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Dynamic functional connectivity (FC) analysis can capture time-varying properties of
connectivity; however, studies focusing on dynamic FC in patients with end-stage
renal disease (ESRD) are very limited. This is the first study to explore the dynamic
aspects of whole-brain FC and topological properties in ESRD patients. Resting-state
functional magnetic resonance imaging data were acquired from 100 ESRD patients
[50 hemodialysis (HD) patients and 50 non-dialysis patients] and 64 healthy controls
(HCs). Independent component analysis, a sliding-window approach and graph-theory
methods were used to study the dynamic FC properties. The intrinsic brain FC were
clustered into four configuration states. Compared with HCs, both patient groups spent
longer time in State 3, in which decreased FC between subnetworks of the default mode
network (DMN) and between the dorsal DMN and language network was observed
in these patients, and a further reduction in FC between the DMN subnetworks was
found in HD patients compared to non-dialysis patients. The number of transitions and
the variability of global and local efficiency progressively decreased from that in HCs
to that of non-dialysis patients to that of HD patients. The completion time of Trail
Making Test A and Trail Making Test B positively correlated with the mean dwell time of
State 3 and negatively correlated with the number of transitions in ESRD patients. Our
findings suggest impaired functional flexibility of network connections and state-specific
FC disruptions in patients with ESRD, which may underlie their cognitive deficits. HD
may have an adverse effect on time-varying FC.

Keywords: end-stage renal disease, hemodialysis, resting-state functional magnetic resonance imaging, dynamic
functional connectivity, graph theory

INTRODUCTION

End-stage renal disease (ESRD) is the terminal stage of chronic kidney disease (i.e., category
G5 according to international guidelines) (Webster et al., 2017). It is generally considered that
the diagnosis of ESRD can be made when the estimated glomerular filtration rate (eGFR) drops
below 15 ml/min per 1.73 m2 (Webster et al., 2017). Notably, 30–40% of ESRD patients on
hemodialysis (HD) treatment exhibit cognitive dysfunction, especially impairments in the domains
of orientation, attention and executive function (Krishnan and Kiernan, 2009; O’Lone et al., 2016).
Cognitive impairment (CI) in those patients may contribute to long-term adverse consequences,
including dementia and death, and is also associated with increased cost of medical care (Kurella
Tamura and Yaffe, 2011; Williams et al., 2013). At present, the pathophysiology of CI in patients
with ESRD who underwent HD has not been fully understood.
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Resting-state functional magnetic resonance imaging (rs-
fMRI) has become a valuable and non-invasive tool to investigate
the pathophysiological mechanisms of multiple neurological
and psychiatric diseases, such as major depression disorder
(Wu et al., 2020b), Parkinson’s disease (Vo et al., 2017), and
Alzheimer’s disease (Sheline and Raichle, 2013). It is reported
that inherent brain activity in the resting state is spatially
organized into a serious of functionally coherent patterns, namely
resting-state networks (RSNs) (Damoiseaux et al., 2006; Jafri
et al., 2008). A large number of rs-fMRI studies have been
conducted to explore the pathophysiological bases of CI in
patients with ESRD undergoing HD from the perspective of
functional network connectivity. For example, using independent
component analysis (ICA) algorithm, previous studies reported
decreased functional connectivity (FC) in the default mode
network (DMN) in patients with ESRD who received HD, and
reduced DMN FC was associated with cognitive deficits in these
patients (Ni et al., 2014; Lu et al., 2019). Furthermore, disrupted
topological organization of whole-brain functional networks (Mu
et al., 2018; Park et al., 2020; Wu et al., 2020a; Jin et al., 2021)
and abnormal module-level interaction between the affective
and cognitive control networks (Mu et al., 2018) have been
found in HD patients. Dysfunctions in brain networks might
contribute to the pathophysiological mechanism of CI in patients
with ESRD who underwent HD. Overall, evidences from these
studies suggest alterations in intrinsic brain functional networks,
which may result in CI in ESRD patients treated with HD.
However, all of the previous studies mainly focused on studying
the static brain functional networks with the assumption that
FC is constant during the entire rs-fMRI scanning, and the
dynamic configuration of brain network connectivity is not
taken into account.

Dynamic connectome, a new concept that focuses on
the dynamic characteristics and patterns of brain networks,
has attracted more and more attention. Using functional
neuroimaging techniques, previous studies have identified the
dynamic aspects of FC in normal subjects, and the dynamic FC
was found to be related to higher-order cognitive domains (Kucyi
et al., 2017; Shine et al., 2019; Soreq et al., 2019). In addition,
altered dynamic FC configuration was found in patients with
neurological and psychiatric disorders, such as major depressive
disorder (Zhi et al., 2018; Xue et al., 2020), Parkinson’s disease
(Kim et al., 2017), obsessive-compulsive disorder (Liu et al.,
2021), and epilepsy (Liu et al., 2017). Additionally, dynamic FC
analysis in combination with graph theory-based approach can
also evaluate the variances in the graph metrics of time-varying
brain connectivity and provide important imaging biomarkers
underlying the pathophysiology of diseases. For example, a recent
study found increased variability of global efficiency of the
brain functional networks in patients with Parkinson’s disease
compared with controls (Kim et al., 2017). On the contrary,
increased variability of the connectivity strength, clustering
coefficient and global efficiency was observed in patients with
schizophrenia (Yu et al., 2015). However, alterations in whole-
brain FC and network properties in the context of dynamic FC
remain largely unknown in patients with ESRD. Up to now,
only one study has been conducted to analyze resting-state FC

dynamics in patients with ESRD. Based on a triple-network
model [involving the salience network (SN), DMN, and central
executive network], our recent study found that the dynamic FC
within the triple networks was altered in HD patients compared
to healthy controls (HCs) (Cao et al., 2021). Although this
study demonstrated abnormal dynamic FC properties in HD
patients, it only focused on the triple networks rather than the
whole-brain networks, and the dynamic graph metrics which
quantifiably describe the dynamic whole brain performance were
not examined. More importantly, we did not evaluate the effect
of HD on time-varying FC due to the lack of a non-dialysis
positive control group.

Thus, by combining rs-fMRI data and a sliding-window
approach, the purpose of this study was to investigate the
differences of dynamic FC patterns between ESRD patients with
and without HD. FC state analysis and a graph theory-based
analysis were used to evaluate dynamic metrics. Based on the
findings mentioned above, we hypothesized that (1) altered
dynamic FC properties should be demonstrated in patients with
ESRD; (2) HD might have an adverse effect on dynamic FC; and
(3) some altered dynamic FC properties might correlate with
cognitive performance in patients with ESRD.

MATERIALS AND METHODS

Participants
This study was approved by the Institutional Review Board of
the First Affiliated Hospital of Xinxiang Medical University.
Written informed consent was obtained from all subjects prior
to participation.

From October 2018 to May 2021, 110 patients with ESRD
were recruited, including 56 patients undergoing HD (HD group)
and 54 patients without any types of dialysis treatment (non-
dialysis group). For study inclusion, all patients with ESRD were
required to have a history of chronic glomerulonephritis with a
disease duration of greater than 6 months, and all HD patients
were required to have received regular dialysis treatment for more
than 6 months. Exclusion criteria included: (a) history of any
neurological diseases or psychiatric disorders, (b) presence of
organic brain lesions detected by conventional MRI sequences,
(c) history of traumatic brain injury, (d) contraindications to MR
scanning, and (e) head movement greater than 1.5 mm or 1.5◦

or the mean framewise displacement (FD) larger than 0.2 mm
during MR scanning. Based on these exclusion criteria, six HD
patients were excluded due to brain infarcts (n = 1) and head
motion more than 1.5 mm or 1.5◦ or the mean FD more than
0.2 (n = 5), and four non-dialysis patients were excluded due
to a history of head trauma (n = 1) and head motion more
than 1.5 mm or 1.5◦ or the mean FD more than 0.2 (n = 3).
Consequently, the datasets from the remaining 50 HD patients
(27 males and 23 females; mean age 36.10 ± 9.65) and 50 non-
dialysis patients (26 males and 24 females; mean age 35.60 ± 9.06)
were included in the final data analysis.

In addition, 64 healthy volunteers (HC group; 34 males
and 30 females; mean age 34.56 ± 9.50) were recruited from
the local community via advertisements. All of the healthy
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volunteers were more than 18 years old, and were required
to have no diseases of the kidney, liver, or other organs and
no history of neurological or psychiatric disorders. All patients
with ESRD and HCs were righted-handed, and had normal
sight to complete the neuropsychological tests. Some of the
study samples were selected from our recently published papers,
which mainly focused on investigating alterations in whole-brain
functional network topologies (Wu et al., 2020a) and in dynamic
FC properties within the triple networks (Cao et al., 2021) in
patients with ESRD.

Clinical Evaluation and Laboratory
Examinations
One author (X.K.L.) reviewed the electronic medical records of all
ESRD patients, and extracted demographic information such as
dialysis duration and body mass index. To collect relevant blood
biochemical indicators, blood biochemistry tests were conducted
in all patients with ESRD 1 day before MR scanning.

Neuropsychological Tests
One hour before MR scanning, all subjects underwent several
neuropsychological tests, including the Mini-Mental State
Examination (MMSE) (Folstein et al., 1975), Montreal Cognitive
Assessment (MoCA) (Nasreddine et al., 2005), Trail Making Test
A (TMT-A) (Bowie and Harvey, 2006), Trail Making Test B
(TMT-B) (Bowie and Harvey, 2006), and Symbol Digit Modalities
Test (SDMT) (Smith, 1982).

Magnetic Resonance Imaging Data
Acquisition
MR images were acquired using a 3.0-Tesla MR system
(Discovery MR750, General Electric Healthcare, Milwaukee, WI)
with a 16-channel head coil. During scanning, subjects were
instructed to maintain their head still, keep their eyes closed,
stay awake state, and avoid think of anything. First, conventional
MR imaging sequences were acquired to detect the presence
of brain organic lesions or any other abnormalities. Then,
functional images were obtained using an echo-planar imaging
sequence: 32 axial slices, repetition time (TR) = 2,000 ms, echo
time (TE) = 41 ms, field of view (FOV) = 220 × 220 mm2,
acquisition matrix = 64 × 64, section thickness = 4 mm, slice
gap = 4.5 mm, flip angle = 90◦, number of volumes = 180. High-
resolution structural images were acquired using a brain volume
sequence: 188 sagittal slices with thickness of 1 mm, inversion
time = 450 ms, TR = 8.2 ms, TE = 3.2 ms, FOV = 256 × 256 mm2,
matrix size = 256 × 256, flip angle = 12◦.

Image Preprocessing
Data preprocessing was conducted using the Data Processing
and Analysis for Brain Imaging Toolbox (DPABI, version 4.1)1

(Yan et al., 2016) based on the MATLAB (version R2013b,
MathWorks Inc., Natick, MA, United States) platform. For
each subject’s rs-fMRI dataset, the first 10 volumes were
removed to reduce equilibration effects. Slice-timing and head

1http://rfmri.org/dpabi

motion correction were conducted on the remaining rs-fMRI
images. This realignment calculation generated a record of
head motion within the entire rs-fMRI scanning. No significant
difference in the mean FD (Jenkinson) values was found
among the three groups (0.06 ± 0.04 for HD patients,
0.05 ± 0.03 for non-dialysis patients, and 0.05 ± 0.03 for HCs;
F = 0.078, p = 0.925). A Diffeomorphic Anatomical Registration
Through Exponentiated Lie Algebra (DARTEL) (Ashburner,
2007) algorithm was applied to register the functional images into
the standard Montreal Neurological Institute (MNI) template
with a re-sampled voxel size of 3 mm × 3 mm × 3 mm.
Subsequently, the normalized brain functional images were
spatially smoothed with a 6 mm full-width at half-maximum
Gaussian kernel.

After data preprocessing, dynamic FC was analyzed according
to the following steps: (1) identification of intrinsic connectivity
networks, (2) computation for dynamic FC using a sliding
window approach, (3) dynamic FC state analysis, and (4)
dynamic graph theory analysis. A detailed overview of the
framework is summarized in Supplementary Figure 1.

Group Independent Component Analysis
and Identification of Resting-State
Networks
To decompose the preprocessed rs-fMRI data into different
independent components (ICs), a spatial group ICA was
performed using the Group ICA of fMRI Toolbox (GIFT, version
4.0b)2 (Calhoun et al., 2001). Although some studies selected
a high-order ICA approach to obtain cortical and subcortical
functional parcellations (Kim et al., 2017; Fiorenzato et al.,
2019; Wang et al., 2021), we applied a low-order model, given
the fact that the ICs obtained from the lower-order model
were more consistent with previous anatomical and functional
segmentations (Calhoun et al., 2008; Smith et al., 2009; Shi
et al., 2018). Group ICA included the following steps: first,
a two-step principal component analysis (subject-specific and
group level) was used to decompose the data into 23 ICs.
This averaged IC number was automatically estimated using the
minimum description length criteria (Li et al., 2007). Second,
ICA decomposition was performed using the Infomax algorithm
(Bell and Sejnowski, 1995), and this step was repeated 20 times in
ICASSO (Himberg et al., 2004) to obtain a stable and reliable set
of 23 components. The group ICs of the 20 runs were clustered to
assess their reliability, and only ICs with a higher average intra-
cluster similarity [e.g., quality index (Iq) > 0.7] were selected (Ma
et al., 2011). Subsequently, the spatial maps and the time courses
of BOLD signal were generated for each IC. Finally, a GICA back
reconstruction algorithm (Calhoun et al., 2001) was used to back-
project the group ICs. This step reconstructed subject-specific
spatial maps and time courses for each IC.

According to the following criteria (Cordes et al., 2000;
Allen et al., 2014; Kim et al., 2017): (1) peak activations of
spatial maps located in gray matter; (2) low spatial overlap with
known vascular, ventricular, motion, and susceptibility artifacts;

2http://mialab.mrn.org/software/gift
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(3) time courses dominated by low frequency fluctuations and
characterized by a high dynamic range, components were selected
by calculating their spatial overlap with the Stanford functional
ROIs template3 (Shirer et al., 2012), which contains 90 ROIs that
belong to 14 predefined brain networks. A sorting function of
spatial regression was used to estimate the similarity between the
IC’s spatial image and a network template. An IC was assigned
to a network if they showed the highest similarity, which was
measured by the coefficient of determination (R2). Finally, we
identified 14 ICs corresponding to different intrinsic connectivity
networks: dorsal DMN (dDMN) (IC21), ventral DMN (vDMN)
(IC6), precuneus network (PRE) (IC5), auditory network (AN)
(IC20), dorsal attention network (DAN) (IC8), primary visual
network (pVN) (IC22), higher visual network (hVN) (IC16),
sensorimotor network (SMN) (IC7), anterior SN (aSN) (IC1),
posterior SN (pSN) (IC3), right executive control network
(RECN) (IC18), left executive control network (LECN) (IC15),
language network (LAN) (IC9), and basal ganglia network (BG)
(IC4) (Figure 1). Detailed information of the selected 14 ICs is
provided in Supplementary Table 1. To remove the influence
of noise, additional postprocessing was performed on the time
courses of the selected 14 ICs. Postprocessing steps included:
(1) detrending linear, quadratic, and cubic trends; (2) despiking,
which was implemented in 3dDespike; (3) regression of the 6
head motion parameters; and (4) low-pass filtering with a high
frequency cut-off of 0.15 Hz. The remaining time courses of these
14 ICs were used for further dynamic FC analyses.

To create the static FC matrix of each subject, we calculated
pairwise Pearson’s correlations of the 14 RSNs using the
postprocessed time courses over the entire rs-fMRI scan, and the
temporal correlation coefficients were then converted to z-values
via Fisher’s r-to-z transformation.

Computation for Dynamic Functional
Connectivity
Dynamic FC was calculated using the Temporal Dynamic
Functional Network Connectivity Toolbox (version 1.0a) in GIFT
software. A sliding window approach was used to detect time-
varying changes of FC within the 14 RSNs during the whole
rs-fMRI scan. A window length of 22 TRs (i.e., 44 s) was used to
segment the entire time courses of rs-fMRI data into a number of
rectangle windows, which was convolved with a Gaussian (σ = 3
TRs) function, resulting in a series of tapered windows. The
window was slid step-wise by 1 TR along the entire rs-fMRI scan.
The window length of 22 TRs was selected based on a previous
study (Preti et al., 2017), which suggested that window sizes of
30–60 s were able to successfully capture resting-state dynamic
FC fluctuations. In each sling window, a 14 × 14 pairwise
covariance matrix was calculated. Furthermore, to promote
sparsity in estimation, the L1 norm penalty was implemented in
the graphical LASSO framework (repeated 50 times) (Friedman
et al., 2008). A Fisher’s r-to-z transformation was used to convert
the values in the resulting 14 × 14 pairwise FC matrices into
z-scores. To control for the effect of possible covariates, the

3http://findlab.stanford.edu/functional_ROIs.html

converted z-scores were residualized with age, gender, education
and the mean FD using multiple linear regression.

Dynamic Functional Connectivity State
Analysis
Clustering Analysis
To estimate reoccurring FC patterns (states), k-means clustering
analysis was used on all windowed 14 × 14 FC matrices for
all subjects. The similarity between each FC matrix and the
cluster centroids was estimated using the Manhattan distance
(L1 distance) function. An optimal number of clusters was
determined to be four (k = 4) using the elbow criterion (Allen
et al., 2014; Supplementary Figure 2). The k-means clustering
algorithm was repeated 100 times to obtain unbiased initial
cluster centroids. Subsequently, with the estimated four cluster
centroids as initial points, all windowed FC matrices of all
subjects were clustered into four reoccurring FC states.

Functional Connectivity Strength
The subject-specific centroid of each state was computed by
calculating the median value of each FC matrix for that state.
For the purposes of group comparisons in FC strength at each
state, we also calculated the group-specific centroids of the four
states by averaging subject-specific centroids of HD patients,
non-dialysis patients and HCs, respectively.

Temporal Properties
To quantify the temporal properties of dynamic FC states, we
calculated three state transition metrics (Kim et al., 2017): (1)
fractional window; (2) mean dwell time; and (3) number of
transitions. The detailed meaning of these three temporal metrics
has been described in previous studies (Allen et al., 2014; Kim
et al., 2017).

Dynamic Graph Properties: Variance in
Global Network Metrics
A graph theoretical analysis was used to evaluate the variance
in topological organization of the FC, wherein we defined
those selected 14 ICs as nodes and the Pearson’s correlation
coefficients between each pair of ICs as edges. Construction and
calculation of the FC network on FC matrices across subjects
were performed using the GRaph thEoreTical Network Analysis
Toolbox (GRETNA, version 2.0)4 (Wang et al., 2015). All 148
windowed FC matrices of each subject were converted into
binarized matrices under a series of sparsity thresholds. The
threshold range was evaluated based on the criteria suggested by
a previous study (Watts and Strogatz, 1998), and was determined
to be 0.2-0.3 with a step size of 0.01. Only positive correlations
were considered.

For brain functional networks at each sparsity threshold, we
calculated the global network measures, which included: (1)
network efficiency [global efficiency (Eglob) and local efficiency
(Eloc)]; and (2) small-world metrics [clustering coefficient (Cp),
characteristic path length (Lp), normalized clustering coefficient

4http://www.nitrc.org/projects/gretna
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FIGURE 1 | Spatial maps of the 14 independent components (ICs) identified by a group independent component analysis. These ICs were categorized into the
dorsal default mode network (dDMN) (IC21), ventral default mode network (vDMN) (IC6), precuneus network (PRE) (IC5), auditory network (AN) (IC20), dorsal
attention network (DAN) (IC8), primary visual network (pVN) (IC22), higher visual network (hVN) (IC16), sensorimotor network (SMN) (IC7), anterior salience network
(aSN) (IC1), posterior salience network (pSN) (IC3), right executive control network (RECN) (IC18), left executive control network (LECN) (IC15), language network
(LAN) (IC9), and basal ganglia network (BG) (IC4).

(γ), normalized characteristic path length (λ), and small-
worldness (σ)]. Uses and interpretations of these network
measures have been described in detail previously (Rubinov
and Sporns, 2010). We then calculated the area under the
curve (AUC) for each network metric within the whole range
of sparsity thresholds (0.2–0.3). This strategy has been widely
used in previous graph theory-based network studies (Wu et al.,
2020a,b; Jin et al., 2021; Yue et al., 2021). Finally, we calculated
the variance on the AUC changes of each parameter over time to

examine dynamic graph properties of FC network as suggested
by a previous study (Yu et al., 2015).

Validation Analysis
Considering the potential effect of window length on dynamic
FC properties, we carried out additional validation analyses to
test the consistency and reliability of our results using a window
length of 20 TR and a window length of 30 TR, respectively. We
calculated Pearson’s correlation coefficients between the cluster
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centroids under the two different window lengths (window
length = 22 TR in the main analysis and window length = 20 TR in
the validation analysis; and window length = 22 TR in the main
analysis and window length = 30 TR in the validation analysis).
If a cluster centroid in the additional analysis showed the highest
correlation coefficient with a cluster centroid in the main analysis,
they were defined as the same state (Wu et al., 2019).

Statistical Analysis
Normality Test
For quantitative data, Kolmogorov-Smirnov test was used
to determine the normality of the data distribution. Data
conforming to a normal distribution were expressed as
mean ± standard deviation, while data not conforming
to a normal distribution were expressed as median and
interquartile ranges.

Group Differences in Demographic and Clinical Data
Group differences in the demographic and clinical data were
analyzed using chi-squared test, one-way analysis of variance
(ANOVA), and independent two-sample t-test. Bonferroni-
corrected post hoc comparisons were performed if the ANOVA
test showed significant differences. Statistical analysis was
performed using SPSS software (version 21.0; IBM Corp.,
Armonk, NY). Statistical significance was defined as p < 0.05.

Group Differences in Dynamic Functional
Connectivity
Group differences in temporal properties of dynamic FC states
and in variances of global network metrics were estimated using
one-way ANOVA non-parametric Kruskal-Wallis tests, and one-
way analysis of covariance (ANCOVA) was used to determine
group differences in dynamic inter-network FC strength [false
discovery rate (FDR)-corrected p < 0.05]. Age, sex, education,
disease duration and the mean FD were set as nuisance covariates.
The FDR was also used to correct for multiple comparisons in the
post hoc analyses (FDR-corrected p < 0.05).

Relationship to Clinical Variables
Partial correlation analyses (two-tailed) were used to estimate
the relationships between dynamic FC parameters showing
significant group differences and clinical variables including
neuropsychological test results and levels of blood biochemical
indicators in patients with ESRD (p < 0.05, uncorrected),
with age, sex, education, disease duration and the mean
FD as covariates.

RESULTS

Demographic and Clinical
Characteristics
Demographic and clinical characteristics for patients with ESRD
and HCs are show in Table 1. There were no significant
differences in age (p = 0.671), sex (p = 0.980), education
(p = 0.771), or the mean FD (p = 0.925) among the three groups.
The serum creatinine level of HD patients was significantly

higher than that of non-dialysis patients (p = 0.002). Regarding
cognitive performances, the MMSE, MoCA and SDMT scores
of both HD and non-dialysis patients were significantly lower
than those of HCs (all p < 0.05, Bonferroni-corrected). Both
patient groups spent longer time to complete TMT-A and TMT-
B than the HC group (all p < 0.05, Bonferroni-corrected).
Furthermore, HD patients had lower MMSE score (p = 0.002)
and longer completion time of TMT-B (p = 0.021) than non-
dialysis patients. No significant differences in MoCA score,
SDMT score and completion time of TMT-A were found between
the two patient groups.

Intrinsic Functional Connectivity
Networks
Based on the spatial overlap of all ICs with the predefined
network templates, 14 ICs corresponding to different
subnetworks were selected using GICA: dDMN (IC21),
vDMN (IC6), PRE (IC5), AN (IC20), DAN (IC8), pVN (IC22),
hVN (IC16), SMN (IC7), aSN (IC1), pSN (IC3), RECN (IC18),
LECN (IC15), LAN (IC9), and BG (IC4). The spatial maps of
the selected 14 ICs are shown in Figure 1. Group averaged static
FC matrix and the top 5% strongest connections over the whole
rs-fMRI scan are shown in Supplementary Figure 3.

Dynamic Functional Connectivity State
Analysis
Temporal Properties
As shown in Figure 2, we identified four highly structured
FC states that recurred throughout individual scans and
across subjects using k-means clustering algorithm. For better
visualization, we kept the strongest 5% connections of each state
to clearly show the divergent pattern among FC states. State
1, which accounted for 29% of all windows, was characterized
by a strong positive within-network connectivity in DMN (FC
between vDMN and PRE) and VN (FC between pVN and
hVN) and a strong positive between-networks connectivity
in DAN-SMN, DAN-hVN, and SMN-hVN. State 2, which
accounted for 23% of all windows, was characterized by a strong
positive within-network connectivity in VN (FC between pVN
and hVN), a strong positive between-networks connectivity in
DAN-SMN and DAN-hVN, and a strong negative between-
networks connectivity in SMN-pSN and SMN-BG. State 3,
which accounted for 34% of all windows, was characterized
by a strong positive within-network connectivity in DMN
(FC between vDMN and PRE), a strong positive between-
networks connectivity in DAN-pSN and dDMN-LAN, and a
strong negative between-networks connectivity in DMN (dDMN
and PRE)-pSN. State 4, which accounted for 14% of all
windows, was characterized by a strong positive within-network
connectivity in DMN (FC between vDMN and PRE), a strong
positive between-networks connectivity in pVN-PRE, and a
strong negative between-networks connectivity in pSN-PRE,
pSN-SMN and pSN-pVN.

Group differences in temporal properties are shown in Table 2
and Figure 3. There were significant differences in the mean dwell
time in State 3 (p = 0.025) and number of transitions (p < 0.001)
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TABLE 1 | Demographic and clinical characteristics of the participants.

Characteristics HD (n = 50) Non-D (n = 50) HC (n = 64) p-value Post hoc analyses

Demographic data

Sex (male/female) 27/23 26/24 34/30 0.980a n/a

Age (years) 36.10 ± 9.65 35.60 ± 9.06 34.56 ± 9.50 0.671c –

Education (years) 11.54 ± 2.95 11.86 ± 3.35 11.98 ± 3.53 0.771c –

BMI (kg/m2) 21.91 ± 3.55 22.31 ± 3.34 22.81 ± 2.80 0.328c –

Disease duration (months) 30.54 ± 16.97 26.64 ± 14.67 n/a 0.222b n/a

Dialysis duration (months) 18.14 ± 9.05 n/a n/a n/a

Laboratory examinations

HDL-C (mmol/L) 1.13 ± 0.34 1.09 ± 0.38 n/a 0.638b n/a

LDL-C (mmol/L) 2.36 ± 0.61 2.46 ± 0.90 n/a 0.520b n/a

Total cholesterol (mmol/L) 3.95 ± 1.00 4.23 ± 1.33 n/a 0.237b n/a

Triglycerides (mmol/L) 1.57 ± 0.70 1.59 ± 0.68 n/a 0.836b n/a

Hemoglobin (g/L) 90.54 ± 23.86 95.00 ± 23.02 n/a 0.344b n/a

Hematocrit (%) 27.65 ± 7.63 29.11 ± 7.32 n/a 0.332b n/a

Serum calcium (mmol/L) 2.10 ± 0.33 2.09 ± 0.25 n/a 0.925b n/a

Serum creatinine (µmol/L) 797.47 ± 199.69 675.42 ± 177.16 n/a 0.002b n/a

Urea (mmol/L) 19.68 ± 7.79 21.59 ± 8.26 n/a 0.239b n/a

Uric acid (µmol/L) 437.51 ± 116.71 446.83 ± 113.81 n/a 0.687b n/a

Neuropsychological tests

MMSE (score) 25.86 ± 2.51 27.20 ± 2.20 28.44 ± 1.07 <0.001c HD < Non-D < HC

MoCA (score) 24.80 ± 2.32 25.48 ± 2.27 27.59 ± 1.02 <0.001c HD < HC; Non-D < HC

TMT-A (s) 81.64 ± 17.68 75.18 ± 14.29 53.20 ± 14.29 <0.001c HD < HC; Non-D < HC

TMT-B (s) 125.04 ± 22.75 115.16 ± 14.64 83.39 ± 16.23 <0.001c HD < Non-D < HC

SDMT (score) 42.14 ± 9.50 43.28 ± 8.95 49.80 ± 9.82 <0.001c HD < HC; Non-D < HC

All quantitative data are expressed as mean ± standard deviation; numbers for sex data.
aThe p value was calculated by using chi-square test.
bThe p value was calculated by using independent two-samples t-test.
cThe p value was calculated by one-way analysis of variance.
HC, healthy controls; HD, hemodialysis; Non-D, non-dialysis; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein
cholesterol; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment; TMT-A, Trail Making Test A; TMT-B, Trail Making Test B; SDMT, Symbol
Digit Modalities Test.

among the three groups. Post hoc pairwise comparisons revealed
that both HD and non-dialysis patients had a longer mean dwell
time in State 3 (p = 0.045 and p = 0.024, respectively, FDR-
corrected) and a higher number of transitions (p < 0.001 and
p = 0.018, respectively, FDR-corrected) than HCs. Compared to
non-dialysis patients, HD patients showed a further reduction in
the number of transitions across different states (p = 0.005, FDR-
corrected).

Additional validation analysis with a window size of 20
TR revealed that the main results remained unchanged. In
particular, four dynamic FC states were also identified under
this window size across all subjects (Supplementary Figure 4).
State 3 under 20 TR window size and State 1 under 22 TR
window size (r = 0.9998), State 4 under 20 TR window size
and State 2 under 22 TR window size (r = 1.0000), State 2
under 20 TR window size and State 3 under 22 TR window
size (r = 0.9998), and State 1 under 20 TR window size
and State 4 under 22 TR window size (r = 0.9997) showed
similar characterization of dynamic FC states (Supplementary
Table 2). We found that the main results were reproducible, as
significant findings on temporal properties and dynamic graph
metrics of the main analysis remained in the validation analysis
(Supplementary Table 3).

Additional validation analysis with a window size of 30 TR
also revealed that the main results remained unchanged. In
particular, four dynamic FC states were also identified under
this window size across all subjects (Supplementary Figure 5).
State 4 under 30 TR window size and State 1 under 22 TR
window size (r = 0.9983), State 2 under 30 TR window size
and State 2 under 22 TR window size (r = 0.9996), State 1
under 30 TR window size and State 3 under 22 TR window
size (r = 0.9992), and State 3 under 30 TR window size and
State 4 under 22 TR window size (r = 0.9969) showed similar
characterization of dynamic FC states (Supplementary Table 4).
We found that the main results were reproducible, as significant
findings on temporal properties of the main analysis remained in
the validation analysis (Supplementary Table 5).

Functional Connectivity Strength
In State 3, both patient groups showed reduced FC within
the DMN (involving three default subnetworks, the dDMN,
vDMN, and PRE) and between the DMN and LAN compared
to the HC group, and a further reduction in FC within
the DMN was observed in HD patients compared to non-
dialysis patients (all p < 0.05, FDR-corrected) (Figure 4).
In addition, the HD patients showed lower FC between
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FIGURE 2 | Results of the k-means clustering analysis per state. (A) Cluster centroids for each state and the corresponding total number of occurrences and
percentage of total occurrences (listed above each cluster median). (B) The strongest 5% connections of the functional connectivity (FC) matrix in each state. Each
square color represents one of the 14 networks. Red lines represent positive FC, and blue lines represent negative FC. dDMN, dorsal default mode network; vDMN,
ventral default mode network; PRE, precuneus network; AN, auditory network; DAN, dorsal attention network; pVN, primary visual network; hVN, higher visual
network; SMN, sensorimotor network; aSN, anterior salience network; pSN, posterior salience network; RECN, right executive control network; LECN, left executive
control network; LAN, language network; BG, basal ganglia network.

TABLE 2 | Group differences in temporal properties and variances of global network metrics (window size = 22 TR).

HD (n = 50) Non-D (n = 50) HC (n = 64) ANOVA Post hoc analyses

Median Interquartile
range

Median Interquartile
range

Median Interquartile
range

p value HD vs. HC Non-D vs.
HC

HD vs.
Non-D

Temporal properties

Fractional windows (%)

State 1 20.27 (5.91, 36.15) 26.35 (12.16, 54.39) 30.41 (11.99, 47.13) 0.169 – – –

State 2 8.11 (0.00, 35.47) 7.43 (0.00, 37.50) 15.20 (0.00, 40.88) 0.790 – – –

State 3 28.04 (0.00, 74.32) 33.78 (7.94, 66.22) 22.97 (6.76, 37.16) 0.251 – – –

State 4 0.00 (0.00, 10.30) 0.00 (0.00, 9.46) 5.07 (0.00, 19.59) 0.192 – – –

Dwell time (windows)

State 1 12.67 (1.88, 20.38) 17.50 (10.00, 26.75) 13.75 (8.25, 22.56) 0.105 – – –

State 2 10.50 (0.00, 29.25) 7.75 (0.00, 23.67) 12.25 (0.00, 25.38) 0.751 – – –

State 3 20.00 (0.00,42.92) 21.46 (8.75, 37.25) 13.00 (6.17, 19.58) 0.025 0.045 0.024 0.445

State 4 0.00 (0.00, 14.25) 0.00 (0.00, 10.25) 6.00 (0.00, 20.50) 0.178 – – –

Number of transitions 4.00 (2.00, 5.25) 5.00 (4.00, 6.00) 6.00 (4.00, 8.00) <0.001 <0.001 0.018 0.005

Variance of graph metrics

Eglob (× 10−5) 3.65 (2.85, 4.67) 3.90 (3.38, 5.00) 4.81 (4.09, 6.21) <0.001 <0.001 0.001 0.041

Eloc (× 10−5) 5.88 (4.61, 7.40) 7.13 (5.41, 8.27) 7.73 (5.99, 9.64) <0.001 <0.001 0.047 0.047

Cp (× 10−5) 6.86 (5.46, 8.52) 7.85 (5.56, 9.46) 7.49 (5.77, 10.04) 0.166 – – –

Lp (× 10−3) 1.51 (1.05, 2.12) 1.66 (1.25, 2.06) 1.69 (1.14, 2.24) 0.339 – – –

γ (× 10−3) 3.24 (2.44, 4.37) 3.56 (2.52, 4.84) 3.54 (2.31, 4.96) 0.444 – – –

λ (× 10−4) 2.94 (2.26, 3.70) 3.17 (2.47, 4.03) 3.35 (2.49, 4.40) 0.261 – – –

σ (× 10−3) 1.80 (1.48, 2.40) 2.03 (1.64, 2.65) 1.92 (1.25, 3.30) 0.315 – – –

HD, hemodialysis; Non-D, non-dialysis; HC, healthy controls; Eglob, global efficiency; Eloc, local efficiency; Cp, clustering coefficient; Lp, characteristic path length; γ,
normalized clustering coefficient; λ, normalized characteristic path length; σ, small-worldness.
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FIGURE 3 | Comparison of temporal properties of dynamic functional connectivity states among the hemodialysis (HD), non-dialysis and healthy control (HC)
groups. Violin plots show medians (transverse solid lines) and upper and lower quartiles (transverse dotted lines) of the fractional windows (A), mean dwell time (B)
and number of transitions (C). *p < 0.05, **p < 0.01, ***p < 0.001.

FIGURE 4 | Visualization of group differences in functional connectivity (FC) strength (z value) in State 3. Differences in FC strength between the hemodialysis (HD)
and healthy control (HC) groups (A), between the non-dialysis (Non-D) and HC groups (B), and between the HD and Non-D groups (C) are shown using circular
graphs. Blue lines represent decreased FC strength in each pairwise comparison (p < 0.05, false discovery rate-corrected). dDMN, dorsal default mode network;
vDMN, ventral default mode network; PRE, precuneus network; AN, auditory network; DAN, dorsal attention network; pVN, primary visual network; hVN, higher
visual network; SMN, sensorimotor network; aSN, anterior salience network; pSN, posterior salience network; RECN, right executive control network; LECN, left
executive control network; LAN, language network; BG, basal ganglia network.

the PRE and pVN than HCs (p = 0.002, FDR-corrected).
Comparison of the inter-network FC strength (correlation
z value) in State 3 among the three groups is show in

Supplementary Figure 6. In the other dynamic FC states, no
significant differences in FC strength were observed among
the three groups.
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Dynamic Topological Metrics
Table 2 and Figure 5 show group differences in variance
of the global network metrics. Both patient groups exhibited
lower variance in Eglob and Eloc compared to the HC group
(all p < 0.05, FDR-corrected). Compared to non-dialysis
patients, HD patients showed a further reduction of variance
in Eglob (p = 0.041, FDR corrected) and Eloc (p = 0.047, FDR
corrected). These results remained significant in the validation
analyses (Supplementary Tables 3, 5). No significant differences
in variances of the other graph metrics were found among
the three groups.

Relationship With Clinical Variables
For patients with ESRD, the mean dwell time of State 3
was positively correlated with the completion time of TMT-A
(r = 0.411, p < 0.001) and TMT-B (r = 0.408, p < 0.001),
and the total number of transitions across states was negatively
correlated with the completion time of TMT-A (r = –0.456,
p < 0.001) and TMT-B (r = –0.422, p < 0.001) (Figure 6). No
significant correlations were found between any other dynamic
FC properties and clinical variables.

DISCUSSION

By using rs-fMRI in combination with FC state analysis and
graph theory-based network analysis, the present study is the
first to investigate the dynamic aspects of whole-brain FC and
topological properties in ESRD patients. Our work highlighted
that: (1) ESRD patients exhibited impaired functional flexibility
of network connections, as characterized by lower number of
transitions and lower variance of global network metrics; (2)
ESRD patients showed DMN-related FC disruptions in State 3;
(3) HD might have an adverse effect on dynamic FC in ESRD
patients; (4) significant correlations between altered dynamic FC
properties and neurocognitive test results were seen in patients
with ESRD. These findings improved our understanding of the
pathophysiological mechanisms underlying CI in ESRD patients
from the perspective of dynamic FC.

In the present study, patient with ESRD exhibited decreased
variance in Eglob and Eloc compared to HCs, suggesting the altered
dynamic performance of functional integration and segregation
in those patients. In fact, we found an decrease in the total
number of transitions across states in patients with ESRD, and the
severity of cognitive impairment was associated with the number
of transitions in those patients. This finding may explain the
lower variance in Eglob and Eloc observed in patients with ESRD,
implying abnormal local segregation and global integration of the
large-scale brain functional networks in ESRD patients. Dynamic
switching between different FC states may increases functional
flexibility; thus, this pattern of dynamic networks configuration
probably make HCs better adapt to different task demands (Yu
et al., 2015). This pattern of dynamic networks configuration
may be damaged in patients with ESRD, as they showed a
lower total number of transitions across states compared to HCs,
and therefore lead to poor cognitive performance. Indeed, the
relationship between network flexibility and changing cognitive

demands has been demonstrated in previous studies (Spreng
and Schacter, 2012; Garrett et al., 2013; Thompson et al., 2013;
Madhyastha et al., 2015). Overall, a reduction in the number of
transitions and a lower variability in the network Eglob and Eloc
indicated impaired functional flexibility of network connections
in ESRD patients. Impaired functional flexibility of brain network
connectivity may play an important role in the pathophysiology
of CI in patients with ESRD.

Similarly, decreased variances of the dynamic graph metrics
and total number of state transitions have also been revealed
in schizophrenia (Yu et al., 2015) and idiopathic generalized
epilepsy with generalized tonic–clonic seizure (Liu et al., 2017).
On the contrary, increased total number of transitions and higher
variance in graph metrics were demonstrated in some other
brain diseases, such as Parkinson’s disease (Kim et al., 2017)
and bipolar disorder (Wang et al., 2019), and these alterations
were suggested to represent the clinical symptoms of those brain
diseases. These similar and opposite findings to our research
suggest that altered FC properties may characterize different
pathophysiological mechanisms in different diseases.

Interestingly, our study found that patients with ESRD had
aberrant inter-network connections only in State 3, suggesting
that the network connectivity disruptions in patients with ESRD
might be state-dependent. Notably, the disrupted FC was mainly
related to the DMN, especially the FC reductions between
the DMN subnetworks (i.e., the dDMN, vDMN, and PRE).
Core regions of the DMN mainly include the ventral medial
prefrontal cortex, dorsal medial prefrontal cortex, posterior
cingulate cortex/precuneus and inferior parietal lobule, which are
engaged in multiple cognitive functions including memory, visual
and auditory attention, motor activity, and language processing
(Raichle et al., 2001; Buckner et al., 2008; Raichle, 2015).
Convergent evidences from functional neuroimaging studies
demonstrated high spatial overlap of the functional hubs with
regions of the DMN, indicating a critical role of the DMN in
the overall network structure (van den Heuvel and Sporns, 2013;
Liu et al., 2015). Furthermore, a recent study suggests that the
DMN is composed of subnetworks that exhibit differential task
engagement, and the DMN subnetworks interact in a dynamic
equilibrium, which is crucial for the maintenance of normal
cognition (Gordon et al., 2020). Thus, our findings of reduced
FC between the DMN subnetworks in patients with ESRD might
suggest abnormal functional integration of core regions in their
DMN, which might underlie the impairments of DMN-related
cognitive domains including memory, concentration, executive
function, attention and language processing in these patients.
In fact, these speculations were supported to some extent by
our other findings that patients with ESRD spent longer time
in State 3 and the mean dwell time in State 3 was positively
correlated with the completion time of TMT-A and TMT-B (the
longer the completion time, the worse the cognitive dysfunction),
which are widely used to measure concentration, attention,
executive function and processing speed (Corrêa et al., 2016;
Cook et al., 2017). These findings on FC strength of dynamic
states together with correlation analysis results provided crucial
information for better understanding the neural bases of CI in
patients with ESRD.
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FIGURE 5 | Comparison of variance in global topological metrics among the hemodialysis (HD), non-dialysis and healthy control (HC) groups. Violin plots show
medians (transverse solid lines) and upper and lower quartiles (transverse dotted lines) of the variance of the global efficiency (Eglob) (A), local efficiency (Eloc) (B),
clustering coefficient (Cp) (C), characteristic path length (Lp) (D), normalized clustering coefficient (γ) (E), normalized characteristic path length (λ) (F) and
small-worldness (σ) (G). *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 6 | Correlation of neurocognitive test results with temporal properties in dynamic functional connectivity states for patients with end-stage renal disease.
The mean dwell time in State 3 was positively correlated with the completion time of Trail Making Test A (TMT-A) (A) and Trail Making Test B (TMT-B) (C). The number
of transitions was negatively correlated with the completion time of Trail Making Test A (TMT-A) (B) and Trail Making Test B (TMT-B) (D).

Functional abnormalities in the DMN have been well
demonstrated in patients with ESRD by previous neuroimaging
studies. Using an amplitude of low-frequency fluctuation (ALFF)
algorithm, Luo et al. (2016) reported that patients with ESRD
exhibited impaired spontaneous brain activity in the DMN
regions, including the left superior parietal lobe, left inferior
parietal lobe and left precuneus. Based on ICA or seed-based
methods, some other studies also demonstrated disrupted FC
within the DMN in patients with ESRD (Ni et al., 2014; Ma
et al., 2016; Lu et al., 2019). These functional impairments of
the DMN regions may influence the normal interactions between
DMN subnetworks. Indeed, a recent study did demonstrate that
patients with ESRD exhibit significantly lower FC between the
two DMN hubs (i.e., the posterior cingulate cortex (PCC) and
the anterior medial prefrontal cortex) and between the two DMN
subnetworks (i.e., the dorsal medial prefrontal cortex subnetwork
and the medial temporal lobe subnetwork) compared to HCs
(Ma et al., 2020). Evidences from these studies suggest functional
deficits of the DMN regions and abnormal functional interactions
of the DMN subnetworks, and thus support our findings.

We also found reduced FC between the dDMN and LAN in
patients with ESRD compared to HCs. The DMN can integrate
information from primary function and cognition networks (Liao
et al., 2014). Functional abnormalities of the DMN mentioned
above may also affect its information communication with other

brain networks, such as the LAN, thus resulting in impaired
functional integrations between the DMN subnetworks and LAN.
The LAN is mainly associated with various language functions
(Friederici and Gierhan, 2013). The DMN is also engaged in
language comprehension (Tesink et al., 2009), and core hubs of
the dDMN such as medial prefrontal cortex and angular gyrus
can predicts language processing in healthy adults (Tomasi and
Volkow, 2020). Thus, our findings may suggest impaired dDMN-
LAN interactions involving language processing and may explain
the deficits in language function observed in these patients
(Arnold et al., 2016).

The present study found a further reduction in the number
of transitions across states, the variance of Eglob and Eloc, and
the FC strength between the DMN subnetworks of State 3
in HD patients compared to non-dialysis patients, suggesting
that HD may have an adverse effect on dynamic FC. Notably,
comparison of the neuropsychological test results also revealed
a worse cognitive performance in HD patients than non-
dialysis patients. Dialysis may exert deleterious effects on the
brain, over and above that of chronic kidney disease, and
dialysis initiation is associated with loss of executive function
(Kurella Tamura et al., 2017). In addition, dialysis patients have
been shown to have a high cerebrovascular burden, regardless
of dialysis modality (Kim et al., 2011). Potential mechanisms by
which dialysis affects the brain include intradialytic hypotension,
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reduced cerebra blood flow, inflammation and oxidative stress
(Iyasere and Brown, 2017).

Consistent with our study, previous neuroimaging studies
also demonstrated that HD patients exhibited further deficits in
brain function than non-dialysis patients. For example, Chen
et al. (2015) reported that HD patients showed lower regional
homogeneity mainly in the DMN regions than non-dialysis
patients, and these abnormalities were associated with CI in HD
patients. Another study investigated the intrinsic brain activity in
patients with ESRD who underwent peritoneal dialysis (PD), and
found that PD patients showed lower ALFF values in the DMN
regions compared to non-dialysis patients. Our recent study also
revealed that HD patients had more severe disrupted whole-
brain functional network than non-dialysis patients, and dialysis
duration was associated with Eglob in HD patients, suggesting
that HD may be an independent factor for impaired ability
of global network integration (Wu et al., 2020a). Our findings
combined with those from previous studies may have some
clinical implications. As our understanding of the effect of HD
on brain function improves, novel dialysis strategies may be
developed to reduce the adverse effects of HD on the brain. In
fact, a previous randomized control trial found that HD caused
obvious brain injury, and after improvement of hemodynamic
tolerability by using cooled dialysate, this adverse impact could
be effectively abrogated (Eldehni et al., 2015).

Several limitations should be acknowledged in our study. First,
this was a cross-sectional study with a relatively small sample
size, which may affect the statistical power. Future studies with
a longitudinal design and larger sample sizes are needed to
further evaluate the dynamic FC changes in patients with ESRD
before and after HD treatment. Second, in dynamic FC analysis,
parameter setting is still controversial, and the gold standard
has not been established. However, we conducted additional
validation analyses to test the reproducibility of the results, and
found that the main results remained unchanged. Finally, in our
study, each functional dataset only contained 180 timepoints.
This might affect the evaluation of dynamic FC. Future studies
with longer timepoints of rs-fMRI data should be conducted to
verify our findings.

CONCLUSION

The present study demonstrated abnormal dynamic FC in
patients with ESRD, characterized by increased time in State
3, lower number of transitions across states, lower variance in
network efficiency and disrupted FC related to the DMN in

State 3, and some altered time-varying metrics were associated
with cognitive performance. Moreover, these abnormalities of
dynamic FC were more severe in HD patients than in non-dialysis
patients. These findings suggest impaired functional flexibility
of network connections and state-specific FC disruptions in
patients with ESRD, which may provide new insights into
the pathophysiological mechanisms underlying their cognitive
deficits from the perspective of dynamic FC.
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