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Abstract

The biological activity and geographical distribution of honey bees is strongly temperature-

dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana

exhibits stronger cold hardiness than Western honey bees, making the former species

important pollinators of winter-flowering plants. Although studies have examined behavioral

and physiological mechanisms underlying cold resistance in bees, data are scarce regard-

ing the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana

under two temperature treatments, using transcriptomic analysis to identify differentially

expressed genes (DEGs) and relevant biological processes, respectively. Across the tem-

perature treatments, 501 DEGs were identified. A gene ontology analysis showed that

DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabo-

lism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger

proteins, and serine/threonine-protein kinases were differentially expressed between the

two treatments. The results of this study provide a general digital expression profile of ther-

moregulation genes responding to cold hardiness in A. c. cerana. Our data should prove

valuable for future research on cold tolerance mechanisms in insects, and may be beneficial

in breeding efforts to improve bee hardiness.

Introduction

Temperature is one of the most important abiotic factors influencing insect activity and

geographic distribution [1]. Insects may face daily or seasonal temperature fluctuations in

temperate climates and subzero temperatures in frigid zones, severely compromising meta-

bolic and physiological activity [2]. Although differences in population distribution patterns

[3–5], developmental stages [6] and diapause status [7] all contribute to the considerable

variation in cold tolerance among insects, they have evolved a series of consistent physiolog-

ical and behavioral strategies to mitigate cold-related damage. Behaviorally, some insects

(e.g., monarch butterflies Danaus plexippus) perform long-distance migration to warm
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habitats [8], while others take shelter in thermally buffered microclimates, such as tree bark

crevices or under snow and frozen soils [1, 9]. Physiologically, insects are broadly divided

into freeze-tolerant and freeze-susceptible species, based on their adaptation mechanisms;

the former group can survive after a percentage of their extracellular fluids freeze, whereas

the latter group cannot [10]. Winter survival rates and cold resistance is improved in freeze-

susceptible insects through the regulation of physiological and metabolic pathways that

lower their supercooling point (SCP), the temperature below which insects will freeze [11,

12]. The SCP is thus an indicator of cold resistance capacity. Insect SCP can be altered

through extreme dehydration, purging the gut of ice nucleators, and producing multimolar

concentrations of cryoprotectants [13, 14].

Cryoprotectants are divided into high molecular weight antifreeze-associated proteins and

small-molecule cryoprotectants. The former group includes heat shock proteins (HSPs), anti-

freeze proteins, antifreeze glycolipids, and other cold-induced stress proteins, which all exhibit

distinctive structures and properties that are critical to overcoming low temperatures [15–17].

In insects, the synthesis of small cryoprotectants is substantially common; these compounds

include polyhydric alcohols, sugars, and glycerol [18]. Studies on cold-shock and chilling toler-

ance in Drosophila have shown that energetic reserves (e.g., glycogen, triacylglycerols, and pro-

line) may be important in cold-coping mechanisms [19]. In the cold-hardy gall fly (Eurosta
solidaginis), for example, the larvae exhibit high levels of glycerin, sorbitol, glucose, and treha-

lose biosynthesis [20]. Other overwintering insects also synthesize glycoproteins and various

amino acids; these molecules likely play a key role in lowering the SCP as part of a cold-stress

response [21, 22].

The vast majority of research on insect cold resistance has focused on solitary species, with

social insects being relatively ignored. The honey bee (Apis spp.) is an eusocial insect and

major pollinator, with high economic value worldwide; an understanding of cold-tolerance

mechanisms in the honey bee thus has important practical implications. Honey bees have been

anthropogenically introduced to a wide range of tropical and temperate geographical regions.

Physiological and behavioral thermoregulation is essential for the ectothermic honey bees at

both individual and colony levels [23, 24]. Bee colonies tend to have high stable temperatures

in the central core area (where the brood is located) under a variety of environmental condi-

tions [25], achieved via the clustering and layering of worker bees to form an insulating shell

[23, 26]. Because of this ability to maintain a constant temperature, studies on thermoregula-

tion in honey bees tend to focus on the colony. However, individual forager bees, for example,

must still survive colder environmental conditions in early spring and late autumn to success-

fully gather food [27]. Currently, we know that honey bees maintain their body temperature

above ambient conditions through burning fuel during flight [27]. However, when tempera-

tures drop below 12˚C, individual honeybees are unable to fly, and they become comatose at

temperatures below 10˚C [28]. More work is required to understand the molecular regulatory

mechanisms of cold resistance in honey bees.

The Chinese honey bee (Apis cerana cerana) is an important endemic species that is critical

to environmental improvement and ecosystem balance in China [29]. A. c. cerana has a lower

SCP [30] and is more cold-hardy than the Western honey bee (A. mellifera), displaying high

forager activity below 14˚C and pollinating winter-flowering plants in southern China [31].

Thus, A. c. cerana should be an effective model organism for studying transcriptional regula-

tion of cold resistance in honey bees. In this study, we characterized gene expression in cold-

treated A. c cerana adults, using Illumina sequencing technology to examine their transcrip-

tomes. Through identifying key temperature-regulated genes and gene networks, this research

should offer important insight into the mechanisms of cold tolerance.
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Materials and methods

Insect treatments

Chinese honey bees (A. c. cerana) were maintained in an experimental apiary from the College

of Animal Science and Veterinary Medicine of Shanxi Agriculture University (Taigu, China).

Winter bees were bred on September 15, 2015 and emerged on October 5, 2015. Newly

emerged adults were marked with paint. Adults 20-day post-emergence were collected from

three hives on October 25, 2015, when the environmental temperature in this region ranged

from 6˚C to 15˚C. Three hundred adults (n = 100/hive) were collected and each individual bee

was placed into 15 mL centrifuge tubes with small pores. Bees were then divided into two

groups (n = 150/group) and treated for 2 h at either 0˚C (cold treatment; ZOT) or 25˚C (nor-

mal-temperature treatment; ZRT) in constant-temperature incubators. After 2 h, 60 randomly

selected bees (n = 30/group) were allowed to recover for 30 min before mortality was calcu-

lated as an indication of phenotypic (cold-tolerance) variation. The remaining individuals

(120/group) were immediately frozen in liquid nitrogen for total RNA extraction and RNA-

seq analysis.

Library construction

Total RNA was extracted using TRIzol reagent (Ambion, Foster City, CA, USA) following the

manufacturer’s protocol. Total RNA concentration was determined using a Qubit1 RNA

Assay Kit and the Qubit1 2.0 Fluorometer (Life Technologies, Carlsbad, CA, USA), and RNA

sample quality was assessed with agarose gel electrophoresis. Novogene Bioinformatics Tech-

nology Co., Ltd, Beijing, China (http://www.novogene.cn/) performed RNA library construc-

tion. Sequencing libraries were generated using the NEBNext1 Ultra™ Directional RNA

Library Prep Kit for Illumina1 (NEB) in accordance with the manufacturer’s protocol. After

clustering index-coded samples, each library preparation was sequenced on an Illumina HiSeq

2000 platform and 50-bp single-end (SE) reads were generated.

Read mapping to the reference genome

Raw reads in the fastq format were first processed using in-house Perl scripts. they were then

cleaned by removing of low-quality reads and those containing adapters or poly-N (quality

limit 0.05). High-quality clean reads were used for downstream analyses. The Q20, Q30, and

GC contents of the clean data were calculated. Next, clean tags were retained and mapped to

the reference genome of Apis cerana (https://www.ncbi.nlm.nih.gov/genome/?term=Apis

+cerana). TopHat was the selected as the mapping tool because it can generate a splice junc-

tion database based on the gene-model annotation file, leading to better mapping results than

other non-splice-site mapping tools.

Bioinformatic analysis of RNA-seq data

Reads mapped to each gene were counted in HTSeq (version 0.5.4p3) [32]. Fragments per kilo-

base of transcript per million fragments sequenced (FPKM) of each gene were calculated from

gene length and mapped read count [33]. Differential expression analysis of the two tempera-

ture treatments was performed using the DEGSeq R package v1.12.0 [34]. The Benjamini and

Hochberg method was used to adjust P-values [35]. The significance threshold for differential

expression was set at a corrected P-value < 0.05 and log2 (fold-change) of 0.5.

Cold tolerance in Apis cerana cerana

PLOS ONE | https://doi.org/10.1371/journal.pone.0179922 June 26, 2017 3 / 15

http://www.novogene.cn/
https://www.ncbi.nlm.nih.gov/genome/?term=Apis+cerana
https://www.ncbi.nlm.nih.gov/genome/?term=Apis+cerana
https://doi.org/10.1371/journal.pone.0179922


GO and KEGG pathway enrichment analyses

Gene ontology (GO) enrichment analysis of the differentially expressed genes (DEGs) was per-

formed using the GOseq R package (version 1.10.0), with a correction for gene length bias. GO

terms with a corrected P<0.05 were considered significantly enriched by DEGs. Significant

enrichment (corrected P< 0.05) in a Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis was tested with KOBAS (http://kobas.cbi.pku.edu.cn/).

qRT-PCR analyses

Differential gene expression was verified with qRT-PCR (quantitative reverse transcription

polymerase chain reaction). First-strand cDNA was synthesized from 1 μg of total RNA, using

the ReverTra Ace-a First-strand cDNA Synthesis Kit (TaKaRa, Shiga Prefecture, Japan). Prim-

ers designed for each gene are given in S1 Table. The qRT-PCR thermocyling program was as

follows: 95˚C for 30 s; followed by 45 cycles of 95˚C for 5 s and 60˚C for 30 s. The β-actin gene

was used as an internal standard for normalization. All samples were performed in triplicate.

The results were normalized to the expression level of the constitutive Lbr. Relative quantifica-

tion of PCR results was determined using the 22DDCt method [36].

Results

Differential phenotypes of ZOT and ZRT

In present study, we subjected two groups of bees to different temperatures (0˚C and 25˚C) for

2 h. Comparisons of activities over time revealed that physiological function of the 0˚C group

declined gradually, whereas it did not in the 25˚C group. After 20 min, the honeybees under

0˚C went into cold coma (abdominal stop peristalsis). At the end of different temperature

treatments, we found no mortality in either group (n = 30/group).

Mapping of RNA-seq reads to the A. cerana genome

The three 0˚C libraries (ZOT-1, ZOT-2, and ZOT-3) and three 25˚C libraries (ZRT-1, ZRT-2,

and ZRT-3) generated 41.56–59.70 million (M) raw reads per sample (Table 1). After quality

control, the two groups averaged 44 667 109 and 49 380 011 clean reads, respectively. All short

reads in both groups mapped perfectly to the A. cerana genome, and 70.91–73.92% of the tags

in all six libraries could be uniquely mapped to the reference genome. Approximately 45% of

reads were mapped to known exons and 27% were located in predicted intergenic or intronic

regions.

Analysis of DEGs

Before DEG analysis, an RNA-seq correlation test (Pearson’s) and FPKM distribution were

used to check sample variation across the two treatments. Strong positive correlations (R2 >

0.8; Fig 1A) were found between samples, indicating reasonable sample selection. The FPKM

and density distributions showed that most genes were in the same groups (Fig 1B and 1C).

Based on FPKM values, we detected 10 651 genes in the A. cerana genome. To better deci-

pher the mechanisms driving the response to low temperatures, the DESeq tool was used

to calculate differential expression. A loose transcript detected with p-adjusted < 0.05 and

log2FoldChange was used to compare the ZOT library to the ZRT library (S2 Table). The ZOT

group contained 269 significantly upregulated DEGs and 232 significantly downregulated

DEGs (Fig 2A). The 501 DEGs and annotations found across the two groups are shown in S3

Table. Venn diagram analysis revealed that 8614 genes overlapped between the two groups,

while 308 genes were expressed only in ZOT and 165 were expressed only in ZRT. Cluster
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analysis showed that DEGs between ZOT and ZRT were divided into three groups: upregulated

in the first, downregulated in the second, and with varied expression in the third (Fig 2C).

Gene annotation identified differential expression between the two treatments included

nine genes encoding heat shock proteins (HSPs), seven encoding serine/threonine-protein

kinase genes (STKs), and twelve encoding zinc finger protein (ZFPs) (S4 Table).

GO enrichment analysis of DEGs

The GOseq tool was used for GO analysis of DEGs, based on the Wallenius non-central hyper-

geometric distribution [37]. Upregulated DEGs mostly enriched DNA binding, gated channel

activity, as well as biosynthesis and metabolism regulation (Fig 3A). Down-regulated DEGs

were mostly involved in anion binding, oxidoreductase activity, mitochondrial matrix, lipid

metabolism, polysaccharide biosynthesis, and steroid metabolic processes (Fig 3B). More cold-

tolerance-related GO terms were associated with upregulated than down-regulated DEGs.

These cold-tolerance-related terms were associated with biological processes (energy biosyn-

thesis and metabolism [of glycogen, nucleic acids, amino acids, polyol]; stimulus response,

movement, ion transport, signal transduction), molecular function (binding; activities of gate

channels, calcium channels, kinases, transmembrane transporters), and cellular components

(microtubule cytoskeleton, cell, cell part, protein complex).

Table 1. Statistics for filtering and mapping reads.

Sample name ZOT-1 ZOT-2 ZOT-3 ZRT-1 ZRT-2 ZRT-3

Raw reads 49154366 49126550 41564122 59697374 48085270 46703842

Clean reads 47036956 47103902 39860468 57267848 46088490 44783694

Q20(%) 96.12 96.48 96.24 96.29 96.21 96.34

Q30(%) 91.01 91.77 91.29 91.42 91.25 91.5

GC content(%) 39.1 38.98 39.35 38.51 38.47 39.1

Total mapped 34957172 (74.32%) 34662679 (73.59%) 29541499 (74.11%) 43093870 (75.25%) 33408430 (72.49%) 33647776 (75.13%)

Multiple mapped 624038 (1.33%) 682230 (1.45%) 544638 (1.37%) 941355 (1.64%) 728148 (1.58%) 631477 (1.41%)

Uniquely mapped 34333134 (72.99%) 33980449 (72.14%) 28996861 (72.75%) 42152515 (73.61%) 32680282 (70.91%) 33016299 (73.72%)

Non-splice reads 21399542 (45.5%) 20872449 (44.31%) 18213648 (45.69%) 26360258 (46.03%) 20035849 (43.47%) 20806494 (46.46%)

Splice reads 12933592 (27.5%) 13108000 (27.83%) 10783213 (27.05%) 15792257 (27.58%) 12644433 (27.44%) 12209805 (27.26%)

https://doi.org/10.1371/journal.pone.0179922.t001

Fig 1. Bioinformatic analyses of RNA-seq data. (A) Pearson correlation between samples. (B) FPKM density distribution of two groups. (C) FPKM

distribution of two groups. ZOT: 0˚C treatment; ZRT: 25˚C treatment.

https://doi.org/10.1371/journal.pone.0179922.g001
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KEGG analysis of DEGs

KEGG pathway enrichment analysis [38] of DEGs revealed that these transcripts were assigned

to 63 reference pathways (S5 Table). Among them, metabolic pathways were the most en-

riched. These DEGs enriched glycine, serine, and threonine metabolism; carbon metabolism;

purine metabolism; glycerophospholipid metabolism; inositol phosphate metabolism; fatty

acid metabolism; alanine, aspartate, and glutamate metabolism; amino sugar and nucleotide

sugar metabolism; as well as cysteine and methionine metabolism. Additionally, many en-

riched pathways were involved in signal transduction pathways related to cell differentiation

and proliferation, repair of injured organs, as well as regulation of cytosolic calcium concentra-

tion (e.g., Wnt signaling pathway, Hippo signaling pathway–fly, FOXO signaling pathway,

Hedgehog signaling pathway, and phosphatidylinositol signaling system) [39, 40].

Fig 2. Bioinformatic analyses of DEGs (differentially expressed genes). (A) DEGs distribution of the two treatment groups (ZOT: 0˚C, ZRT: 25˚C). (B)

Venn diagrams showing the number of genes expressed in the two groups. (C) Cluster analysis of DEGs.

https://doi.org/10.1371/journal.pone.0179922.g002
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Validation of RNA-seq by qRT-PCR

To validate the expression profiles identified from RNA-seq, we performed qRT-PCR on sev-

eral cold-stress-related DEGs (nine HSPs, seven STKs, and twelve ZFPs). The comparative

analysis showed that qRT-PCR-detected expression patterns supported RNA-seq results, with

only one DEG (in the STK protein family) being inconsistent (Table 2). However, the fold

change of expression patterns from RNA-seq and qRT-PCR still deviated slightly, probably

due to methodological differences [41].

Discussion

Insects vary considerably in their ability to survive low temperatures [14]. Insect susceptibility

to physiological experimentation increases the difficulty of exploring cold-resistance mecha-

nisms in the honey bee. However, with the availability of the Eastern honey bee (A. cerana)

Fig 3. Bar graph showing gene ontology (GO) of DEGs between ZOT (0˚C) and ZRT (25˚C). (A) The most enriched GO terms for upregulated DEGs

between the two treatment groups. (B) The most enriched GO terms for downregulated DEGs between the two treatment groups.

https://doi.org/10.1371/journal.pone.0179922.g003

Table 2. Results of qRT-PCR and RNA-seq on genes encoding cold-resistance proteins.

Protein family Gene name log2FoldChange Protein family Gene name log2FoldChange

RNA-seq qRT-PCR RNA-seq qRT-PCR

HSPs HSC70-3 -0.93 -2.29 STKs PLK1 -0.78 -1.17

HSPs HSC70-4 -1.79 -2.12 STKs MKNK1 0.66 0.23

HSPs HSP10 -1.03 -1.07 ZFPs ZBED1 -2.65 -2.99

HSPs HSP60 -0.81 -1.19 ZFPs ZFP-25 0.78 0.32

HSPs HSP90 -1.45 -2.7 ZFPs ZFP-36 1.21 0.67

HSPs sHSP22.6 -1.68 -2.22 ZFPs ZFP431 1.56 0.6

HSPs sHSP24.2 -2.85 -3.49 ZFPs ZFP582 -0.9 -0.18

HSPs HSF2BP 2.61 1.49 ZFPs ZFP708 0.64 0.39

HSPs HSF5 1.13 0.81 ZFPs ZFPN 0.81 0.4

STKs CG31145 0.54 -0.3 ZFPs ZFPR 1.14 0.61

STKs STYX -0.73 -1.35 ZFPs Zkscan5 0.76 0.12

STKs STKA2 0.79 0.39 ZFPs ZMPN13 -1.28 -1.63

STKs Mig15 -0.82 -0.49 ZFPs ZIP13 -0.86 -0.59

STKs PAKm 0.63 0.23 ZFPs ZIP9 -0.68 -1.39

https://doi.org/10.1371/journal.pone.0179922.t002
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whole genome [42] and the development of RNA-seq, we now have effective alternatives for

studying the molecular mechanisms of cold resistance.

This study identified DEGs between honey bees treated under two temperature conditions.

Our data are in line with existing research on other insects. Previously, a DNA microarray

study in Drosophila melanogaster identified 36 transcripts associated with low-temperature

treatments (0˚C for 2 h) [18]. Furthermore, an RNA-seq study in New Zealand stick insects

showed that genes expressed under cold exposure (-5˚C for 1 h) included HSPs, cuticular

genes, as well as others involved in carbohydrate metabolism and physiological variation [43].

Transcriptomic and proteomic analysis in Chinese white wax scale insects (Ericerus pela) from

different climatic regions found 2386 DEGs, involved in energy metabolism, catalytic activity,

and response to stimuli [13].

To further investigate the molecular mechanism of cold resistance in A. c. cerana, we used

RNA-seq to compare DEG transcript levels. We demonstrated that the number of upregulated

DEGs (269) was slightly higher than the number of downregulated DEGs (232) between the

two treatment groups. Next, KEGG analysis revealed that metabolic pathways (including

carbon, amino acid, and nucleic acid metabolism) were the most enriched. Thus, energy

metabolism was critical to cold resistance in honey bees, in line with the observation that

honey bees consume honey and pollen to produce heat during low temperatures [23, 26]. Data

from physiological studies of various insects [20, 44] also support these results. Finally, signal

transduction pathways are important in cold stress responses [45], and in this study, four such

pathways were found to be enriched.

Based on GO analysis, the DEGs were most enriched in biological processes, and specifi-

cally in metabolic processes. As the main energy sources for honey bees are glucose, fructose,

maltose, and sucrose, it was unsurprising that the detected DEGs were involved in glucose

metabolism. These included mitogen-activated protein kinase-binding protein 1 (MAPKBP1),

poly(ADP-ribose) glycohydrolase (PARG), UDP-glucuronosyltransferase 1–8 (UTG 1–8), and

maltase A3 (Mal-A3). MAPKBP1 is a key transcription factor in the NF-κB signaling pathway

[46]. The role of insects MAPKBP1remains unclear, but a previous study found that endoge-

nous MAPKBP1 and scaffold protein genes co-localize to stress granules; thus, the expression

of this gene might be related to cold tolerance in honey bees [47]. RAPG is a hydrolyzing

enzyme and regulator of poly(ADP-ribose) activity, producing free ADP-ribose residues to

affect several important biological functions, such as DNA repair, chromosome stability, and

maintenance of normal cell function [48]. Like other UTG1 members, UTG 1–8 is involved in

glucuronidation, a process that enhances the conversion of lipophilic xenobiotics and endo-

biotics to more water-soluble compounds. For example, UTG 1–8 can split UDP-glucuronic

acid and catalyze glucuronic acid transfer to a small hydrophobic molecule [49]. Finally, Mal-
A3 is a maltase that catalyzes maltose hydrolysis to glucose [50].

Free amino acids have a strong affinity to small molecular compounds, leading to increased

cell fluid concentration, as well as improved cell water retention and stability [1]. Indeed, high

accumulation of free amino acids in the hemolymph appears to be a major biochemical char-

acteristic of insect cold-stress response [20–22]. Corroborating those findings, we identified

DEGs associated with serine, lysine, glycine, threonine, and methionine metabolism. Two

upregulated and zero downregulated genes were linked to methionine and threonine, while

four downregulated and zero upregulated genes were linked to serine, lysine, and glycine.

These results suggest that methionine and threonine may act as cryoprotectants in honey bees.

Interestingly, although lipids are another major energy source, lipid metabolism was most

strongly enriched in downregulated DEGs in this study. Lipids are an essential energy source

in cell membrane synthesis, and energy from lipid metabolism is primarily allocated to long-

distance travel in insects [51]. Therefore, lipid metabolism may be downregulated in the cold
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because honey bee flight ability is hampered. However, lipids may power honey bees to flight

at the appropriate temperature, while maintaining membrane structure in the cold.

A major biological signal to cold response is variation in intracellular calcium ion concen-

tration [52]. Upregulated GO terms related to calcium channel activity included voltage-depen-
dent calcium channel subunit alpha-2/delta-3 (CACNA2D3) and small conductance calcium-

activated potassium channel protein (SK). CACNA2D3 is an auxiliary member of the alpha-2/

delta subunit family in the voltage-dependent calcium channel complex; it regulates calcium

ion influx upon membrane polarization [53]. SKs are gated solely through an increase in inter-

nal calcium concentration and are therefore extremely sensitive to calcium. Our observation

of SK and CACNA2D3 expression indicated that greater calcium ion activity and increased

intracellular calcium concentration improves cold tolerance in honey bees. Our results are

similar to previous findings in D. melanogaster [52].

The DEGs related to metabolic processes and the calcium channel activity terms identified

indicate that some small cryoprotectants (including glucose, methionine, threonine and cal-

cium) may play an important role in the cold-coping mechanisms of the honey bee. We can

apply the information gained from our study to optimize honey bee diet in the winter. Cur-

rently, the most important supplement for honey bees in the winter in most China northern

states is sucrose (processed white table sugar), while the addition of free amino acids and min-

erals in diets has often been overlooked. The results of this study highlight the importance and

necessity of dietary supplementation with small cryoprotectants. The partial substitution of

invert sugar (its main component sugars are glucose and fructose) for sucrose and extra methi-

onine, threonine and calcium added in the production of stored, it could improve overwinter-

ing success and decrease the loss of honey bees.

Antifreeze-associated proteins, unlike small-molecule cryoprotectants, can induce ideal

antifreeze effects through catalyzing specific biochemical reaction and affecting the conforma-

tion of the resulting molecules [54–56]. In this research, some DEGs were linked to three such

proteins (HSPs, STKs, and ZFPs) and can be considered candidate genes for subsequent stud-

ies on honey bee cold-tolerance mechanisms. Additionally, based on these candidate genes,

we can generate the corresponding proteins in vitro as a protectant against further cold stress.

HSPs are a super family of chaperone proteins rapidly biosynthesized in response to various

environmental stress factors [57, 58]. We found nine DEGs associated with HSPs: two upregu-

lated (heat shock factor 2-binding protein [HSF2BP] and heat shock factor protein 5 [HSF5])

and seven downregulated (heat shock protein 10 kDa [HSP10], heat shock protein sHSP24.2a
[sHSP24.2a], heat shock protein sHSP22.6 [sHSP22.6], heat shock protein 60 kDa [HSP60], heat
shock protein 90 kDa [HSP90], heat shock 70 kDa protein cognate 3 [HSC 70–3], heat shock 70
kDa protein cognate 4 [HSC 70–4]). As in other insects, the expression of HSPs can be induced

quickly with low temperatures. Recently, a study in Sitodiplosis mosellana suggested that HSP90
and HSP70 expression at low temperatures (-5˚C) was higher than under normal conditions

[59]. Further, rapid cold hardening significantly upregulated three HSP genes (hsp40, hsp23, and

hsp10) in Folsomia candida [60]. However, after prolonged cold exposure, HSPs expression levels

would drop [61], indicating that the resultant state of the honey bees in the 0˚C treatment was

not induced by any new stimuli, and that a self-defense mechanism may have been established.

Unlike typical HSPs, HSC70 function varies across multiple species and treatments. Some

studies suggest that HSC70 is expressed constitutively and thus, not stress-inducible [62]. Oth-

ers report that HSC70 is involved in thermoregulation, as well as protein synthesis, folding,

transport, and degradation [63]. Our results for HSC70 indicated that its expression is also sen-

sitive to low temperature. Additionally, HSFs mediate HSPs induction through binding to the

heat shock element of HSP genes, explaining why HSFs mRNA levels clearly increased in adult

fruit flies exposed to 4˚C [64]. HSF5 is part of a protein family that modulates HSPs expression;
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therefore, it is likely related to thermoregulation. Indeed, HSF5 expression was significantly

higher in winter than in summer [65]. Further, HSF2BP primarily modulates HSF2 activation;

an increase in its transcripts can be induced following a heat-shock treatment, but it also

appears to be the most insensitive to temperature change among the HSPs [66]. Overall, our

results show that lower temperatures downregulated HSPs and upregulated HSFs in honey

bees, similar to findings in D. melanogaster [18]. These outcomes suggest that HSPs expression

and activity varies in response to cold stress.

The zinc finger protein family (so-called due to the presence of the zinc finger domain) is

large and widely distributed across taxa (plants, animals, microorganisms) [54]. These proteins

are involved in growth and development as well as in abiotic stress responses (e.g., to salt,

water, heat, and cold) [67, 68]. Recently, three differentially upregulated ZFPs were identified

in heat-treated silkworm eggs [41]. This study also identified twelve ZFPs, including seven

upregulated genes and five downregulated genes. Our results together with those of previous

studies demonstrate that ZFPs are important in the cold-stress response of insects and that

high expression of some specific ZFPs improves cold tolerance. Additionally, we found seven

DEGs related to STKs, a major protein kinase group [69] that is implicated in modulating abi-

otic stress responses (including the cold) [70, 71]. However, research on insect STKs and ZFPs
has been limited. Thus, our current results and their implications for honey bees should be

considered with caution. The roles of differentially expressed STK and ZFP genes in the molec-

ular mechanisms underlying honey bee cold-stress response warrant further study.

Conclusions

In conclusion, 501 DEGs were identified across two temperature treatments. The results of

GO analysis revealed that DEGs significantly enriched terms associated with sugar and amino

acid biosynthesis and metabolism, as well as with calcium ion channel activity. Various tem-

perature-sensitive proteins (e.g., HSPs, STKs, and ZFPs) were also differentially expressed

across temperature treatments. Our study provides insight into the molecular mechanisms of

cold resistance in A. c. cerana and offers a scientific foundation for exploring candidate genes

linked to cold stress in social insects.
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