissect GWAS loci or other genetic determinants of common, complex disease.  We also identified orthogonal 
evidence supporting these unique gRNA-gene pairs, including chromatin conformation (Fig. 5I) and linkage by 
orthogonal perturbation screens (Fig. 5J), further indicating that these are true positive interactions uniquely 
identified with CLEANSER. CLEANSER also generated larger changes in gene expression for positive control 
and predicted gRNA-gene pairings. This highlights the critical role of accurate filtering in downstream analysis 
and the impact of ambient gRNA removal methods on differential expression testing. 
 
Our study provides a comprehensive analysis of ambient gRNA contamination in both CROP-seq and direct 
capture single-cell CRISPR screens, highlighting the need for effective ambient gRNA removal methods. The 
CLEANSER mixture model offers a publicly available tool for researchers to improve the accuracy of perturb-
seq data analysis, enabling more reliable differential expression results. This tool can be modified by editing the 
statistical distributions for each variable, choosing different priors, or appending additional components as new 
perturb-seq platforms with distinct ambient gRNA characteristics are developed. 
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Figure 1: gRNA UMIs and gRNA-cell assignments are variable across single-cell CRISPR screen 
workflows. 
A) Left: histograms of gRNA UMIs in K562 dCas9KRAB cells using the CROP-seq system after applying no UMI 
threshold, a 5 UMI threshold, or a 10x Mixture Model threshold. Right: Venn diagram of gRNA-cell assignments 
produced by each gRNA assignment method. Dark red indicates gRNA-cell assignments identified by no filtering 
method; blue indicates gRNA-cell assignments identified by both filtering methods; light red indicates gRNA-cell 
assignments identified by only one filtering method. B) Schematic of 3’ perturb-seq experimental workflow. 
Histogram of library #1 gRNA UMIs in NIH3T3 dCas9KRAB cells using the (C) CROP-seq and (D) direct capture 
system with no UMI threshold applied. E) Violin plot of gRNA UMIs across all cells for both the CROP-seq and 
direct capture dataset profiling HEK293T dCas9KRAB and NIH3T3 dCas9KRAB cells. Wilcoxon rank sum test. F) 
qPCR of the Pol II and Pol III transcript levels in HEK293T dCas9KRAB cells expressing sgNT-73 in a CROP-seq 
backbone. n=3. Two-tailed t-test. Violin plot of library #1 gRNA UMIs grouped by mean UMI quantile for both the 
(G) CROP-seq and (H) direct capture dataset profiling NIH3T3 dCas9KRAB cells. Wilcoxon rank sum test. Left: 
histogram of library #1 gRNA UMIs in NIH3T3 dCas9KRAB cells using the (I) CROP-seq and (J) direct capture 
system after applying a 5 UMI threshold or a 10x Mixture Model threshold. Right: Venn diagram of gRNA-cell 
assignments produced by each gRNA assignment method. Dark red indicates gRNA-cell assignments identified 
by no filtering method; blue indicates gRNA-cell assignments identified by both filtering methods; light red 
indicates gRNA-cell assignments identified by only one filtering method. P-values are represented by asterisks 
(∗p≤0.05, ∗∗p≤0.01, ∗∗∗p≤0.001). 
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Supplemental Figure 1: 
A) Number of cells passing Seurat filtering thresholds per experiment. Histogram of library #1 gRNA UMIs in 
HEK293T dCas9KRAB cells using the (B) CROP-seq and (C) direct capture system with no UMI threshold applied. 
D) Mean gRNA UMI of direct capture gRNAs relative to CROP-seq gRNAs in HEK293T dCas9KRAB and NIH3T3 
dCas9KRAB cells. sgNT-73 shown in red. Violin plot of library #1 gRNA UMIs grouped by mean UMI quantile for 
both the (E) CROP-seq and (F) direct capture dataset profiling HEK293T dCas9KRAB cells. Wilcoxon rank sum 
test. Left: histogram of library #1 gRNA UMIs in HEK293T dCas9KRAB cells using the (G) CROP-seq or (H) direct 
capture system after applying a 5 UMI threshold or a 10x Mixture Model threshold. Right: Venn diagram of gRNA-
cell assignments produced by each gRNA assignment method. Dark red indicates gRNA-cell assignments 
identified by no filtering method; blue indicates gRNA-cell assignments identified by both filtering methods; light 
red indicates gRNA-cell assignments identified by only one filtering method. Number of unique gRNA-cell 
assignments produced by varying strict UMI cutoffs (≥N gRNA UMI counts &  ≥0.5% of total gRNA UMIs in the 

cell) or the applying the 10x Mixture Model for non-co-cultured HEK293T dCas9KRAB and NIH3T3 dCas9KRAB cells 
using a (I) CROP-seq or (J) direct capture vectors. P-values are represented by asterisks (∗p≤0.05, ∗∗p≤0.01, 
∗∗∗p≤0.001). 
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Figure 2: A single-cell CRISPR barnyard screen characterizes ambient gRNA noise. 
A) Schematic of CRISPR barnyard 3’ scRNA-seq experimental workflow. HEK293T dCas9KRAB and  NIH3T3 
dCas9KRAB cells are transduced with two non-overlapping gRNA libraries composed of 100 non-targeting gRNAs 
each. The cells are co-cultured together for 72 hours (72 hour co-culture) or mixed immediately prior to loading 
of the 10x chip (non-co-cultured). After sequencing the gene expression and CRISPR feature libraries, gRNAs 
are assigned as transduced or non-transduced based on the corresponding cell species in which it was identified. 
B) Violin plot of the fraction of non-transduced gRNA transcripts identified in each cell for CROP-seq and direct 
capture libraries in either HEK293T dCas9KRAB or  NIH3T3 dCas9KRAB cells. Wilcoxon rank sum test. Histogram 
of library #1 and library #2 gRNA UMIs in the non-co-cultured barnyard dataset using the (C) CROP-seq and (D) 
direct capture system with no UMI threshold applied. Scatterplots depicting the Pearson correlation between the 
number of normalized gRNA counts in the gDNA pool and the number of non-transduced gRNA UMIs and for 
(E) CROP-seq and (F) direct capture CRISPR feature libraries for library #1 gRNAs in the non-co-cultured 
barnyard datasets. Scatterplots depicting the Pearson correlation between the number of transduced gRNA 
UMIs and the number of non-transduced gRNA UMIs and for (G) CROP-seq and (H) direct capture CRISPR 
feature libraries for library #1 gRNAs in the non-co-cultured barnyard datasets. I) Representative plot for empty-
droplet identification showing droplets ranked by their total gene expression UMI count for the non-co-cultured 
CROP-seq dataset. High quality singlet cells are highlighted in light gray and empty-droplets are highlighted in 
dark gray. Violin plot of library #1 and library #2 gRNA UMIs grouped by non-transduced, transduced, or empty 
droplet gRNAs for (J) CROP-seq and (K) direct capture non-co-cultured barnyard datasets. L) Schematic 
depicting the four major contributors to gRNA UMI counts in perturb-seq screens and the major source of ambient 
gRNA noise. Red arrows indicate conditions that result in a decrease in gRNA UMI counts and green arrows 
indicate conditions that result in an increase in gRNA UMI counts. P-values are represented by asterisks 
(∗p≤0.05, ∗∗p≤0.01, ∗∗∗p≤0.001). 
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Supplemental Figure 2: 
A) Number of cells passing Seurat filtering thresholds per experiment. B) Violin plot of the fraction of exogenous 
gRNA transcripts identified in each cell for CROP-seq and direct capture libraries in HEK293T dCas9KRAB and  
NIH3T3 dCas9KRAB cells in either the 0 hour or 72-hour co-cultured conditions.  Histogram of library #1 and library 
#2 gRNA UMIs in the 72-hour co-cultured barnyard dataset using the (C) CROP-seq and (D) direct capture 
system with no UMI threshold applied. Violin plot of (E) library #1 and (F) library #2 gRNA UMIs in HEK293T 
dCas9KRAB cells grouped by mean UMI quantile for the CROP-seq non-co-cultured barnyard dataset. Wilcoxon 
rank sum test. Violin plot of (G) library #1 and (H) library #2 gRNA UMIs in HEK293T dCas9KRAB cells grouped 
by mean UMI quantile for the direct capture non-co-cultured barnyard dataset. Wilcoxon rank sum test. 
Scatterplots depicting the Pearson correlation between the number of gRNA counts in the library plasmid pool 
and gRNA counts in the gDNA pool for (I) CROP-seq and (J) direct capture CRISPR feature libraries for library 
#1 and library #2 gRNAs in HEK293T dCas9KRAB and NIH3T3 dCas9KRAB cells. K) Pearson correlation of the total 
number of gRNA UMIs ≤ 2 and the total number of non-transduced gRNA UMIs in a cell in HEK293T dCas9KRAB 
and NIH3T3 dCas9KRAB cells profiled in the CROP-seq non-co-cultured barnyard dataset. L) Pearson correlation 
of the total number of gRNA UMIs ≤ 2 and the total number of ambient gRNA UMIs in a cell in HEK293T 
dCas9KRAB and NIH3T3 dCas9KRAB cells profiled in the direct capture non-co-cultured barnyard dataset. P-values 
are represented by asterisks (∗p≤0.05, ∗∗p≤0.01, ∗∗∗p≤0.001). 
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Figure 3: CLEANSER accurately distinguishes ambient gRNA noise from signal  
A) Histograms of UMI counts for sgNT-73 (library #1 gRNA) across all cells in the non-co-cultured CROP-seq 
(top) and direct capture (bottom) barnyard datasets. B) Scatterplots showing correlations between the mean and 
variance of ground truth ambient gRNA UMIs in HEK293T dCas9KRAB cells for CROP-seq and direct capture 
methods in the non-co-cultured and 72-hour co-cultured barnyard datasets. C-D) Graphical model of C) CROP-
seq CLEANSER (csCLEANSER) and D) Direct capture CLEANSER (dcCLEANSER). E-F) Scatter plots 
depicting the relationship between the probability of assignment and UMI count size for each gRNA-cell pair in 
E) csCLEANSER’s analysis of CROP-seq barnyard perturb-seq data and F) dcCLEANSER’s analysis of direct 
capture barnyard perturb-seq non-co-cultured data. G-H) Bar chart of the number of transduced and non-
transduced assignments in G) csCLEANSER’s analysis of non-co-cultured CROP-seq data and H) 
dcCLEANSER’s analysis of direct capture non-co-cultured barnyard data. CLEANSER’s assignments are 
compared to unfiltered data, a 5 UMI cutoff and the 10x Mixture Model. 
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Supplemental Figure 3 
A) Scatterplots showing correlations between the mean and variance of ground truth ambient gRNA UMIs in 
NIH3T3 dCas9KRAB cells for CROP-seq and direct capture gRNA capture methods in the non-co-cultured and 
72-hour co-cultured barnyard datasets. Scatter plots depicting the relationship between the probability of 
assignment and UMI for each gRNA-cell pair in B) csCLEANSER’s analysis of the 72-hour co-culture CROP-
seq barnyard dataset and C) dcCLEANSER’s analysis of the 72 hour co-culture direct capture barnyard dataset. 
Bar chart of the number of transduced and non-transduced assignments in D) csCLEANSER’s analysis of the 
72-hour co-culture CROP-seq barnyard dataset and E) dcCLEANSER’s analysis of the 72-hour co-culture direct 
capture barnyard dataset. CLEANSER’s assignments are compared to unfiltered data, a 5 UMI cutoff and the 
10x Mixture Model. 
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Figure 4: Ambient gRNA filtering methods produce differential gRNA-cell assignments across 
benchmark perturb-seq datasets. 
A) Schematic depicting the gRNA libraries, cell types, and gRNA capture systems used in the datasets that were 
downloaded for benchmarking analyses. Each dataset was filtered using CLEANSER, a UMI cutoff, or the 10x 
Mixture Model. Histogram of gRNA UMIs in the (B) K562 CROP-seq, (C) CD8+CCR7+ T cell direct capture, or 
(D) K562 direct capture datasets after applying CLEANSER, a UMI cutoff, or the 10x Mixture Model. Density 
plots showing the fraction of gRNA-cell assignments assigned by one (red), two (purple), or all three (blue) 
filtering methods across all gRNAs screened in the (E) K562 CROP-seq, (F) CD8+CCR7+ T cell direct capture, 
or (G) K562 direct capture datasets. 
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Supplemental Figure 4: 
Pearson correlation of (A) μ and (B) λ across 6 lanes of K562 dCas9KRAB cells profiled by Gasperini et al. 
Pearson correlation of (C) μ and (D) 𝜇! across 2 lanes of K562 dCas9VP64 and 2 lanes of K562 dCas9VPR cells 
profiled by Chardon and McDiarmid, et al. Scatterplot of posterior probability and UMI of gRNA-cell pairs in the 
(E) K562 CROP-seq, (F) CD8+CCR7+ T cell direct capture, or (G) K562 direct capture datasets, downsampled 
to 25,000 gRNA-cell pairings. Venn diagram of gRNA-cell assignments for (H) K562 CROP-seq, (I) 
CD8+CCR7+ T cell direct capture, or (J) K562 direct capture datasets after applying CLEANSER, a UMI cutoff, 
or the 10x Mixture Model. Blue indicates gRNA-cell assignments identified by all filtering methods; light red 
indicates gRNA-cell assignments identified by two filtering methods; dark red indicates gRNA-cell assignments 
identified by only one filtering method. Violin plot of gRNA UMIs in the (K) K562 CROP-seq, (L) CD8+CCR7+ T 
cell direct capture, or (M) K562 direct capture datasets grouped by mean UMI quantile. Wilcoxon rank sum 
test. P-values are represented by asterisks (∗p≤0.05, ∗∗p≤0.01, ∗∗∗p≤0.001). 
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Figure 5: Ambient gRNA filtering methods impact differential gene expression analysis outcomes. 
A) Venn diagram depicting the overlap of significant gRNA-gene links in the direct capture perturb-seq K562 
CRISPRa dataset produced by each ambient filtering method. Blue indicates gRNA-gene pairs identified by all 
filtering methods. Light red indicates gRNA-gene pairs identified by two filtering methods. Dark red indicates 
gRNA-gene pairs identified by only one filtering method. B) Volcano plot of gRNA-gene pairs identified after 
filtering the direct capture perturb-seq K562 CRISPRa dataset with CLEANSER. gRNA-gene pairs identified by 
all three filtering methods, only CLEANSER and a strict UMI cutoff, or only CLEANSER are depicted in blue, 
pink, and red, respectively. C) Number of significant gRNA-gene links in the direct capture perturb-seq K562 
CRISPRa dataset produced by each ambient filtering method separated by TSS targeting or enhancer targeting. 
Red = predicted gene target20, blue = alternate gene target. D)  Number of significant K562 CRISPRa gRNA-
gene pairs overlapping previously identified gRNA-gene pairs in a K562 CRISPRi screen10 for each ambient 
filtering method. E) Violin plot of log2(fold-changes) for predicted gRNAs-gene pairs across three ambient gRNA 
filtering methods. The fold-change in median log2(fold-change) between CLEANSER and alternative filtering 
methods is depicted at the top of each violin plot. Wilcoxon rank sum test. F) Violin plot of log2(fold-changes) 
across three ambient gRNA filtering methods for significant gRNAs-gene pairs identified by all three methods. 
The fold-change in median log2(fold-change) between CLEANSER and alternative filtering methods is depicted 
at the top of each violin plot. Wilcoxon rank sum test. P-values are represented by asterisks (∗p≤0.05, ∗∗p≤0.01, 
∗∗∗p≤0.001). G) Density plots showing the UMI count of gRNA-cell assignments in unfiltered, strict UMI cutoff 
filtered, 10x Mixture Model filtered, or CLEANSER filtered K562 CRISPRa perturb-seq data for the 6 unique 
gRNA hits identified by CLEANSER. H) Violin plot of normalized gene expression for CLEANSER filtered cells 
assigned with a given gRNA and control cells for 6 unique gRNA hits identified by CLEANSER. P-values are 
represented by asterisks (∗BH-corrected empirical p-value ≤ 0.1). 
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Supplemental Figure 5: 
A) Bar chart depicting the number of significant TSS targeting gRNA-gene links in the CROP-seq K562 CRISPRi 
dataset produced by each ambient filtering method. B) Bar chart depicting the number of significant positive 
control TSS targeting gRNA-gene links in the direct capture T cell CRISPRi dataset produced by each ambient 
filtering method. Pearson correlation of -log10(adjusted p-value) across three ambient gRNA filtering methods for 
all tested targeting gRNAs-gene pairs in (C) the CROP-seq K562 CRISPRi dataset and (D) the direct capture 
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perturb-seq T cell CRISPRi dataset. E) Fraction of non-targeting gRNA-cell assignments assigned by one (red), 
two (purple), or all three (blue) filtering methods in the T cell direct capture dataset. F) Bar chart depicting the 
number of non-targeting gRNA-gene links in the direct capture T cell CRISPRi dataset produced by each ambient 
filtering method. G) Pearson correlation of -log10(adjusted p-value) across three ambient gRNA filtering methods 
for all tested targeting gRNAs-gene pairs in the direct capture perturb-seq K562 CRISPRa dataset. H) Violin plot 
of -log10(adjusted p-value) across three ambient gRNA filtering methods for 32 significant gRNA-gene pairs 
identified by all three methods in the direct capture perturb-seq K562 CRISPRa dataset. P-values are 
represented by asterisks (∗p≤0.05, ∗∗p≤0.01, ∗∗∗p≤0.001). I) TCF4_370_Flashfry_promoter gRNA alternative 
chr8 binding site (purple) and RPL7 (red) visualized alongside tracks for K562 DNaseI HS (ENCODE) and gene 
annotations (GENCODE). K562 Hi-C chromatin interaction (Rao et al.27) between the 
TCF4_370_Flashfry_promoter gRNA alternative chr8 binding site and RPL7 is depicted in blue. Left: Violin plot 
of normalized gene expression for CLEANSER filtered cells assigned with a given gRNA and control cells for (J) 
chr6.707_479_Gasperini_enhancer and (K) TCF4_370_Flashfry_promoter. Right: Violin plot of normalized gene 
expression for cells assigned with the given gRNA by CLEANSER and not assigned by a strict UMI cutoff or the 
10x Mixture Model (blue), cells assigned by a strict UMI cutoff and not CLEANSER (purple), or cells assigned 
by the 10x Mixture Model and not CLEANSER (red). P-values are represented by asterisks (∗BH-corrected 
empirical p-value ≤ 0.1). 
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Resource availability 
Lead contact 
Further information and requests for resources and reagents should be directed to and will be fulfilled by the 
lead contacts, Charles A. Gersbach (charles.gersbach@duke.edu), Gregory E. Crawford 
(greg.crawford@duke.edu), and William H. Majoros (william.majoros@duke.edu). 
 
Materials availability 
Plasmids generated in this study have been deposited to Addgene and will be publicly available as of the date 
of publication. 
 
Data and code availability 
Code and software for CLEANSER can be accessed through a github repository:  
https://github.com/Gersbachlab-Bioinformatics/CLEANSER 
Sequencing data is available through NCBI's Gene Expression Omnibus (GEO) with accession codes 
GSE272454 and GSE272457. 

 
Experimental Model and Subject Details 
Cell lines 
HEK293T/17 and NIH3T3 cells 
 
Method Details 
Cell lines and culture conditions 
All cells were grown at 37°C. HEK293T/17 cells were cultured in DMEM + 10% FBS and NIH3T3 cells were 
cultured in DMEM + 10% CBS. 
 
gRNA library cloning 
Non-targeting gRNA library #1 and #2 were designed with 100 non-overlapping, non-targeting gRNAs each. All 
oligonucleotide libraries (Tables S1, S2) were ordered in the following sequence format: 
ATATATCTTGTGGAAAGGACGAAACACCG [20-bp protospacer] 
GTTTAAGAGCTATGCTGGAAACAGCATAG 
Libraries were amplified by PCR using Q5UltraII mastermix (NEB) using the following primers: 
gRNA_60bp_fw TAACTTGAAAGTATTTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACACCG 
gRNA_60bp_rv GTTGATAACGGACTAGCCTTATTTAAACTTGCTATGCTGTTTCCAGCATAGCTCTTAAAC 
gRNA libraries were cloned into either a CROP-seq or modified direct capture perturb-seq vector (derived from 
Addgene plasmid #140095 by replacing the mU6 promoter with a hU6 promoter and modifying a single base-
pair in the gRNA hairpin) through BsmBI vector digest and NEBuilder HiFi DNA assembly, ensuring >100-fold 
representation of each gRNA. 
 
qPCR gRNA library titration 
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HEK293T dCas9KRAB cells were seeded at a density of 5x104 cells/cm2 and NIH3T3 dCas9KRAB cells were seeded 
at a density of 1.25x104 cells/cm2 on a 24-well plate in one biological replicate per lentiviral transduction. The 
cells were transduced with varying volumes of lentivirus in the presence of 8 μg/mL polybrene. 10 days post 
transduction, cells were washed three times and gDNA from each sample was isolated using an Invitrogen™ 
PureLink™ Genomic DNA Mini Kit. MOI was determined using a qPCR titration approach described in Gordon, 
et al., (2020), using the following primers and cycling conditions: 
 
mLP34_Fw (mouse)  GTTTTCTAACTGATGGCGTGCAA 
mLP34_Rv (mouse)  CACGGAAGAGCCCACACATT 
hLP34.F (human)  TCCTCCGGAGTTATTCTTGGCA 
hLP34.R (human)  CCCCCCATCTGATCTGTTTCAC 
WPRE_fw   GCTATTGCTTCCCGTATGGCTTT 
WPRE_rv   GTCAGCAAACACAGTGCACACC 
ampR_fw   CTCGTCGTTTGGTATGGCTTCAT 
ampR_rv   ACTTCTGACAACGATCGGAGGAC 
 
25 ng template DNA  
1X OneTaq® 2X Master Mix with Standard Buffer 
0.5 μM Fw primer  
0.5 μM Rv primer  
1X EvaGreen Dye 
dH2O to total volume of 15 ul         
 
98°C  |  98°C     54°C      68°C   |  68°C  |    4°C    
30sec | 10sec    30sec    60sec  |  5min  |  forever 
35 cycles 
 
gRNA library transduction 
HEK293T dCas9KRAB cells were seeded at a density of 5x104 cells/cm2 and NIH3T3 dCas9KRAB cells were seeded 
at a density of 1.25x104 cells/cm2 on 6-well plates in one biological replicate each. The cells were transduced 
with lentivirus using 8 μg/mL polybrene at a multiplicity of infection (MOI) of ~10 as determined by titration. Two 
days post-transduction, cells were treated with either 500 (HEK293T dCas9KRAB + non-targeting library #1 cells) 
or 1000 (NIH3T3 dCas9KRAB + non-targeting library #2 cells) ng/mL puromycin or 20 (HEK293T dCas9KRAB cells 
+ non-targeting library #1) or 80 (NIH3T3 dCas9KRAB cells + non-targeting library #2) μg/mL blasticidin and were 
selected for 10 days. 
7 days post-transduction, cells were trypsinized and seeded on 6-well plates in three conditions: 
1) HEK293T dCas9KRAB + non-targeting library #1 cells at a density of 3.9 x 104 cells/cm2 
2) NIH3T3 dCas9KRAB + non-targeting library #2 cells at a density of 1.5 x 104 cells/cm2 
3) HEK293T dCas9KRAB + non-targeting library #1 cells at a density of 2.0 x 104 cells/cm2 and NIH3T3 dCas9KRAB 
+ non-targeting library #2 cells at a density of 2.0 x 104 cells/cm2 

 

CRISPR barnyard single-cell RNA-seq 
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10 days post transduction, cells were washed three times, trypsinized, and strained through a 40 µm cell strainer. 
The cells were diluted to 1K cells/µL and a fourth condition of HEK293T dCas9KRAB + non-targeting library #1 
and NIH3T3 dCas9KRAB cells + non-targeting library #2 were mixed. Eight lanes were loaded for single-cell 
transcriptome profiling, with one lane per condition for each CROP-seq and modified direct capture perturb-seq 
vector. Approximately 10,000 cells were captured per lane of a 10x Chromium chip (Next GEM Chip G) using 
Chromium Next GEM Single Cell 3ʹ HT Reagent Kits v3.1 with Feature Barcoding technology for CRISPR 
Screening (10x Genomics, Inc, Document number CG000418, Rev D). CROP-seq protospacer sequences were 
amplified from barcoded cDNA as described previously10.  
 
CRISPR barnyard single-cell RNA-seq library sequencing 
Final libraries were pooled and sequenced on a NovaSeq S4 flow cell (R1:28 I1:10, I2:10, R2:90) aiming for 
~15,000 reads per cell for gene expression libraries and ~5,000 reads per cell for gRNA libraries 
 
Transcriptome data processing and cell filtering for CRISPR barnyard screens 
Each lane of cells was processed using cellranger (version 6.0.1) count using default parameters and mapping 
to the GRCh38-and-mm10-2020 reference genome from 10x Genomics. Using Seurat, cells with less than 15% 
mitochondrial reads, between 1500-6000 features, and between 3500-20000 UMIs were retained as high quality 
cells. Cells with >90% human transcripts were labeled as HEK293T dCas9KRAB cells and cells with >90% mouse 
transcripts were labeled as NIH3T3 dCas9KRAB cells. The resulting count matrices for gene expression and 
CRISPR feature libraries after this filtering was used for all downstream analyses. 
 
Filtering ambient gRNAs in the CRISPR barnyard screen 

A UMI threshold of ≥5 UMI and ≥0.5% of total gRNA UMIs in the cell was used for the 5 UMI cutoff. The lane-
level Cellranger gRNA thresholds produced by Cellranger count were used as minimum UMI values to assign 
gRNAs to cells for the 10x Mixture Model method. A CLEANSER posterior probability cutoff of ≥0.8 and ≥0.5 
was used as a threshold for CROP-seq and direct capture CRISPR libraries, respectively. 

 
Genomic DNA isolation and NGS 
Genomic DNA was isolated from cells using the Purelink Genomic DNA mini kit (Thermo Fisher), and up to 20 
μg of genomic DNA per sample was used to amplify the U6-3’ to gRNA hairpin region. PCR2 was performed to 
add full-length Illumina sequencing adapters using internally ordered primers with equivalent sequences to 
NEBNext Index Primer Sets 1 and 2 (New England Biolabs). All PCRs were performed using Q5UltraII 
polymerase (NEB). Pooled samples were sequenced using MiSeq (Illumina), using 50-nt reads and collecting 
greater than 100 reads per gRNA in the library. 
 
The library prep primers were as follows: 
PCR1: 
U6_BcA_r1seq_halftail  
5' ACTCTTTCCCTACACGACGCTCTTCCGATCTACTAGGGAAAGGACGAAACACCG 3' 
gRNAFE_r2seq_halftail 
5' GACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTTATTTAAACTTGCTATGCTGT 3' 
PCR2: 
r1seq_fulltail 
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5' AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTC 3’ 
r2seq_fulltail (Two distinct indexed versions of this primer were used to allow for pooling) 
5' CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACTGGAGTTCAGACGTGTGCT 3' 
 
Pol II and III transcript abundance RT-qPCR 
An oligonucleotide including the nt-73 protospacer sequence was ordered in the following format: 
GGAAAGGACGAAACACCG CGTGCGACTCTTTCGGTGGA GTTTAAGAGCTATGCTGGAAAC. The nt-73 
oligonucleotide was directly cloned into the CROP-seq backbone through NEBuilder HiFi DNA assembly as 
described above. The resulting gRNA construct was packaged into lentivirus and transduced into HEK293T 
dCas9-KRAB cells seeded at a density of 2.86 x 104 cells/cm2 on a 12 well plate in three biological replicates in 
the presence of 8 ug/mL polybrene. The cells were selected with Blasticidin S (5 μg/mL) on days 2-5. Seven 
days post-transduction, RNA was harvested from the cells using Qiagen RNeasy Plus Mini kit (Qiagen, 74134) 
and DNase treated using RQ1 RNase free DNase (Promega, M6101). cDNA was generated using ProtoScript 
First Strand cDNA Synthesis Kit (NEB, E6300S) and the following RT primer: 
 
gRNA_hairpin_RV: CGACTCGGTGCCACTTTTTCAAG 
  
RT-qPCR was performed using SensiMix SYBR Master Mix (OriGene, QP100001) using the following primers 
and cycling conditions: 
  
hU6_promoter_FW: CTTGTGGAAAGGACGAAACACCG 
gRNA_hairpin_RV: CGACTCGGTGCCACTTTTTCAAG 
  
sgNT-73_gRNA_FW: CGGTGGAGTTTAAGAGCTATGCTG 
gRNA_hairpin_RV: CGACTCGGTGCCACTTTTTCAAG 
  
1 uL template cDNA 
1X SensiMix SYBR 2X Master Mix 
0.5 μM Fw primer 
0.5 μM Rv primer 
dH2O to total volume of 15 ul 
  
95°C  |95°C   60°C   72°C   |  72°C  |    4°C 
10 min |15 sec 15 sec 15 sec |  5min  |  forever    
35 cycles 
  
The results are expressed as fold-increase in pol III gRNA expression normalized to pol II mRNA expression by 
the ΔΔCt method. 
 
Statistical Analysis: CLEANSER  
We built a mixture model where the two components represent the ambient gRNA noise and the native gRNA 
signal. The native distribution is a negative binomial distribution while the ambient distribution is a Poisson 
distribution for csCLEANSER. csCLENASER can be formally specified via the likelihood below, where 𝑋" is the 
gRNA count for gRNA 𝑖, 𝑟 is the ratio between transduced assignment to the negative binomial distribution (𝑁𝐵) 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.04.611293doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.04.611293
http://creativecommons.org/licenses/by-nc/4.0/


 

and the ambient assignment to the Poisson distribution (𝑃𝑜𝑖). μ and φ denote the mean and dispersion 
parameters, respectively, of the transduced negative binomial, and λ denotes the ambient Poisson parameter: 

 
𝑥"~𝑟𝑁𝐵(𝜇" , 𝜙) + (1 − 𝑟)𝑃𝑜𝑖(𝜆") 

In the dcCLEANSER, the ambient distribution and native distributions are two separate negative binomials. 
dcCLENASER can be formally specified via the likelihood below, where 𝜇! and 𝜑! denote the mean and 
dispersion parameters, respectively, of the ambient negative binomial distribution: 
 

𝑥"~𝑟𝑁𝐵(𝜇" , 𝜙) + (1 − 𝑟)𝑟𝑁𝐵(𝜇!" , 𝜙!) 
 
Due to the large number of 0 UMI counts in perturb-seq datasets, the likelihood is conditioned on the probability 
that the UMI count for a gRNA-cell pair is larger than 0. Adding this condition allowed CLEANSER to process 
perturb-seq datasets in a time efficient manner. Below is the condition added to the CROP-seq CLEANSER 
formula. Ultimately, the probability of Gij = 1 (when the gRNA-cell pair is a part of the native probability 
distribution) is calculated to determine the likelihood of the gRNA-cell pair being a part of the native probability 
distribution. 
 

𝑃(𝑥|𝑥 > 0) =
𝑟𝑃𝑜𝑖(𝑥|𝜆) + (1 − 𝑟)𝑁𝐵(𝑥|𝜇, 𝜙)

1 − (𝑟𝑃𝑜𝑖(0|𝜆) + (1 − 𝑟)𝑁𝐵(0|𝜇, 𝜙))
	𝑓𝑜𝑟	𝑥 > 	0 

 

𝑃(𝐺"# = 1|𝑥" , 𝑥" > 0) 	= 	

(1 − 𝑟)(1 − 𝑁𝐵(0|𝜇, 𝜙))
(1 − 𝑟)(1 − 𝑁𝐵(0|𝜇, 𝜙)) + 𝑟𝑃𝑜𝑖(0|𝜆)	

𝑁𝐵(𝑥"|𝜇, 𝜙)
1 − 𝑁𝐵(0|𝜇, 𝜙)

𝑟𝑃𝑜𝑖(𝑥"|𝜆) + (1 − 𝑟)𝑁𝐵(𝑥"|𝜇, 𝜙)
1 − (𝑟𝑃𝑜𝑖(0|𝜆) + (1 − 𝑟)𝑁𝐵(0|𝜇, 𝜙))

 

=
𝑟𝑁𝐵(𝑥"|𝜇, 𝜙)

𝑟𝑁𝐵(𝑥"|𝜇, 𝜙) + (1 − 𝑟)𝑃𝑜𝑖(𝑥"|𝜆)
 

A normalization component at a cell level (Lj) is calculated by normalizing the sum of all gRNA UMI counts less 
than or equal to a threshold (default threshold of 2) for each cell over the average sum of all gRNA UMI counts 
lower than a threshold across all cells. That normalization factor is then used to calculate cell-specific distribution 
parameters. 
 
CROP-seq CLEANSER: 

𝜆"# = 𝜆"𝐿# 
𝜇"# = 𝜇"𝐿# 

 
Direct capture CLEANSER: 

𝜇"#$"%!&' = 𝜇"$"%!&'𝐿# 
𝜇"#!("$) = 𝜇"!("$)𝐿# 

 
The model is written in CmdStan28 and runs a predetermined number of steps of Markov Chain Monte Carlo 
sampling to estimate the posterior distribution of Gij. The model generates 300 samples per gRNA, as well as a 
posterior for each gRNA-cell pair. The posterior generated for each gRNA-cell pair will be the final model output 
of the probability of gRNA assignment to a cell. 
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CLEANSER can be accessed through github: https://github.com/siyansusan/CLEANSER 
 
K562 CRISPRi CROP-seq and CD8+CCR7+ T cell CRISPRi direct capture CLEANSER benchmarking analysis 
For this benchmark we reprocessed and analyzed the publicly available Gasperini et al. 2019 and McCutcheon 
et al. 2023 datasets. Transcriptomic and gRNA BAM files were downloaded from GEO (GSE120861, 
GSE218988) and converted back to FASTQ files with the `bamtofastq` program included in 10x Genomics Cell 
Ranger 7.1.0 (referred as cellranger from here on). Next, count output files for each pool were obtained with the 
cellranger `count` command, providing the reference list of gRNA information and protospacer sequences 
through the `--feature-ref` command . The outputs for each pool were merged with the cellranger `aggr` 
command, without normalizing the counts (`--normalize none` argument). A basic QC was applied to the resulting 
sparse matrix containing GEX and gRNA UMI counts. Cells with large numbers of mitochondrial gene UMI counts 
(≥20%), or a number of detected genes or total transcriptomic UMIs ≥ 2 median absolute deviation (MAD) were 
excluded from downstream analyses. To assign gRNAs to cells using a strict UMI cutoff, we used a UMI threshold 
of ≥5 UMI and ≥1% of total gRNA UMIs in the cell in Gasperini et al. 2019 and a UMI threshold of ≥4 UMI in 
McCutcheon et al. 2023 . For the 10x Mixture Model, we used the UMI thresholds generated by cellranger count 
for each lane. For CLEANSER, a posterior probability cutoff of ≥0.8 was used as a threshold in Gasperini et al. 

2019 and a posterior probability cutoff of ≥0.08 for McCutcheon et al. 2023. For each targeting gRNA, genes 
within 1 kb of the protospacer midpoint  were tested for differential expression analysis, comparing the gene 
counts across cells with a given gRNA against cells with any other gRNA. A negative binomial generalized linear 
model was applied to these counts to detect significant gRNA-gene associations. 
 
K562 CRISPRa direct capture perturb-seq CLEANSER benchmarking analysis 
Cellranger count output files and differential expression testing pipelines were obtained at 
https://krishna.gs.washington.edu/content/members/CRISPRa_QTL_website/public/. Using Seurat, cells with 
greater than 10% mitochondrial reads and less than 4,000 UMIs were filtered out. To assign gRNAs to cells 
using a strict UMI cutoff, a global UMI filter of >5 gRNA UMIs/cell was used. For the 10x Mixture Model, we used 
the UMI thresholds generated by Cellranger count for each lane. For CLEANSER, a posterior probability cutoff 
of ≥0.5 was used as a threshold. Differential expression tests were run for each gRNA-gene pair using a modified 
version of the pipeline described in Chardon and McDiarmid, et al. (2023)20. This version used all other cells 
without a gRNA targeting the same gene as control. 
 
Quantification and Statistical Analysis 
Number of replicates can be found in the Figure legends or in the Methods Details. All measurements were taken 
from distinct samples. All figures show mean with standard error bars unless specified otherwise. For case-
control comparisons, two-tailed t-tests and Mann-Whitney U-tests were performed to compare treatment and 
control groups as indicated in Figure legends. P-values are represented by asterisks (∗p≤0.05, ∗∗p≤0.01, 

∗∗∗p≤0.001). Statistical analysis and visualization were carried out in R version 4.2.2. 
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Supplemental Tables 
Supplemental Table 1: Non-targeting gRNA library #1 gRNA information, Related to Figure 1 
Supplemental Table 2: Non-targeting gRNA library #2 gRNA information, Related to Figure 1 
Supplemental Table 3: K562 CRISPRi CROP-seq benchmarking positive control gRNA-gene pairs, Related to 
Figure 5 
Supplemental Table 4: CD8+CCR7+ T cell CRISPRi direct capture perturb-seq benchmarking positive control 
gRNA-gene pairs, Related to Figure 5 
Supplemental Table 5: K562 CRISPRa direct capture perturb-seq benchmarking significant gRNA-gene pairs, 
Related to Figure 5 
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