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Abstract
While long non-coding RNAs are known to play key roles in disease and development, relatively few structural studies have 
been performed for this important class of RNAs. Here, we review functional studies of long non-coding RNAs and expose 
the need for high-resolution 3-D structural studies, discussing the roles of long non-coding RNAs in the cell and how struc-
ture–function relationships might be used to elucidate further understanding. We then describe structural studies of other 
classes of RNAs using chemical probing, nuclear magnetic resonance, small-angle X-ray scattering, X-ray crystallography, 
and cryogenic electron microscopy (cryo-EM). Next, we review early structural studies of long non-coding RNAs to date 
and describe the way forward for the structural biology of long non-coding RNAs in terms of cryo-EM.

Introduction

Long non-coding RNAs (lncRNAs) are typically defined 
as RNAs longer than 200 nucleotides in length without 
significant coding potential, often playing regulatory roles 
in mammalian systems (Winkle et al. 2021). Because this 
class of RNA molecules has been found to be important for 
processes in cancer, development, and brain function, there 
is keen interest in the pharmaceutical community (Kashi 
et al. 1859; Hon et al. 2017). However, the enormous size of 
these RNAs, which are often kilobases or tens of kilobases 
in length, makes the prospects of drugging them daunting. 
If the drug is a small molecule, then which of the 10,000 
bases on a 10 kb lncRNA should be targeted? If the drug 
is an antisense oligo, which region of the RNA should be 
targeted? Which regions should not be targeted?

The steps of pre-clinical trials, clinical trials, and reg-
ulatory approval have been in the news lately regarding 
COVID-19 vaccine development. Similar steps are required 
for protein-based drugs, such as anti-viral therapeutics, 
cancer drugs, anti-depressants, antibiotics, and disease-
related therapies (Matthews et al. 2016). However, before 
these steps can begin, target identification, lead generation, 
lead optimization, and drug candidate selection must take 

place. Each of these stages requires considerable structural 
characterization. In the case of protein-based drugs, often a 
high-resolution 3-D structure of the target protein is solved 
by either X-ray crystallography or cryo-EM, followed by 
binding pocket characterization, hit identification, lead 
development, and lead optimization (Grey and Thompson 
2010). Currently, there are no high-resolution 3-D structures 
of lncRNAs.

In addition to drug development, structural biology has 
been quite useful for understanding protein mechanism. 
Since a protein’s mechanism and function are often deter-
mined by the other molecules that the protein interacts with, 
the 3-D structure of the protein can directly reveal its mecha-
nism, as the structure provides the details of how the pro-
tein fits with its interaction partner, i.e., the details of how 
the protein works. Many actually define protein mechanism 
as the relationship between its structure and function. This 
is exemplified by the fact that, if, hypothetically, the posi-
tions of amino acids in a protein were to change drastically, 
then the function would likely also change drastically, if not 
ruined entirely.

Relative to the history of structural biology in mecha-
nistic studies and drug development in the protein com-
munity, and the fact that high-resolution structures of 
lncRNAs have not yet been solved, lncRNA mechanism is 
not well understood at the molecular level of detail. With-
out a clear understanding of structure, structure–function 
relationships, and mechanism, lncRNA drug discovery 
is in its early stages. In the case of lncRNAs, we expect 
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understanding mechanism will require determination 
of the structure–function relationship for the RNA, and 
determination of the structure–function relationship will 
require solving the lncRNA 3-D structure at high reso-
lution, similar to how structure–function relationships 
and mechanisms were worked out for proteins. Thus, we 
anticipate that solving structures of lncRNAs will be an 
important stage for determination of lncRNA mechanism 
and for lncRNA drug discovery.

Although long non-coding RNAs have been shown to be 
important in development, epigenetics, stem cell biology, 
plant biology, RNA processing, hormone response, cancer, 
and brain function (Rinn and Chang 2012; Klattenhoff et al. 
2013; Mercer and Mattick 2013; Swiezewski et al. 2009; 
Ulitsky and Bartel 2013; Gong and Maquat 2011; Kaneko 
et al. 2014; Heard et al. 1999; Rocha et al. 2014; Boumil and 
Lee 2001; Davidovich et al. 2013, 2015; Cech and Steitz 
2014; Brown et al. 2014; Dharap et al. 2012; Ponting et al. 
2009; Derrien et al. 2012), many researchers have avoided 
3-D structural studies either because (i) they believe the 
RNAs are unstructured, (ii) they believe structural studies 
of lncRNAs are too difficult, or (iii) they are unaware of the 
success of structural biology techniques in other fields of 
RNA biology, such as RNAi, Crispr-Cas9, protein synthesis, 
splicing, and bacterial metabolism (Doherty and Doudna 
2000; Wilson and Doudna 2013; Pyle 2016; Voorhees and 
Ramakrishnan 2013; Montange and Batey 2008; Frank and 
Gonzalez 2010; Hashem and Frank 2018). Because of the 
reluctance to study lncRNA structures, structure–function 
relations for these RNAs have lagged behind other sub-fields 
in RNA biology. The hesitancy, however, is not necessarily 
justified. Reason (i) is not necessarily true, in light of the 
physical properties of RNA: since the bases and backbone 
of RNA are polar, Watson–Crick and non-Watson–Crick 
base pairs form for almost any RNA sequence. This pro-
pensity to form base pairs combined with well-known non-
specific backbone-to-base backbone-to-backbone (often 
ion-mediated) interactions results in the tendency of RNA 
to ‘stick to itself’ and form intricate secondary and tertiary 
structures. Reason (ii) has merit; however, breakthroughs in 
cryo-EM have proved the feasibility of 3-D studies of purely 
RNA systems, producing cryo-EM structures of riboswitch 
RNAs, frame shifting pseudoknot elements of mRNAs, and 
tRNA-like structures (Zhang et al. 2019, 2020; Kappel et al. 
2020; Sherlock et al. 2021). As for reason (iii), x-ray crys-
tallography, small-angle x-ray scattering, nuclear magnetic 
resonance imaging, and cryo-EM have enjoyed enormous 
success in determining 3-D structures of other RNA systems 
(Pyle 2016; Montange and Batey 2008; Zhang et al. 2019, 
2020; Kappel et al. 2020; Sherlock et al. 2021; Liu et al. 
2021; Roy et al. 2017a; Torabi et al. 2021; Pollack 2011). 
Here, we describe the lncRNA functional studies, review 
high-resolution structure–function relationships in other 

RNA systems, and discuss early results and the prospects 
for higher-resolution structure–function studies in lncRNAs.

Long non‑coding RNAs (lncRNAs)

Long non-coding RNAs (lncRNAs) are often found in mam-
malian epigenetic systems, exceed 200 nucleotides in length, 
polyadenylated, alternatively spliced, low in abundance, and 
display relatively low sequence conservation. A subset of 
the non-coding RNAs (K. Numata et al. 2003; P. Carninci 
et al. 2005), long non-coding RNAs have been shown to have 
specificity to tissue type and developmental stage (Ponjavic 
et al. 2007; Dinger et al. 2008; Rinn and Chang 2012). Many 
genome-wide studies have been performed to identify large 
classes of lncRNAs associated with environmental changes, 
tissues, and diseases (Rinn and Chang 2012). Loss-of-func-
tion studies have been performed to characterize functional 
roles of lncRNAs (Charles Richard and Eichhorn 2018). 
Biochemical and low-resolution methods have been used to 
obtain structural information yielding glimpses of lncRNA 
structure (Novikova et al. 2013a). High-resolution structural 
biology techniques have been instrumental in determining 
structure–function relationships in other classes of RNA 
(riboswitches, ribozymes, and ribosomes) (Westhof 2015; 
Reyes et al. 2009). These structure–function relationships 
enable more precise understanding of mechanism in terms 
of structural dynamics, thermodynamics, kinetics, and Mg2+ 
effects. Yet, few studies have examined lncRNA mechanism 
at the atomistic level of detail (Novikova et al. 2013a).

Structure–function relationships

Structure–function relationships have been critical in 
understanding biological systems in molecular detail. 
Since the inception of structural biology, 3-D structures of 
proteins have led to breakthroughs in understanding pro-
tein binding, protein complex formation, ligand binding, 
and self-assembly, all of which are important throughout 
biology and biomedicine. In biological systems, we often 
first know that a molecule is important, and even what it 
does, but not how it does it. The ‘how,’ in the case of a 
protein, is then worked out by solving the protein’s 3-D 
structure and relating it to its function. Once we know 
the ‘how,’ we can begin to understand the molecule in 
context and start thinking about drugging the molecule. 
In the case of protein molecules, their function almost 
always hinges on interaction with another molecule, such 
as another protein, RNA, or DNA molecule. Solving the 
structure of the protein in isolation and complexed with 
its target molecules produces invaluable information about 
its function and about the structure–function relationship. 
A wide variety of techniques have been developed to gain 
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information about the 3-D structures of proteins and pro-
tein complexes, including X-ray crystallography, X-ray 
free-electron laser crystallography, cryo-EM, NMR, and 
small-angle scattering (Adams et al. 2013; Sekhar and Kay 
2019; Glaeser 2019; Rambo and Tainer 2013; Smith et al. 
2018; Gruner and Lattman 2015). X-ray crystallography 
has been a leading technique for many decades. For exam-
ple, the molecular basis of the biological functions of the 
lysozyme, ATP synthase, and ion channels was provided 
by their X-ray crystal structures (Blake et al. 1965; Doyle 
et al. 1998; Boyer 1997). In addition to producing the 
mechanism of a molecule, structural studies (Hunter 1997) 
have also led to new drugs, as in the case of Plexxikon 
(scaffold-based drug discovery) and Zelboraf (metastatic 
melanoma)(Gul and Zimmermann 2017). More recently, 
cryo-EM has taken center stage in protein structural biol-
ogy. For example, cryo-EM structures of the COVID-19 
spike protein in various states were used to optimize sta-
ble spike constructs for mRNA-based vaccines (Ma et al. 
2021). In the case of nucleic acids, the DNA double helix 
structure immediately led to an understanding of the role 
of DNA in the cell as the carry of reproducible informa-
tion (Watson and Crick 1953). More recently, cryo-EM 
structures of nucleosome complexes have produced new 
insights into chromatin organization and gene regulation 
(Han et al. 2020; Takizawa et al. 2020). On the whole, 
high-resolution 3-D structures have been instrumental in 
determining mechanism, discovering drugs, and identify-
ing function in a large number of biomolecular systems.

Structural studies of RNA systems

As far fewer RNA systems have been studied relative to pro-
tein systems, RNA structural biology has lagged behind pro-
tein structural biology considerably. However, as described 
below, high-resolution structures have been obtained for 
several classes of RNAs, leading to important insights into 
their structure–function relationships.

Self‑splicing introns

Some of the earliest RNA-only systems solved to high reso-
lution are the group I and group II introns (Pyle 2016). Using 
X-ray crystallography, these structures revealed the over-
all 3-D architecture of the RNA, detailed local RNA–RNA 
interaction motifs connecting the RNA together, the role of 
Mg2+ ions in the structure, and how the 2-D secondary struc-
ture maps translate into 3-D structures. Importantly, the 3-D 
structures were critical in determining the mechanism of 
catalysis for splicing, answering questions that were difficult 
or impossible to solve using other methods.

Riboswitch RNAs

Riboswitch RNAs are regulatory stretches of RNA com-
monly residing in the 5’-UTR of mRNA in bacterial metab-
olism-related genes (Montange and Batey 2008; Breaker 
2011). These RNAs control gene expression by detecting 
environmental molecules through ligand-binding 3-D folds 
that alter the regulatory behavior of the RNA. In a ribos-
witch, one sequence has two competing secondary struc-
tures (and two competing tertiary structures). The presence 
of ligand shifts the equilibrium to one structure, altering 
the gene expression ON/OFF state. The majority of ribos-
witches were discovered with cell-free, in vitro chemical 
probing studies revealing the ligand dependence of the sec-
ondary structure, supported by in vivo functional studies. 
These in vitro secondary structures were later validated by 
in vitro high-resolution X-ray crystallographic 3-D struc-
tures (Serganov and Patel 2012). The dynamics of these sys-
tems have been studied using small-angle X-ray scattering 
(SAXS) experiments and molecular dynamics simulations 
(Zhang et al. 1839). SAXS and biochemical studies have also 
revealed that ligand-free conformations tend to be extended 
and flexible, whereas ligand-bound conformations tend to 
be compact and ordered. Most recently, molecular dynam-
ics simulations have been used to integrate crystallographic, 
biochemical, and SAXS data, elucidating the operational 
principles of riboswitches and their dependence on mag-
nesium (Roy et al. 2017a, 2019, 2017b; Hayes et al. 2014, 
2015; Hennelly et al. 2013).

Ribonucleoprotein complexes

Structural studies of several ribonucleoprotein complexes 
have been studied, including the ribosome, RNA processing 
complexes, and the spliceosome. The ribosome is perhaps 
the most extensively studied ribonucleoprotein complex 
(Jobe et al. 2019). Structural studies have been attempted 
since the 1980s, commencing with biochemical studies to 
determine the secondary structure of the small subunit ribo-
some RNA (16S) and large subunit ribosomal RNA (23S) 
(Rummel and Noller 1973; Woese et al. 1980; Noller et al. 
1981; Noller and Woese 1981) Neutron scattering enabled 
the rough placement of proteins in 3-D space relative to the 
ribosome complex (Engelman and Moore 1976; Moore et al. 
1975). Early cryo-EM studies yielded the morphologies of 
the two subunits, the tRNA and mRNA ligands, the riboso-
mal proteins, and various conformations of the ribosome 
(Frank and Gonzalez 2010). Details were filled in with X-ray 
crystallography structures (Voorhees and Ramakrishnan 
2013). High-resolution cryo-EM enabled studies of ribo-
somes in a wide variety of functional states, for a variety of 
different species (Hashem and Frank 2018). With structures 
in hand, structural dynamics studies have been performed, 
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integrating cryo-EM, single-molecule FRET, and large-scale 
molecular dynamics simulations, providing a comprehen-
sive picture of the molecular mechanism of the ribosome, 
characterizing the energy landscape and transition rates in 
the context of the detailed structures of beginning, ending 
and a plethora of intermediate states for various stages of 
protein synthesis (Sanbonmatsu 2012, 2019, 2006; Morse 
et al. 2020; Sanbonmatsu et al. 2005; Tung and Sanbonmatsu 
2004; Girodat et al. 2020; Wasserman et al. 2016; Ferguson 
et al. 2015; Munro et al. 2009).

RNA processing

3-D structures of macromolecular complexes that process 
RNA molecules have yielded important insights. Passmore 
and co-workers used X-ray crystallography to obtain high-
resolution structures of Saccharomyces cerevisiae Pan2 
in complex with RNA to show that Pan2 recognizes the 
stacked, helical conformation of poly(A) RNA (Kumar et al. 
2019). This complex was reconstituted in a cell-free, in vitro 
system (Tang et al. 2019). They also used a combination of 
crystallography and electron microscopy to obtain structures 
of CPF/CPSF, a multi-protein complex essential for forma-
tion of mRNA 3’ ends, showing that the process requires 
incorporation of the Ysh1 endonuclease into an eight subunit 
core complex (Hill et al. 2019).

Spliceosome

The high-resolution structures of a large number of full spli-
ceosome complexes have been solved using cryo-EM over 
the past five years in a wide variety of splicing states. These 
structures were the culmination of decades of biochemical 
and genetic work, as well as lower-resolution cryo-EM struc-
tures of complexes along with high-resolution crystallogra-
phy structures of smaller sub-regions of the complex (Yan 
et al. 2019). The spliceosome complex assembles on the pre-
mRNA through a variety of protein and RNA interactions 
that work together to recognize specific splicing sites. This 
is followed by RNA-based catalyzation of cleavage and liga-
tion, removing the intron stretches of RNA and reconnecting 
the remaining RNA to form the mRNA. Like the ribosome, 
the spliceosome has a rich history in mechanism and struc-
tural studies and, in terms of structural studies, is one of 
the most important ribonucleoprotein complexes (Fica and 
Nagai 2017; Fica 2020; Wilkinson et al. 2020; Smathers 
and Robart 1862). Unlike the ribosome, spliceosome opera-
tion is significantly more complex: factors are continuously 
coming on and off the complex during the myriad of sub-
steps required for splicing. It has been hypothesized that in 
humans, the composition of the complex may be transcript-
specific. Furthermore, in addition to undergoing changes 

in tertiary structure, the secondary structure of the RNA 
also changes, requiring major rearrangements of the RNA. 
Although, from an RNA structure standpoint, spliceosome 
operation is more complex than ribosome operation, the spli-
ceosome may present a more apt analog to a lncRNA molec-
ular machine, since the complex is more dynamic, both in 
terms of the composition of the complex and in terms of the 
conformational changes required for the RNA (Wilkinson 
et al. 2020).

3‑D structural techniques used to study other 
classes of RNAs

High-resolution techniques have been used to determine 
structures for a number of other classes of RNA systems, 
such as riboswitches, ribozymes, introns, ribosomes, and 
spliceosomes. In terms of techniques, nuclear magnetic reso-
nance imaging (NMR) can be used to study small systems. 
This method has the advantage of capturing precise infor-
mation about the dynamics of the RNA, multiple configura-
tions, and rates of transition between configurations (Liu 
et al. 2021). NMR has been used to obtain such information 
for a variety of riboswitches and regions of viral RNAs, as 
well as a small region of Xist RepA lncRNA (Duszczyk 
et al. 2008). X-ray crystallography is a traditional form of 
high-resolution structure determination used for small- and 
medium-sized RNA systems. High-resolution structures 
have been determined for riboswitches, ribozymes, introns, 
and ribosomes. Cryogenic electron microscopy (cryo-EM) 
can be used to determine high-resolution structures for 
medium-sized and large-sized protein systems and ribonu-
cleoprotein systems. To date, this method has determined a 
wide variety of structures for ribonucleoprotein complexes, 
including many ribosome complexes and several spliceo-
some complexes. Quite recently, the method has been used 
to obtain medium-resolution structures of several RNA-only 
systems, including riboswitches and regions of viral RNAs 
(Zhang et al. 2019, 2020; Kappel et al. 2020; Sherlock et al. 
2021).

Studies of long non‑coding RNAs

Loss-of-function studies have identified important lncRNAs, 
in terms of their functional roles in the cell, including epi-
genetic sensing and recruitment, sponging, P-bodies, scaf-
folding, RNA processing (lncRNAbnb1/2), and hormone 
response (Gong and Maquat 2011). Knockdown studies also 
improve understanding. Knockdowns of Braveheart showed 
that this lncRNA is critical for lineage commitment in cardi-
omyocytes (Klattenhoff et al. 2013). CRISPR/Cas9 knockout 
studies have expanding the number of clear causal roles of 
lncRNAs. CRISPR/Cas9 knockout of an 11-nucleotide r-turn 
RNA motif showed that this structural motif is critical for 
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the overall function of Braveheart (Xue et al. 2016). Knock-
outs had a major reduction in embryoid body beating assays, 
along with dramatic decreases in normal development. Pro-
tein binding studies offer some insight into mechanism. In 
pulldowns and SAXS analysis, Braveheart was shown to 
bind zinc finger protein CNBP (Kim et al. 2020). Several 
genome-wide studies have been performed to identify pro-
teins that bind to Xist (Minajigi et al. 2015a).

Mechanisms of lncRNAs

One of the earliest discovered lncRNAs is Xist (X chro-
mosome inactivation-stimulated transcript), responsible for 
inactivation of the X chromosome during development (Lee 
and Jaenisch 1997). More recently, several lncRNAs have 
been associated with HOX gene systems during develop-
ment (Rinn and Chang 2012). The 1/2sbs-lncRNA controls 
mRNA decay by hybridizing with mRNA to form a platform 
for STAU1 protein binding, triggering degradation of mRNA 
(Gong and Maquat 2011). Other lncRNAs are required for 
p21 activation (Huarte et al. 2010), stem cell reprogramming 
(Guttman et al. 2011), and stress response (Kino et al. 2010).

LncRNAs with phenotypes

Although the physiological relevance of many of the 
reported lncRNAs has not been determined, many lncRNAs 
have been shown to possess important, visible phenotypes 
(Li and Chang 2014). In addition to Xist, required for dos-
age compensation, the Braveheart lncRNA has been shown 
to be required for lineage commitment in cardiomyocytes 
(Klattenhoff et al. 2013). FENDRR lncRNA is required for 
heart, lung, and gastrointestinal development (Sauvageau 
et al. 2013). Linc-brn1b is required for neocortex develop-
ment (Sauvageau et al. 2013). The COOLAIR lncRNA is 
required in A. thaliana for cold-timed flowering (Swieze-
wski et al. 2009). Additionally, the NEAT1 lncRNA has the 
clear phenotype of being critical for paraspeckle formation 
(Naganuma et al. 2012; Nakagawa and Hirose 2012; Sasaki 
et al. 2009).

LncRNA–protein interactions

Many studies have been performed to determine the protein 
partners of lncRNAs and elucidate the functions of these 
RNA–protein interactions (Davidovich et al. 2015; Minajigi 
et al. 2015a). Lee and co-workers developed an RNA centric 
proteomic method (iDRIP) to determine the Xist lncRNA 
interactome, showing cohesin repulsion and an RNA-
directed chromosome conformations (Chu et al. 2021; Mina-
jigi et al. 2015b). The group also identified lncRNAs associ-
ated with Polycomb repressive complex PRC2 using RIP-seq 
(Zhao et al. 2010). Carninci and co-workers developed a 

new technology to map genome-wide RNA–chromatin inter-
actions in intact nuclei (RNA And DNA Interacting Com-
plexes Ligated and sequenced, RADICL-seq) (Bonetti et al. 
2020). This proximity ligation-based methodology identifies 
patterns of genome occupancy for different classes of tran-
scripts (Bonetti et al. 2020).

2‑D Structural studies of lncRNAs: LncRNA 
secondary structure studies using chemical probing

Genome-wide studies of secondary structure have revealed 
that lncRNAs are more structured than mRNAs, but less 
structured than ribosomal RNAs (Wan et al. 2014, 2013, 
2012; Ouyang et al. 2013; Kertesz et al. 2010; Ding et al. 
2014; Rouskin et al. 2014). Detailed secondary structure 
studies of complete, intact lncRNA systems show that some 
lncRNAs are hierarchically structured with sub-domains 
containing modular RNA secondary structure motifs (Novik-
ova et al. 2012; Ilik et al. 2013; Somarowthu et al. 2015). 
Studies of Malat-1 and related lncRNAs show that the 3’-end 
forms a triple helix, protecting it from RNase degradation 
(Brown et al. 2014; Wilusz et al. 2012, 2008). Other studies 
have elucidated lncRNA–protein interactions, emphasizing 
the need for detailed structural studies and mechanistic stud-
ies at the molecular and atomistic level (Chu et al. 2015; 
Spitale et al. 2015).

LncRNAs tend to have relatively low sequence identity 
and are often described as non-conserved. Some non-cod-
ing RNAs (miRNAs and rRNAs) have very high sequence 
identity (> 78% in nucleic acid sequence identity) (Grif-
fiths-Jones et al. 2003). In contrast, many other important 
classes of non-coding RNAs have relatively low sequence 
identity (nucleic acid sequence identity of ~ 50%-65%), but 
secondary structures that are conserved across thousands 
of sequences. For example, riboswitches, which regulate 
metabolism in bacteria, typically have sequence identities 
of only 50%–65%, but have secondary structures conserved 
across thousands of species (Griffiths-Jones et al. 2003). 
The U2 and U4 spliceosomal RNAs have sequence iden-
tities < 60% but secondary structures conserved for > 9000 
sequences. The 5S ribosomal RNA has sequence identity 
of ~ 60% but secondary structure conserved over 229,000 
sequences. The group I intron has decidedly low sequence 
identity (~ 36%) but structure conserved across 60,000 spe-
cies (Griffiths-Jones et al. 2003).

RNAs with low sequence identity are difficult to find 
using conventional search algorithms such as BLAST. 
However, knowledge of secondary structure dramatically 
enhances the search success. A wide variety of computa-
tional techniques to predict RNA secondary structure exists, 
using either free-energy estimates, multiple sequence align-
ment and direct coupling analysis, machine learning, or a 
combination of these (Yao et al. 2017; Dallaire and Major 
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2016; Parisien and Major 2008; Mathews 2019; Spasic 
et al. 2018; Tan et al. 2017; Eggenhofer et al. 2016; Lorenz 
et al. 2016a, 2016b; Pucci et al. 2020). These can be highly 
effective for a range of RNAs. With the growing number of 
possibilities for long-range interactions, pseudoknots, and 
multiway junctions, the number of potential RNA second-
ary structure folds exponentiates as a function of sequence 
length, making the task of predicting long non-coding 
RNA secondary structure formidable. In many RNA sys-
tems, in vitro chemical probing experiments have produced 
highly accurate secondary structures, subsequently verified 
by X-ray crystallography. In the case of riboswitches, RNA 
secondary structures were determined experimentally for a 
single species using in vitro chemical probing of the RNA in 
cell-free reconstituted systems (Regulski and Breaker 2008; 
Winkler et al. 2002, 2004; Mandal et al. 2003, 2004; Sudar-
san et al. 2006, 2008; Cheah et al. 2007). Next, this structure 
was used as a fingerprint to find the structure in thousands 
of other species, despite the low sequence identity (Wein-
berg et al. 2007). These secondary structures determined 
from cell-free systems by chemical probing were verified 
by X-ray crystallography (Montange and Batey 2008, 2006; 
Batey et al. 2004; Gilbert et al. 2008; Stoddard et al. 2010).

To determine the RNA secondary structure of lncRNA 
molecules, strategies similar to those used to determine the 
original 16S rRNA secondary structure (Woese et al. 1980; 
Noller et al. 1981; Noller and Woese 1981) and the ribos-
witches (Winkler et al. 2003) have been employed. Chemical 
probing experiments determine nucleotides that are highly 
mobile and likely to reside in looping regions, as well as 
those nucleotides with low mobility, likely to participate 
in Watson–Crick base pairs. To cope with the large RNA 
size, 3S (Shot-Gun Secondary Structure) can be used, which 
probes the entire RNA first and then probes shorter segments 
of the RNA in successive rounds of probing (Novikova et al. 
2012, 2013b). By matching signals of short segments with 
full RNA experiments, modular sub-domains are identified, 
for which a secondary structure is often readily discernable. 
The resulting secondary structure can be used to improve 
existing phylogenetic sequence alignments and, in principle, 
can be used to find instances of the lncRNA not previously 
found in other species (Hawkes et al. 2016).

An interesting case is the 873 nt steroid receptor RNA 
activator lncRNA in humans (SRA-1). This lncRNA co-
activates the hormone response in human T-47D cells and 
co-immunoprecipitates with a large number of important 
proteins, including several hormone receptors (estrogen 
receptor, progesterone receptor, androgen receptor, gluco-
corticoid receptor, and thyroid receptor) (Yao et al. 2010; 
Xu et al. 2009; Colley et al. 2008; Huet et al. 2014). Binding 
assays in in vitro cell-free reconstituted systems have shown 
strong binding to the pseudouridinylase Pus1p, estrogen 
receptor, thyroid receptor, the sex reversal factor DAX-1, and 

the epigenetic factor SHARP. While the primary function of 
SRA-1 is to co-activate the hormone response, a speculated 
secondary function involving the binding of SRA-1 to its 
cognate protein SRAP has recently been shown not to occur 
(SRA-1 does not bind to SRAP) (McKay et al. 2014).

A previous study demonstrated that SRA-1 contains four 
modular secondary structure sub-domains, each containing 
multiple secondary structure motifs. The secondary struc-
ture was consistent with four different probing techniques 
(SHAPE, DMS, in-line, and RNase V1). Binding studies 
have shown that SHARP binds to the helix 12/helix 13 
(H12/13) domain (Arieti et al. 2014).

Because the probing signal in vivo may to be obfuscated 
by multiple proteins binding to the RNA (Davidovich et al. 
2013, 2015), in vitro studies establish an important ab initio 
structure. There are few known cases of high-resolution 3-D 
structures, where an in vitro structure of an intact, individual 
RNA has been shown to differ from its corresponding in vivo 
structure. For example, the vast majority of crystallographic 
structures of RNAs, which are determined in vitro, have 
either (i) been validated in vivo or (ii) not been disproven 
in vivo. In the case of riboswitch RNAs, crystallographic 
data strongly support initial secondary structures determined 
by chemical probing techniques discussed above.

On the whole, determination of the precise and detailed 
secondary structure of lncRNAs allows classification into 
(i) highly structured RNAs with sub-domains and complex 
structural motifs, such as multiway junctions; (ii) loosely 
structured RNAs with multiple stem-loops, but lacking 
hierarchical domain structure and complex motifs; and 
(iii) unstructured, disordered RNAs, which lack secondary 
structure.

3‑D studies of long non‑coding RNAs at low 
resolution

Studies of tertiary interactions in long non-coding RNAs. 
Pyle and co-workers used UV crosslinking to identify indi-
vidual tertiary interactions in lncRNA systems (Liu et al. 
2017).

Small-angle X-ray scattering (SAXS). Small-angle X-ray 
scattering studies have been used to characterize the 3-D 
structure of RNA systems that are too flexible to be studied 
with X-ray crystallography. Often, RNA molecules sample 
a multitude of conformations. SAXS can characterize the 
distribution of configurations samples. In addition, SAXS 
can be a first step toward higher-resolution structure determi-
nation as the requirements for sample preparation are much 
less stringent than for X-ray crystallography or for higher-
resolution cryo-EM. Recently, low-resolution structures of 
the Braveheart lncRNA and Braveheart-CNBP ribonucleo-
protein complex were determined using SAXS (Kim et al. 
2020). The structures were consistent with 2-D secondary 
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structures determined via chemical probing, with second-
ary structure domains fairly well-separated in 3-D physical 
space. The molecule was found to be somewhat flexible, 
where multiple all-atom 3-D configurations were consist-
ent with 3-D volume reconstructions consistent with the 
SAXS data. However, the SAXS data demonstrated com-
paction upon Mg2+ titration, which is clear evidence of well-
defined tertiary structures in the RNA system. This is simi-
lar to riboswitch systems, which still sample well-defined 
3-D structures, even in their ligand-free states, known to 
be extended and flexible. Additionally, Braveheart under-
went significant reorganization upon protein binding, as 
evidenced by the substantial change in scattering profiles 
and corresponding 3-D volume reconstructions as a result 
of CNBP binding.

Atomic force microscopy (AFM) studies of lncRNAs. 
AFM has been used to characterize the 3-D structure of 
lncRNA systems without solution. In these experiments, 
MEG3 displayed tertiary structure consistent with 2-D sec-
ondary structures determined by chemical probing (Uroda 
et al. 2019). Bachelet and co-workers used fast AFM scan-
ning to quantification of the motion of HOTAIR lncRNA, 
describing the anatomy and intrinsic properties of HOTAIR 
(Spokoini-Stern et al. 2020).

Fluorescence correlation spectroscopy (FCS). FCS has 
been used to characterize the size, in terms of extended vs. 
compact, of lncRNAs systems in 3-D. In one FCS study, 
lncRNAs (e.g., HOTAIR) were found to be more compact 
than mRNA transcripts, but less compact than ribosomes 
(Borodavka et al. 2016).

Expansion of structural tools to study long 
noncoding RNAs at high resolution

High-resolution structural studies of lncRNA systems will 
undoubtedly reveal new information about their mecha-
nisms. As early studies present evidence for tertiary con-
tacts, at minimum, cryo-EM studies of lncRNAs may reveal 
structured tertiary motifs surrounded by flexible regions or 
large swaths of RNA. At the other extreme, these studies 
may uncover highly structured ribonucleoprotein complexes, 
or even structured RNA-only systems. The past decade of 
lncRNA research has clearly shown that lncRNAs represent 
a highly diverse class of RNAs with a wide range of func-
tional roles. Thus, a wide range of structural content may be 
observed, ranging from highly dynamic to highly structured. 
Higher-resolution structural studies will be able to shed light 
on structure–function relationships, in terms of specific pro-
tein binding partners, RNA binding partners, DNA binding 
partners, conformational changes, and roles in pathways. 
These studies may also offer insight into the evolution of 
lncRNAs. Since lncRNAs often have fairly low sequence 
identity, structure–function studies will enable analysis of 

conservation in terms of more general measures, such as 
2-D structure, 3-D structural RNA motifs, 3-D RNA–protein 
binding motifs, RNA dynamics, and RNA function (Hezroni 
et al. 2015; Ulitsky 2016).
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