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Abstract

Group sequential design has been widely applied in clinical trials in the past few decades. The sample size estimation is a
vital concern of sponsors and investigators. Especially in the survival group sequential trials, it is a thorny question because
of its ambiguous distributional form, censored data and different definition of information time. A practical and easy-to-use
simulation-based method is proposed for multi-stage two-arm survival group sequential design in the article and its SAS
program is available. Besides the exponential distribution, which is usually assumed for survival data, the Weibull
distribution is considered here. The incorporation of the probability of discontinuation in the simulation leads to the more
accurate estimate. The assessment indexes calculated in the simulation are helpful to the determination of number and
timing of the interim analysis. The use of the method in the survival group sequential trials is illustrated and the effects of
the varied shape parameter on the sample size under the Weibull distribution are explored by employing an example.
According to the simulation results, a method to estimate the shape parameter of the Weibull distribution is proposed
based on the median survival time of the test drug and the hazard ratio, which are prespecified by the investigators and
other participants. 10+ simulations are recommended to achieve the robust estimate of the sample size. Furthermore, the
method is still applicable in adaptive design if the strategy of sample size scheme determination is adopted when designing
or the minor modifications on the program are made.
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Introduction

In the past few decades, group sequential design has been widely

used in clinical trials. The sample size calculation is of particular

importance when designing a group sequential trial. Adequate

sample size guarantees the power to detect the difference and too

large sample size is undesired due to the considerations of study

time and costs. Various methods, such as Pocock design, O’Brien-

Fleming design, the error-spending function, etc, were proposed to

design the group sequential trials [1–3] and their approaches of

sample size estimation for continuous and dichotomous variables

were also discussed [4–5]. Compared with normal and binary

data, sample size estimation for time-to-event data is more

complicated because of its ambiguous distributional form and

censored data. However, the time-to-event outcomes are fre-

quently employed in clinical trials. For example, the study

endpoints, such as overall survival (OS), progression free survival

(PFS) and time to progression (TTP), are usually adopted as

primary endpoints in oncology clinical trials. The survival analysis

is necessary to analyze the time-to-event data. The group

sequential design is often indispensible to oncology trials for

ethical considerations. Therefore, it will be helpful to have a

practical and simple method to calculate the sample size when

group sequential design is applied in clinical trials with time-to-

event endpoint.

For survival data, the exponential and Weibull distribution are

the two most frequently used parametric models. Of the two

distributional forms, the Weibull distribution is more appropriate

to describe time-to-event data than the exponential distribution in

most cases because it includes the shape parameter besides the

scale parameter, which is also contained in the exponential

distribution. The shape parameter in the Weibull distribution

makes it possible to describe the varied hazard rate over the study

interval, which is common in medical studies. Recently, several

approaches were proposed to estimate/re-estimate the sample size

for group sequential and adaptive design [6–13]. But few of them

were considered under the assumption of the Weibull distribution.

Only Murphy et al [6], Togo et al [7] and Lu et al [9] discussed the

effects of varied shape parameters under the Weibull distribution

on the sample size in two-stage clinical trials. Most of these

methods were introduced under the assumption of the exponential

distribution [8,10–13]. The Weibull distribution is seldom

employed in the commercial tools, too. For example, PASS is

only able to calculate the sample size for survival data under the

exponential distribution [14]. Though Heo et al proposed a

formula to calculate the sample size for survival data under the
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Weibull distribution [15], it is just for traditional single-stage trials

and cannot be applied in multi-stage group sequential design.

Furthermore, the proposed approaches shown in these literatures

are usually based on the particular statistical tests or trial

procedure. They are sometimes complicated in the actual clinical

trials. On the other hand, the Monte Carlo simulation-based

approach is an easy and flexible method to estimate the sample

size for a trial which has a particular trial design, trial procedure,

statistical test and target power [16]. The changes of the trial

procedure and other demands on the trial can be conveniently

incorporated into the simulation so that the accurate sample size is

calculated. The simulation-based method is also generally adopted

in some commercial softwares, such as, PASS, nQuery, etc. But the

Weibull distribution, which is more suitable to describe the

survival data, is not usually considered in these softwares.

Therefore, a practical and simple method, which employs Monte

Carlo simulation to calculate the sample size for multi-stage two-

arm group sequential trials with time-to-event endpoint, is

proposed in this paper and its SAS program has been developed.

Here, both the exponential and Weibull distribution are consid-

ered and the simulation is based on the log-rank test. The

probability of discontinuation in the trial is also included and leads

to a more accurate estimate. Besides the recommended sample

size, a series of assessment indexes will be calculated in the

program to determine the optimal plan of group sequential trial.

To call the program for sample size determination, a method of

estimating the shape parameter based on the hazard ratio and

median survival time is suggested from the practical perspective

when the Weibull distribution is assumed. Moreover, the

generalization of the method for adaptive design is discussed.

Methods

Parametric distributions of time-to-event data
Because various physical causes result in the occurrence of a

specified event and it is impossible to isolate the causes and

account mathematically for all of them, the theoretical distribution

of time-to-event outcome is difficult to define in clinical trials [17].

It brings difficulties to sample size determination and statistical

analysis of survival data. The common parametric distributions of

survival data include exponential, Weibull, gamma, log-normal,

log-logistic, normal, exponential power, Gompertz, inverse

Gaussian, Pareto, generalized gamma distribution, etc [17]. Of

them, the exponential and Weibull distribution are the two most

important distributional forms in modeling the survival data and

frequently employed to build up the survival parametric models.

The exponential distribution is the simplest and most important

parametric distribution of time-to-event data. It is often referred to

as a purely random failure pattern. The exponential distribution

was firstly proposed to model failure data by Davis [18] and

discussed why it had been selected to describe the survival data

over the popular normal distribution by Epstein and Sobel [19–

20]. Until now, it still plays a major role in modeling the time-to-

event data due to its simplicity. The exponential distribution is

characterized by a constant hazard rate l, which indicates high

risk and short survival. Let t be independent continuous time

variable. For the survival data following the exponential distribu-

tion, the hazard rate at time t is defined as

h(t)~l, t§0 ð1Þ

and the survival rate at time t is

S(t)~exp({lt), t§0: ð2Þ

Here, l denotes the scale parameter of the exponential distribu-

tion. However, the constant hazard rate in the exponential

distribution leads to the property of ‘‘lack of memory’’, which

appears too restrictive when employing it to describe the time-to-

event data in clinical trials.

Unlike the exponential distribution, the varied hazard rate is

considered under the Weibull distribution by including the shape

parameter c besides the scale parameter l. The distribution and its

applicability were introduced to failure data by Weibull [21–22]. It

is thought to be more appropriate to model the time-to-event data

than the exponential distribution because of its varied hazard rate.

The survival time following the Weibull distribution, has the

hazard function

h(t)~lc(lt)c{1 ð3Þ

and the survival function

S(t)~exp½{(lt)c�: ð4Þ

Here, t is the independent continuous time variable. l and c
denote the scale and shape parameter of the Weibull distribution

respectively. It is seen that the hazard rate increases when c.1

and decreases when c,1 as t increases. The exponential

distribution is the special case of the Weibull distribution when

c = 1 and the hazard rate is a constant.

Compared with other survival parametric distributions, the

exponential and Weibull distribution are of particular importance

and generally applied in modeling the time-to-event data in

clinical trials. Although the simple form of the exponential

distribution makes it easy to fit parametric models for survival

outcomes, the Weibull distribution has its superiority, e.g., varied

hazard rate, to describe the time-to-event data in medical studies.

Therefore, both the exponential and Weibull distribution are

employed to estimate the sample size of group sequential design

for the time-to-event endpoint in the article.

Group sequential design of time-to-event data
Compared with the traditional trial designs, group sequential

design allows early stopping for efficacy/futility based on the

results of interim analyses, which effectively improves trial

efficiency, shortens trial duration and saves trial costs in some

occasions. As a result, it was paid much attention from all trial

participants and has been widely applied in clinical trials. When

designing a group sequential trial, it is essential and important for

biostatisticians to choose the optimal number of trial stages,

interim time schedule and stopping boundaries of interim analyses

[23]. To preserve the type I error probability in the group

sequential design, many methods, e.g. Pocock design, O’Brien-

Fleming design, the error spending function, [1–3] etc, were

introduced to calculate the boundaries of early stopping for

efficacy. The Pocock method averages the probability of early

stopping in each interim analysis, while the O’Brien-Fleming

method takes a conservative attitude at the early interim time

points. It inflates the traditional single-stage sample size so little

that it becomes one of the most widely used methods in group

sequential design [24]. The error spending approach regards the

trial as a process of consuming type I error rate. An increasing

function a(t), 0ƒtƒ1, which characterizes the rate at which the

type I error rate is spent, has to be prespecified in a particular trial

A Method to Calculate Sample Size for TTE Data
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and several functions were proposed by Lan et al [3]. Here, t

denotes the fraction of the total information no matter whether

information time or calendar time is employed in the trial [25].

The method is equivalent to Pocock design when

a(t)~a½ln(1z(e{1)t� and O’Brien-Fleming design when

a(t)~2{2W(za=2=
ffiffi
t
p

). Depending on these methods, it is possible

to perform extensive simulations to determine the optimal interim

monitoring plan, including the number of trial stages and the time

schedule of interim analyses, and calculate the sample size.

Although the methods we have mentioned above equally fit the

survival trials, there are still some differences between the trials

with survival and other types of endpoints. The definition of

information time in the survival group sequential trials is different

from the trials with normal or binary endpoint. The subjects

provide full information to the survival trial only when the events

occur. The information time at an interim analysis here is referred

to as the proportion of maximum events already observed, but not

all subjects who complete the trial [25]. Consequently, the sample

size estimation means the calculation of the necessary number of

the events for the subsequent stages in the survival trials [26].

Though the number of events in a trial guarantees the test power,

the investigators and sponsors are more interested in the subjects

to be accrued in a trial for the practical considerations. The

transformation from the calculation of the number of events to the

number of subjects is essential and vital for the sample size

estimation of survival trials. Furthermore, the censoring in survival

data makes it more complicated. Therefore, a Monte Carlo

simulation-based method is employed and its SAS tool has been

developed in this article. In the simulation, all these factors are

incorporated to estimate the sample size. Both the number of

necessary events to be observed and the number of subjects to be

accrued are estimated. Moreover, besides the total sample size, a

series of assessment indexes are calculated to help determine the

optimal interim monitoring plan.

The simulation-based method for sample size estimation
Here, we consider a two-arm group sequential trial with survival

outcome. The hypothesis to be tested is

H0 : MT~Mc versus H1 : MT=Mc,

where MT and MC denote the median survival time of the

treatment and control groups respectively. Under the assumption

of proportional hazard, the hypothesis is equivalent to

H0 : h~1 versus H1 : h=1, where h is the hazard ratio. Assum-

ing that the trial is divided into k stages, the i-th (i = 1,2,…,k-1)

interim analysis is performed after the i-th stage of the trial and the

final analysis is implemented when all patients complete the trial.

At the i-th interim analysis, the trial stops earlier for efficacy if the

derived pivai, where ai denotes the nominal significance level of

the i-th stage. Or else, the trial continues to the subsequent stage.

Early stopping for futility is not considered in this article. At the

final analysis, the trial is considered to be successful when H0 is

rejected and failed when H0 is accepted.

To calculate the sample size of survival group sequential trial,

the trial parameters, which are related to the trial size, have to be

prespecified besides the overall type I error rate a and the overall

test power 1{b. First of all, the median survival time MT ,MC and

the hazard ratio h directly contribute to the size of the trial. Here,

the hazard ratio can be derived by h~(MT=MC)c under the

assumption of proportional hazard, where c is the shape

parameter of the Weibull distribution. A higher hazard ratio

leads to a smaller sample size and a lower ratio brings a larger one

when c is fixed. MT and MC determine the scale parameters of the

treatment and control groups respectively under the prespecified

survival distribution. Secondly, the maximum observed time of the

subject T is related to the sample size. The longer the patients are

followed up in a trial, the smaller the sample size is needed.

Thirdly, the interim monitoring plan, including the number of trial

stages k, the interim time schedule ti and the nominal significance

level ai of interim analysis, etc, results in the trial size. Compared

with the traditional single-stage design, multiple interim analyses

in the group sequential design lead to sample size inflation with the

given type I error rate and test power. The more stages are

planned in a trial, the larger the sample size is needed. The degree

of sample size inflation also depends on the nominal significance

levels of interim analyses. As we have mentioned above, the

O’Brien-Fleming boundaries result in the smallest sample size

among the available approaches. The nominal significance levels

can also be determined by performing extensive simulations as

long as the overall type I error rate is well controlled. In addition,

the survival distributional form is another important trial

parameter for sample size estimation. Here, both the exponential

and Weibull distribution are considered. It has to be prespecified

to calculate the sample size in the simulation. When the Weibull

distribution is assumed, the magnitude of shape parameter has to

be defined at the same time. The drop-out rate and sample size

ratio of the two groups are also necessary to calculate the sample

size. In the simulation, it is presumed that the subjects be enrolled

in sequence and the subject would enter the study only when the

former one had finished the trial. The subject is considered to

finish the trial if he/she dies, discontinues or has been followed up

for the prespecified longest duration. Due to the presumption, only

the subjects, who finish the trial at the interim analysis, are

included for data analysis and no one is still at risk in the cohort at

that time. Therefore, the accrual information, including the

accrual time, accrual rate and accrual distribution, does not have

the effects on the sample size. It is unnecessary to define them in

the simulation.

In addition to the number of events to be observed and the

number of subjects to be accrued in a trial, a series of assessment

indexes are calculated to help determine the optimal interim

monitoring plan in the simulation. They are listed and explained

as follows.

(i) The stage-wise empirical power Poweri(i~1,2,:::,k) and

cumulative empirical power cPoweri at the i-th stage. The stage-wise

empirical power at the i-th stage is defined as the proportion of the

simulative trials which reject the null hypothesis at the i-th stage when

H1 is true and calculated by Poweri~Nz
i =N, where N denotes the

number of all simulative trials and Nz
i is the number of the ones which

succeed at the i-th interim analysis. It reflects the probability of early

stopping for efficacy at the i-th stage. The cumulative empirical power

is calculated by cPoweri~
Pi

m~1

Powerm and it equals to the overall

empirical power when i = k. It should be noted that Poweri is just the

stage-wise empirical type I error rate at the i-th stage when MT~Mc is

assumed. Because it is referred to as the proportion of the trials which

reject the null hypothesis at the i-th stage when H0 is true. Equally,

cPoweri becomes cumulative empirical type I error rate under the null

hypothesis. Therefore, as long as the various MT and MC are

prespecified, both the empirical power and type I error rate are

calculated by employing the same program.

(ii) The expected number of events to be observed in a trial. For a k-

stage group sequential trial with time-to-event outcome, let

di(i~1,2,:::,k) be the number of events to be observed at the i-th

stage. The expected number of events to be observed in a trial is

calculated by

A Method to Calculate Sample Size for TTE Data
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E(D)~d1z
Xk

i~2

½di|(1{cPower(i{1))�: ð5Þ

Compared with the total number of events D~
Pk

i~1

di, E(D) takes

account of both the number of events to be observed and the

probability of early stopping for efficacy. The cost-effective consider-

ation is included to assess and determine the optimal interim

monitoring plan.

Depending on the prespecified trial parameters, the Monte Carlo

simulation based on the trial procedure is implemented to calculate

the sample size, the number of events to be observed and other

assessment indexes. In the simulation, the log-rank test is employed

as the survival analysis method at the interim analyses and final

analysis. All the subjects who finish the trial before the i-th stage are

pooled for the i-th interim analysis. Correspondingly, a SAS macro

%n_gssur based on the simulation-based method was developed to

calculate the sample size and assessment indexes for survival group

sequential design. The input macro parameters of the SAS macro

are listed in Table 1. The run of the macro depends on the two sub-

macros %exp_gen and %weibull_gen, in which the survival time is

generated at random under the exponential and Weibull distribu-

tion respectively. The detailed program flow is designed according

to the trial procedure and program requirements. It is descried in

detail as follows and the flow chart is shown in Figure 1.

Step 1. Prepare for the Monte Carlo simulation. The

necessary trial parameters for sample size estimation are obtained

from the macro parameters, which are shown in Table 1. The

maximum follow up time, the sample size ratio, the dropout rate

and the target power are defined according to the comments of

clinical investigators and sponsors, which are descried in the trial

protocol. For the information of interim monitoring plan,

including the number, timing and boundaries of interim analyses,

a series of scenarios are advised to try and the optimal plan is

chosen by comparing the assessment indexes we have mentioned

above. It will be illustrated in detail in the Results by using an

example. The distributional form of the time-to-event data is

defined according to the statistician’s assumption and the shape

parameter has to be given when the Weibull distribution is

assumed, which is discussed detailedly in the Results and

Discussion. The median survival time of the treatment and control

group are prespecified based on the literature review and the

expectation on the efficacy of the test drug. The scale parameter l
of the survival distribution and the survival rate of treatment and

control groups at time T are calculated from the median survival

time by employing Eq.(2) or Eq.(4) according to the assumed

survival distribution. The other macro parameters are designed for

the requirements of the program. Generally speaking, at least 1000

replications in the simulation are necessary for the robust estimate.

The starting and ending number of the sample size searching can

be defined according to the sample size of the traditional single

stage design and the multiple attempts are indispensible.

Figure 1. Program flow of the SAS macro.
doi:10.1371/journal.pone.0044013.g001
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Step 2. A series of loops are performed to search for the

minimum sample size of the control group from the prespecified

starting number until the target power or ending number is

achieved. Let nT and nC be the sample size of treatment and

control groups respectively. The total sample size can be derived

by n~nC|(1zr), where r denotes the sample size ratio of nT=nC .

Given nT ,nC , the drop-out rate p and the survival rate ST ,SC of

the treatment and control groups at time T, the total number of

preplanned events in the trial can be calculated by

D~nT|(1{p)|(1{ST )znC|(1{p)|(1{SC): ð6Þ

Here, the drop-out rates of the two groups are assumed to be

equal. Depending on Eq.(6), the number of events, which should

be observed to achieve the target power, is derived when the final

sample size is found in the loops. In each loop, the simulative trial

with the particular sample size is generated randomly according to

the prespecified survival distribution and analyzed based on the

trial procedure. N trials are simulated to calculate the empirical

power and other assessment indexes. The detailed procedures are

described in sequence as follows.

Step 2-1. Generate the random survival time Tj under the

prespecified survival distribution. Here, the equal shape param-

eters across the two groups are assumed when the Weibull

distribution is considered. When the data are generated, l is given

lT or lC based on the treatment assignment of the subject, where

lT and lC denote the scale parameter of the treatment and control

groups respectively. The subject, who discontinues in the trial, is

identified at random under the distribution of Bernoulli (p), where

p denotes the drop-out rate of the trial and has to be prespecified

in the macro parameter. Here, the subject is assumed to

discontinue at random completely and the drop-out rates are

equal across the two groups. The censored time of the

discontinued subject is not cut down because it is assumed that

they would not leave the trial earlier until the event is happening

and they should be still from the same survival distribution as the

one who finishes the trial.

Step 2-2. Simulate the procedure of group sequential design,

perform the interim/final analysis and calculate the assessment

indexes, e.g., the overall empirical power, the stage-wise empirical

power, the expected number of events, etc. They are completed by

the sub-steps as follows.

Step 2-2-1. Screen the subjects for interim analyses. When di

events are observed in the trial, the i-th interim analysis will be

performed. The subjects who finish the trial before the i-th stage

are screened for data analysis at the i-th interim analysis if no

positive result is derived at the (i-1)-th interim analysis. Due to the

conservative presumption that the subject would enter the study

only when the former one had finished it, no subject is at risk at the

interim analysis in the simulation.

Step 2-2-2. Perform the log-rank tests at the interim analyses

and final analysis. If the derived pivai at the i-th interim analysis,

the trial stops earlier for efficacy. Otherwise, it proceeds to the

subsequent stage. If no positive result is concluded until the final

analysis, the null hypothesis is accepted.

Step 2-2-3. Calculate the overall empirical power, Poweri,

cPoweri and the expected number of events to be observed for the

particular sample size.

Step 2-2-4. Clear the temporary datasets at the end of the

loop.

Step 2-3. Judge whether the target power is achieved and the

minimum sample size is found. If the target power is achieved, the

loops stop earlier and the final sample size is recommended.

Otherwise, the loops continue until the prespecified ending

number and the sample size searching fails. However, due to the

fluctuation of the calculated empirical power for varied trial size in

the simulation, the simulation will enter the stage of verification to

check the stability of the calculated power when the target power is

achieved for the first time. The trial size is denoted by n� and

considered as the initial estimate of the sample size of the control

group. If the calculated empirical power is still larger than the

target power for the trial size of n�z1 at the stage of verification,

n� is considered as the recommended final sample size of the

control group. Otherwise, the sample size of the control group will

continue to increase by 1 until the target power is achieved for the

Table 1. The input macro parameters in the SAS macro %n_gssur.

Parameter Definition

m1 The median survival time of the control group.

m2 The median survival time of the treatment group.

t The maximum observed time of the trial.

dtr0 The survival distribution employed for sample size estimation. The options include ‘exp’ for exponential distribution and ‘weibull’ for Weibull
distribution.

look The number of stages in the trial.

info The time points and their corresponding stopping boundaries for efficacy of the interim analysis.

min The starting number of sample size searching of the control group.

max The ending number of sample size searching of the control group.

len The length of increment of sample size searching.

r The sample size ratio of treatment and control groups.

drop The drop-out rate of the trial.

power The target overall power of the trial.

seed The number used to generate a stream of reproducible random numbers.

sim The number of simulated trials N.

path The path and name to save the result text file.

doi:10.1371/journal.pone.0044013.t001

A Method to Calculate Sample Size for TTE Data

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e44013



second time. The trial size at that time is regarded as the

recommended final sample size.

Moreover, censoring in the time-to-event data is another

important issue to sample size estimation. Here, two types of

right censored data are considered. One type of censored data

consists of the subjects who discontinue in the trial. They are

identified at random by employing Bernoulli distribution based on

the prespecified drop-out rate. For simplicity, it is assumed that the

drop-out subject would not leave the trial earlier until the event is

happening and his/her censored time should be still from the same

survival distribution as the one who finishes the trial. That is to say

the survival time of the discontinued subject is also generated at

the Step 2-1 in the simulation. They are only identified as the

censored ones and the survival time does not change for

discontinuation. Furthermore, the subjects, whose random survival

time from the given survival distribution is longer than the

maximum observed time, are considered to be censored because

the events of these subjects cannot be observed at time T. The

survival time of the subject is replaced by Tj~T .

Results

A practical clinical trial is employed as an example to illustrate

the use of the program and discuss the related issues. The primary

objective of a placebo-controlled clinical trial was to assess the

efficacy and safety of a new drug as the third-line treatment in the

patients with metastatic colorectal cancer. The expected event of

the trial was the death of the patient. The patient would be

observed for 18 months at maximum until he/she died of the

cancer. The primary endpoint of the trial was the OS of the

patient. The sample size ratio of treatment and placebo groups

was 2:1 for ethical consideration. The group sequential design was

considered by the investigators for the interests of the patients and

early stopping for efficacy was anticipated. By literature review,

the median OS of the placebo group was assumed to be 4.5

months. It was expected by the investigators that the test drug be

able to lengthen the median OS by 1.5 months compared with the

placebo. The sample size was calculated with the type I error rate

of 0.05 and test power of 80%. The drop-out rate was given as

20%. The information time was employed for group sequential

design and the O’Brien-Fleming boundaries were implemented to

control the overall type I error rate. The SAS macro %n_gssur

was employed to determine the optimal interim monitoring plan.

The total sample size and the number of deaths to be observed

were calculated at the same time. The decision process for the

optimal plan was explained under the assumption of the

exponential distribution for simplicity. The changes of total

sample size and other assessment indexes for varied shape

parameters under the Weibull distribution were also compared.

(1) The decision process for the optimal interim
monitoring plan

To choose the optimal interim monitoring plan, a series of

scenarios were assumed to evaluate their differences and the

interests of the patients. The scenarios included (A) traditional

single stage trial, (B) two-stage trial with equal space time, (C)

three-stage trial with equal space time and (D) three-stage trial

with t1~0:5,t2~0:75. For practical consideration, the trial with

$4 stages was not considered here. The sample size was estimated

under the assumption of the exponential distribution for simplicity.

The seed of data generation was specified as ‘123’ and 5000 trials

were repeated to calculate the empirical power.

As is shown in Table 2, 591 patients are necessary to be enrolled

and 423 deaths have to be observed to guarantee the target power

in the two groups if the traditional single stage is considered. It is

accidental that the total sample size of the two-stage design is equal

to the size of the single stage design because of the fluctuation of

the calculated empirical power in the simulation. But the expected

number of events in the two-stage design decreases clearly. The

phenomenon continues in the three-stage design, which seems

better than Scenario A and B due to the more chance of early

stopping for efficacy. However, in scenario C, the trial only has the

probability of 2.64% of early stopping at the first stage, which is

considered to be not practical and cost-effective in an actual trial.

On the other hand, the chance of early stopping achieves 17.72%

at the first stage and increases to 55.54% until the second stage in

Scenario D, which seems more reasonable and attractive. The

expected number of events is also smaller than the one of Scenario

C. Although the total sample size of Scenario D is a little larger

than the ones of the other 3 scenarios, it is still preferable to the

sponsors considering that the trial has a larger and reasonable

chance to stop earlier at the interim analyses. Therefore, the three-

stage design with t1~0:5,t2~0:75 is considered as the optimal

monitoring plan.

(2) The comparison of the results for varied c under the
Weibull distribution

On account of the relationship among MT ,MC ,c and the

hazard ratio, the effects of varied shape parameters on the sample

size, the number of events and other assessment indexes were

explored under two scenarios: (A) varied hazard ratio due to the

various c with MT~6,MC~4:5; (B) varied MT due to the various

c with HR~1:333, MC~4:5. According to the last section, the

three-stage design with t1~0:5,t2~0:75 was adopted in the

simulation. The seed of ‘123’ was also employed to generate the

simulative data and all the indexes were calculated based on 5000

replications. The simulation results of Scenario A and B are shown

in Table 3 and Table 4 respectively.

As is shown in Table 3 and Table 4, the stage-wise empirical

power and cumulative empirical power of each stage keep stable

for varied shape parameters and their fluctuation are within

reasonable range. The changes of shape parameters have no effect

on Poweri and cPoweri as long as the number and timing of

interim analyses are fixed. The optimal interim monitoring plan

under the exponential distribution also fits the trial no matter how

the shape parameter varies. The total sample size, the total

number and the expected number of events both decline with the

increase of c because the increasing c leads to the rise of hazard

ratio when MT and MC are fixed, which is depicted in Figure 2.

Especially when c,1, the three assessment indexes decrease

dramatically. The total sample size is larger than 1000 when

c#0.75 and the hazard ratio approaches to 1. The hazard ratio is

so large that the total sample size is smaller than 100 when c$2.5.

In Scenario B, as is shown in Figure 3, the total sample size still

decrease with the rise of c. But the range of total sample size is

smaller than the one of Scenario A. The increasing median

survival time of the treatment group, which is attributed to the

decreasing c, results in the larger sample size. The total number

and expected number of events keep stable no matter how the

shape parameter varies because the hazard ratio and target power

is the same. When c§2:5, n, D and E(D) keeps the same and the

median survival time of the treatment group approaches to the one

of the control group. It is seen from the results of Scenario A and B

that the total sample size is more sensitive to the hazard ratio than

the median survival time of the treatment group. The total

number and expected number of events only depend on the

hazard ratio when the target power is a constant.
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Discussion

The sample size estimation is an important and indispensible

part in trial design. It is more complicated for time-to-event data

due to its ambiguous distributional form and the censored data.

The different definition of information time about the time-to-

event endpoint makes it more difficult to estimate the sample size.

On the other hand, compared with the available theoretical

methods [5–13], the simulation-based approach for sample size

estimation is easier to implement in an actual trial and can include

various practical considerations on the trial, which leads to a more

accurate estimate. Therefore, a practical and simple simulation-

based method is proposed to calculate the sample size of two-arm

survival group sequential trial and its SAS tool is available from

the Program S1. In the simulation, the inclusion of the probability

of discontinuation contributes to the more accurate estimate. Both

the exponential and Weibull distribution are considered to

calculate the sample size. Compared with Heo’s method [15],

which gave a formula to calculate the sample size for single stage

trial under the Weibull distribution, our method focuses on the

multi-stage group sequential design. Besides the sample size, the

assessment indexes, such as, D,E(D),Poweri,cPoweri, are calcu-

lated in the simulation to help determine the optimal interim

monitoring plan for group sequential trial.

To implement the proposed method to calculate the sample

size, one has to prespecify the survival distribution, the median

survival time of the treatment and control groups, the maximum

follow up time, the number of trial stages, the interim time

schedule, the dropout rate, the sample size ratio, the target power,

etc. Of them, the maximum follow up time, the dropout rate, the

sample size ratio and target power are prespecified according to

the suggestions of the investigators and sponsors. But the accrual

information, including the accrual time, accrual rate and accrual

distribution, does not have to be prespecified, which is different

form the methods of some commercial softwares. That is because

the accrual information depends on too many factors, e.g., the

incidence rate of the disease, the number of patients in the site, the

inclusion/exclusion criteria of the subject, the working efficiency of

the trial monitor, etc. It is usually difficult for clinical investigators

to predict the accrual rate and accrual distribution. If too

optimistic accrual information is predicted, the estimated sample

size cannot guarantee the power to detect the difference and the

efficacy of the test drug is ignored. For that reason, it is presumed

that the subject would enter the study only when the former one

had finished the trial in the simulation from the conservative point.

At the interim analysis, only the subject who finishes the trial is

included for analysis and no one is still at risk in the cohort. The

accrual time, accrual rate and accrual distribution do not affect the

sample size and are unnecessary to define. Of course, the

presumption results in a conservative and larger estimate of the

sample size. But the group sequential design still makes it possible

to reject the null hypothesis earlier at the interim analysis if the

accrual information is better than the anticipated. In the group

sequential trials, the number, timing and boundaries of interim

analyses are closely related to the sample size and the number of

preplanned events. Both information time and calendar time are

available by employing calendar time-information time transfor-

mation. The stopping boundaries of interim analyses can be

calculated conveniently by using SAS 9.2, GroupSeq Package of

R, etc if Pocock method, O’Brien-Fleming method and the error

spending method are considered. As long as the overall type I

error rate is well controlled, the stopping boundaries can be

determined by performing extensive simulations, too. The

simulation-based method proposed here makes it possible to

choose the optimal number of trial stages and interim monitoring

schedule by comparing the calculated assessment indexes.

Moreover, the median survival time, hazard ratio and survival

distribution directly contribute to the sample size and the number

of events. The median survival time and hazard ratio of the two

groups reflect the efficacy of the test drug and satisfy

HR~(MT=MC)c when the Weibull distribution is assumed.

From the simulation results in Table 3 and 4, it is seen that the

number of events, which should be observed to guarantee the

target power, only depends on the hazard ratio. The number of

subjects to be accrued is more sensitive to the hazard ratio than the

median survival time. When HR = 1.333 and c§2:5, the sample

size keeps the same no matter how the shape parameter varies. But

the test drug cannot length the survival time of the patient

significantly compared to the placebo. However, when cv1, the

patients may benefit from the prolonged survival time though a

larger sample size is needed. On the other hand, when the survival

time of the two groups is fixed, the hazard ratio, which varies with

the shape parameter of the Weibull distribution, directly results in

the sample size. When cv0:7, too low hazard ratio leads to so

large sample size and it may be unnecessary to start the trial due to

the poor efficacy. When cw2, too small sample size because of the

high hazard ratio makes it possible to shorten the follow up time

Table 2. The comparison of the results for different interim monitoring plans under the exponential distribution.

Scenario Stage n D E(D) ti di ai Poweri cPoweri

A 1 591 423 423.00 1 423 0.05 80.88% 80.88%

B 2 591 423 384.46 0.5 211 0.003051 18.18% 18.18%

1 212 0.048999 62.68% 80.68%

C 3 594 425 359.25 1/3 141 0.000207 2.64% 2.64%

2/3 142 0.012025 41.02% 43.66%

1 142 0.045576 36.38% 80.04%

D 3 597 427 348.61 0.5 213 0.003047 17.72% 17.72%

0.75 107 0.018324 37.82% 55.54%

1 107 0.04401 25.02% 80.56%

n: the total sample size in two groups; D: the number of events to guarantee the target power in two groups; E(D): the expected number of events; ti: the information
time of the i-th interim analysis; di: the number of events to be observed in the i-th stage; ai : the nominal significance level of the i-th interim analysis; Poweri : the stage-
wise empirical power of the i-th stage; cPoweri : the cumulative empirical power of the i-th stage.
doi:10.1371/journal.pone.0044013.t002
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Table 3. The comparison of the results for varied c with fixed MT and MC under the Weibull distribution (MT = 6, MC = 4.5).

c HR n D E(D) ti di Poweri cPoweri

0.3 1.090 9570 4816 3955.38 0.5 2488 17.32% 17.32%

0.75 1204 36.84% 54.16%

1 1204 26.00% 80.16%

0.5 1.155 2967 1699 1390.45 0.5 849 18.30% 18.30%

0.75 425 36.00% 54.30%

1 425 26.00% 80.30%

0.55 1.171 2388 1408 1151.46 0.5 704 17.92% 17.92%

0.75 352 37.04% 54.96%

1 352 25.58% 80.54%

0.6 1.188 1941 1176 966.14 0.5 588 17.08% 17.08%

0.75 294 37.22% 54.30%

1 294 25.94% 80.24%

0.65 1.206 1626 1011 826.51 0.5 505 17.78% 17.78%

0.75 253 37.36% 55.14%

1 253 25.26% 80.40%

0.7 1.223 1380 879 720.34 0.5 439 17.98% 17.98%

0.75 220 36.16% 54.14%

1 220 25.88% 80.02%

0.75 1.241 1170 763 626.32 0.5 381 17.36% 17.36%

0.75 191 36.84% 54.20%

1 191 26.14% 80.34%

0.8 1.259 996 664 544.11 0.5 332 17.16% 17.16%

0.75 166 37.90% 55.06%

1 166 25.06% 80.12%

0.85 1.277 864 587 480.75 0.5 293 17.42% 17.42%

0.75 147 37.44% 54.86%

1 147 25.32% 80.18%

0.9 1.296 747 517 422.13 0.5 258 18.14% 18.14%

0.75 129 36.84% 54.98%

1 130 25.48% 80.46%

0.95 1.314 660 465 380.79 0.5 232 17.44% 17.44%

0.75 116 37.24% 54.68%

1 117 25.96% 80.64%

1 1.333 591 423 346.76 0.5 211 17.76% 17.76%

0.75 106 36.40% 56.28%

1 106 24.36% 80.64%

1.5 1.540 249 195 159.17 0.5 97 18.44% 18.44%

0.75 49 36.24% 54.68%

1 49 25.56% 80.24%

2 1.778 141 112 91.96 0.5 56 17.54% 17.54%

0.75 28 36.50% 54.04%

1 28 26.22% 80.26%

2.5 2.053 96 76 61.35 0.5 38 20.18% 20.18%

0.75 19 36.74% 56.92%

1 19 23.96% 80.88%

3 2.370 69 55 44.26 0.5 27 19.54% 19.54%

0.75 14 37.66% 57.20%

1 14 24.80% 82.00%

3.5 2.737 51 40 32.40 0.5 20 19.74% 19.74%
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and accrue more patients. The whole study process of the drug will

be quickened and the trial costs may be saved.

In an actual clinical trial, the median survival time is an intuitive

endpoint to the clinical investigators and reflects the benefits of the

patient from the drug. It is relatively easy for the clinician to

estimate the median survival time of the treatment and control

groups based on the literature review and the pre-studies on the

drug. The hazard ratio is referred to as the hazard rate of the event

of the control group to the treatment group. For a clinical trial

with the hazard ratio of HR, it is thought that the test drug is able

to decrease (1-1/HR) risk of the event compared to the control

group. It is also possible for the clinical investigator to estimate the

hazard ratio with the help of the biostatistician and other

participants according to the pre-studies and the expectations on

the test drug. Therefore, when the Weibull distribution, which is

more appropriate to describe the time-to-event endpoint for the

included shape parameter, is assumed in a trial, it is suggested that

the acceptable range of the median survival time of the test drug

and the hazard ratio should be estimated at first in order to

calculate c. Let ML be the minimum significant median survival

time of the test drug from the clinical perspective and MU be the

largest expected median survival time. The estimated range of the

hazard ratio is ½HRL,HRU �, where HRL and HRU denote the

lower and upper limit of the estimated hazard ratio. According to

the simulation results, the shape parameter of the Weibull

distribution is calculated by

c~
log HRL

log MU{log MC

ð7Þ

from the conservative point, where MC denotes the median

survival time of the control group. We still take the metastatic

colorectal cancer clinical trials we have mentioned above as an

example to illustrate how to estimate c explicitly. It was predicted

that the test drug could lengthen the median OS by 2.5 months at

best and the median OS of the placebo group was 4.5 months.

The test drug was expected to decrease 25%-30% risk of death

compared to the placebo. Accordingly, the range of the hazard

ratio was [1.333, 1.429]. The shape parameter of the Weibull

distribution was estimated as 0.651 by using Eq.(7). When the

three-stage group sequential design with t1~0:5,t2~0:75 was

employed and O’Brien-Fleming boundaries were considered, 696

subjects and 420 deaths were necessary to achieve 80% power to

detect the difference.

Whether the fluctuation of the sample sizes for various random

seeds leads to the inaccurate estimate is another vital concern

about the simulation-based approach. To explore the problem, 10

different random seeds were specified respectively to calculate the

sample sizes under the assumption of the exponential distribution

for the cancer clinical trial we have introduced in the example.

The three-stage design with t1~0:5,t2~0:75 was considered to

calculate the sample size. The derived sample sizes range from 588

to 606. The mean and standard deviation of them are 598.2 and

5.13. Correspondingly, the number of deaths ranges from 421 to

434 with the mean of 428.1 and standard deviation of 3.81. It

seems that 10 simulations are enough to provide a robust estimate.

Therefore, in order to get the robust estimate of the sample size,

10+ simulations with various seeds are suggested and their mean is

recommended as the final sample size. Moreover, we find that the

sample sizes calculated under the exponential distribution and the

Weibull distribution with the shape parameter of 1 are not equal

exactly even if the same seed was specified, which is seen in Table 2

and 3. It is because different SAS functions were called to generate

the streams of random number, which results in the differences of

derived sample sizes. But the mean sample size under the Weibull

distribution with c of 1, which was estimated from 10 simulations

with the same seeds as the simulations of the exponential

distribution, is 601.8. It is very close to the mean sample size

under the exponential distribution.

However, adaptive design, which is considered to be an

extension of group sequential design, has been increasingly

applied in the recent years. It allows sample size re-estimation

after interim analysis to cope with the inaccurate estimate on the

efficacy of the drug when designing the trial. The simulation-

based approach introduced in this article, which was initiated

Table 3. Cont.

c HR n D E(D) ti di Poweri cPoweri

0.75 10 36.56% 56.30%

1 10 24.04% 80.34%

4 3.160 42 33 26.30 0.5 16 19.58% 19.58%

0.75 8 37.48% 57.06%

1 9 25.24% 82.30%

4.5 3.649 33 26 21.01 0.5 13 18.72% 18.72%

0.75 6 36.48% 55.20%

1 7 24.98% 80.18%

5 4.214 30 24 19.15 0.5 12 20.04% 20.04%

0.75 6 40.70% 60.74%

1 6 22.88% 83.62%

8 9.989 15 12 10.16 0.5 6 2.94% 2.94%

0.75 3 55.56% 58.50%

1 3 25.50% 84.00%

c: the shape parameter of the Weibull distribution; HR: the hazard ratio; n: the total sample size in two groups; D: the number of events to guarantee the target power in
two groups; E(D): the expected number of events; ti: the information time of the i-th interim analysis; di: the number of events to be observed in the i-th stage; Poweri :
the stage-wise empirical power of the i-th stage; cPoweri : the cumulative empirical power of the i-th stage.
doi:10.1371/journal.pone.0044013.t003
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Table 4. The comparison of results for varied c with fixed hazard ratio under the Weibull distribution (HR = 1.333).

c MC/MT n D E(D) ti di Poweri cPoweri

0.3 4.5/11.74 909 421 344.50 0.5 210 18.10% 18.10%

0.75 105 36.14% 54.24%

1 106 25.90% 80.14%

0.5 4.5/8.00 765 416 339.75 0.5 208 17.84% 17.84%

0.75 104 37.64% 55.48%

1 104 24.54% 80.02%

0.55 4.5/7.59 747 421 343.76 0.5 210 18.12% 18.12%

0.75 105 36.80% 54.92%

1 106 25.42% 80.34%

0.6 4.5/7.26 720 420 342.49 0.5 210 17.98% 17.98%

0.75 105 37.86% 55.84%

1 105 24.44% 80.28%

0.65 4.5/7.01 702 423 345.68 0.5 211 17.96% 17.96%

0.75 106 37.02% 54.98%

1 106 25.64% 80.62%

0.7 4.5/6.79 678 421 343.92 0.5 210 17.60% 17.60%

0.75 105 37.68% 55.28%

1 106 25.42% 80.70%

0.75 4.5/6.60 660 422 344.86 0.5 211 17.86% 17.86%

0.75 105 37.22% 55.08%

1 106 25.28% 80.36%

0.8 4.5/6.45 627 411 335.83 0.5 205 18.66% 18.66%

0.75 103 35.66% 54.32%

1 103 25.98% 80.30%

0.85 4.5/6.31 615 414 338.47 0.5 207 17.88% 17.88%

0.75 103 37.04% 54.92%

1 104 25.22% 80.14%

0.9 4.5/6.19 603 415 340.87 0.5 207 17.28% 17.28%

0.75 104 36.72% 54.66%

1 104 26.26% 80.34%

0.95 4.5/6.09 600 421 343.65 0.5 210 18.04% 18.04%

0.75 105 37.06% 55.10%

1 106 25.60% 80.70%

1 4.5/6.00 591 423 346.76 0.5 211 17.76% 17.76%

0.75 106 36.40% 56.28%

1 106 24.36% 80.64%

1.5 4.5/5.45 543 429 350.25 0.5 214 17.54% 17.54%

0.75 107 38.00% 55.54%

1 108 24.46% 80.00%

2 4.5/5.20 534 427 351.14 0.5 213 16.28% 16.28%

0.75 107 38.34% 54.62%

1 107 25.60% 80.22%

2.5 4.5/5.05 546 436 356.88 0.5 218 17.92% 17.92%

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

3 4.5/4.95 546 436 356.88 0.5 218 17.92% 17.92%

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

3.5 4.5/4.88 546 436 356.88 0.5 218 17.92% 17.92%
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from the group sequential design, can also be applied in adaptive

design by employing the following strategy. In the planning phase

of the trial, a series of possible scenarios about the efficacy of the

test drug are assumed in advance and the sample size scheme for

each possible scenario is calculated by employing %n_gssur. After

the interim analysis, the investigator is able to choose the suitable

sample size from the scheme for the subsequent stage according

to the results of interim analysis. In the strategy, no modification

of the program is necessary. The strategy protects the integrity of

adaptive design to a greater extent than the methods of sample

size re-calculation after interim analysis. But the error-spending

boundaries may be not fit in the strategy and they have to be

determined by extensive simulations. The detailed procedures for

stopping boundary determination and sample size scheme

calculation can be seen in [27]. On the other hand, the minor

modifications of the program are inevitable if the sample size re-

calculation after interim analysis is considered. To run the macro

for sample size re-calculation, the interim data is necessary and

the statistical test procedure has to be modified. Here, the log-

rank test is still suggested for interim/final analysis and the

derived p-values are pooled by employing the inverse normal

method [26,28]. Depending on these modifications on the SAS

program, it can be further applied to re-estimate the sample size

in adaptive design.

Table 4. Cont.

c MC/MT n D E(D) ti di Poweri cPoweri

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

4 4.5/4.83 546 436 356.88 0.5 218 17.92% 17.92%

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

4.5 4.5/4.80 546 436 356.88 0.5 218 17.92% 17.92%

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

5 4.5/4.77 546 436 356.88 0.5 218 17.92% 17.92%

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

8 4.5/4.66 546 436 356.88 0.5 218 17.92% 17.92%

0.75 109 36.74% 54.66%

1 109 25.62% 80.28%

c: the shape parameter of the Weibull distribution; MT: the median survival time of the treatment group; MC: the median survival time of the control group; n: the total
sample size in two groups; D: the number of events to guarantee the target power in two groups; E(D): the expected number of events; ti: the information time of the i-
th interim analysis; di: the number of events to be observed in the i-th stage; Poweri : the stage-wise empirical power of the i-th stage; cPoweri : the cumulative empirical
power of the i-th stage.
doi:10.1371/journal.pone.0044013.t004

Figure 2. The change of n, D and E (D ) for varied c with fixed MT and MC under the Weibull distribution (MT = 6, MC = 4.5).
doi:10.1371/journal.pone.0044013.g002
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Program S1 The detailed codes and sample call of the
SAS program %n_gssur.
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