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Giardiasis caused by Giardia intestinalis (syn. G. lamblia, G. duodenalis) is one of the
leading causes of diarrheal parasitic diseases worldwide. Although limited drugs to
treat giardiasis are available, there are concerns regarding toxicity in some patients
and the emerging drug resistance. By data-mining genome sequences, we observed
that G. intestinalis is incapable of synthesizing fatty acids (FA) de novo. However, this
parasite has five long-chain fatty acyl-CoA synthetases (GiACS1 to GiACS5) to activate
FA scavenged from the host. ACS is an essential enzyme because FA need to be
activated to form acyl-CoA thioesters before they can enter subsequent metabolism. In
the present study, we performed experiments to explore whether some GiACS enzymes
could serve as drug targets in Giardia. Based on the high-throughput datasets and
protein modeling analyses, we initially studied the GiACS1 and GiACS2, because genes
encoding these two enzymes were found to be more consistently expressed in varied
parasite life cycle stages and when interacting with host cells based on previously
reported transcriptome data. These two proteins were cloned and expressed as
recombinant proteins. Biochemical analysis revealed that both had apparent substrate
preference toward palmitic acid (C16:0) and myristic acid (C14:0), and allosteric or
Michaelis–Menten kinetics on palmitic acid or ATP. The ACS inhibitor triacsin C inhibited
the activity of both enzymes (IC50 = 1.56 μM, Ki = 0.18 μM for GiACS1, and IC50

= 2.28 μM, Ki = 0.23 μM for GiACS2, respectively) and the growth of G. intestinalis
in vitro (IC50 = 0.8 μM). As expected from giardial evolutionary characteristics, both
GiACSs displayed differences in overall folding structure as compared with their human
counterparts. These observations support the notion that some of the GiACS enzymes
may be explored as drug targets in this parasite.

Keywords: Giardia intestinalis, fatty acyl-CoA synthetases, drug target, protein modeling, triacsin-C

Introduction

Giardia intestinalis (syn. G. lamblia,G. duodenalis) is one of the major causative agents of diarrheal
diseases in humans around the world. In the U.S. alone, there are estimated 1.2–2million (but up to
8 million) cases per year, resulting in annual costs of >$30 million USD (Hlavsa et al., 2005; Yoder
et al., 2007, 2010, 2012). The recently reported infection rates range from 0.4–7.6% in developed
countries, and 0.9–40% in developing countries (Plutzer et al., 2010; Feng and Xiao, 2011). Because
Giardia cysts exhibit moderate resistance to the chlorine used in treating water for drinking and
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recreational purposes, it is also one of the most common water-
borne pathogens and is listed as a Category B priority pathogen in
the NIH/CDC Biodefense program1. In addition to water-borne
and food-borne transmissions, G. intestinalis is also a zoonotic
pathogen capable of transmitting infections between animals
and humans. Drugs to treat giardiasis are available, but the
choices are limited (e.g., metronidazole, tinidazole, albendazole,
and nitazoxanide) (Busatti et al., 2009; Tian et al., 2010; Tejman-
Yarden and Eckmann, 2011; Granados et al., 2012). These drugs
are also not 100% effective and may be unsuitable for some
patients due to toxicity. Drug resistance is also an emerging
problem (Ali and Nozaki, 2007; Lalle, 2010; Tian et al., 2010).
Therefore, new or alternative drugs are needed, particularly
if massive infection occurs under natural or man-made
conditions.

Giardia species are anaerobic protozoa evolutionarily
branched early at the base of eukaryotes (Morrison et al., 2007).
The genome of G. intestinalis has been sequenced and reported
in 2007, which revealed that this parasite has none or limited
ability to synthesize most nutrients de novo, such as amino
acids, nucleosides, and fatty acids (FA) (Morrison et al., 2007).
In FA metabolism, Giardia lacks both types I and II synthetic
pathways, and thus relies on scavenging FAs from hosts. This
notion is also supported by earlier biochemical analysis on this
parasite (Jarroll et al., 1981; Beach et al., 1990; Das et al., 2002;
Lee et al., 2007). This anaerobic protozoan retains limited fatty
acyl extension ability by possessing one or more elongating
(ELO) genes. Congruent with its anaerobic life style, Giardia also
lacks enzymes for FA degradation and β-oxidation. FA scavenged
from hosts are first activated by acyl-CoA synthetase (ACS, aka.
FA-CoA ligase, ACL) to form fatty acyl-CoA (FA-CoA) thioesters
before they can enter to subsequent metabolic pathways, such
as FA elongation and synthesis of lipids and biomembranes
(Figures 1A,B). Therefore, targeting ACS may block the entire
FA metabolism, thus killing the parasite.

In this study, we cloned and expressed two of the five ACSs
from G. intestinalis (named as GiACS1 and GiACS2) as maltose-
binding protein (MBP)-fusion proteins, and characterized their

1http://www.niaid.nih.gov/topics/BiodefenseRelated/Biodefense/Pages/CatA.
aspx

substrate preference and enzyme kinetic features. We also
showed that the ACS inhibitor triacsin C could not only inhibit
the activity of GiACS1 and GiACS2, but also display efficacy
against the growth of G. intestinalis in vitro at micromolar levels.

Materials and Methods

Data-mining the G. intestinalis ACS Genes and
their Expression Profiles
To ensure the full recovery of ACS genes from the G. intestinalis
genomes, we searched the GiardiaDB2 and the Giardia reference
genomes at the National Center for Biotechnology Information3

(NCBI) with relevant keywords and by BLAST searches using
known long-chain fatty acyl (LCFA)-CoA protein sequences as
queries. The identities of GiACS proteins were further confirmed
by BLAST searches for their orthologs and signature domains at
the NCBI Conserved Domain Database4 (CDD). This strategy
identified five G. intestinalis ACS (GiACS) orthologs and three
related genes that are summarized in Table 1.

By taking advantage of already published and publically
available transcriptome datasets at the GiardiaDB, we also data-
mined the expression levels and fold changes of the five GiACS
genes to evaluate their importance and potential differential roles
in various parasite stages. These included their transcript levels
in trophozoites and cysts, as well as during the encystation,
excystation, and interactions with host cells that were determined
by serial analysis of gene expression (SAGE), microarray analysis,
and RNA-seq using the Illumina HiSeq2000 platform (Palm et al.,
2005; Morf et al., 2010; Ringqvist et al., 2011; Franzen et al., 2013).
Expression data of individual GiACS genes were extracted from
corresponding datasets in GiardiaDB and values were plotted for
comparison.

Protein Modeling
Structure homology modeling was performed on GiACS1 and
GiACS2 (853 and 693 aa, respectively) using the I-Tasser

2http://www.giardiadb.org
3http://www.ncbi.nlm.nih.gov/
4http://www.ncbi.nlm.nih.gov/cdd/

TABLE 1 | Fatty acyl-CoA (FA-CoA) synthetase (ACS) orthologs and related genes identified from the Giardia intestinalis genome and their top hits at the
NCBI conserved domain (CDD) database.

Gene
Name

GenBank
Accession No.

GiardiaDB Gene
ID

GiardiaDB description Protein
size

CDD top hit CDD
accession

E-value to
CDD top hit

GiACS1 XP_001705891 GL50803_9062 Long-chain fatty acid (FA)
CoA ligase 5

853 aa LC-FACS_euk cd05927 8.73E-120

GiACS2 XP_001706424 GL50803_15063 Long-chain FA CoA ligase 5 693 aa LC-FACS_euk cd05927 1.92E-157

GiACS3 XP_001705009 GL50803_21118 Long-chain FA CoA ligase 5 765 aa LC-FACS_euk cd05927 2.72E-117

GiACS4 XP_001708520 GL50803_30476 Long-chain FA CoA ligase 4 804 aa LC-FACS_euk cd05927 8.47E-163

GiACS5 XP_001709411 GL50803_113892 Long-chain FA CoA ligase,
putative

758 aa LC-FACS_euk cd05927 5.37E-117

Unnamed XP_001707853 GL50803_17170 Long-chain FA CoA ligase 5 1,523 aa VL_LC_FACS_like cd05907 6.85E-19

Unnamed XP_001710279 GL50803_86511 Acyl-CoA synthetase (ACS) 970 aa ATP-grasp_5 pfam13549 4.05E-38

Unnamed XP_001709605 GL50803_16667 ACS 905 aa ATP-grasp_5 pfam13549 1.16E-38
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(Iterative Threading ASSEmbly Refinement) webserver at http://
zhanglab.ccmb.med.umich.edu/I-TASSER/ (Zhang, 2008; Roy
et al., 2010). This platform is the most widely used system
to build structural protein models from query sequences using
the solved crystal structures contained at the RCSB Protein
Data Bank (PDB) as templates. The quality of the model is
given by a C-score (range –5 to 2), which is an index that
considers TM and RMSD scores and allows for the ranking of
the degrees of similarity between query and template protein
structures. The C-score is used in combination with the TM
score (range 0–1) to obtain the best model (Yang et al.,
2015). The root-mean-square-deviation (RMSD) score indicates
a measure of the differences (in Å) between values predicted
by retrieved models and the values actually observed in PDB
templates. The quality of protein models obtained was further
visualized and tested by Ramachandran plots in the Discovery
Studio v4.1 client (AccelrysTM) software. To compare the overall
folding of two given protein models, the PDB files generated
by I-Tasser platform were submitted to the TM-Align platform5

that retrieves the RMSD and TM scores for the structural
alignment of the proteins studied. According to PDB statistics,
TM-scores below 0.2 corresponds to randomly chosen unrelated
proteins, whereas a score higher than 0.5 match generally the
same fold.

Expression of Recombinant GiACS Proteins
From identified GiACS genes, we chose to first clone and
express two genes for potential functional analysis (i.e., GiACS1
and GiACS2, corresponding to the G. intestinalis WB strain
Gene ID numbers GL50803_9062 and GL50803_15063, or
GenBank accession numbers XP_001705891 and XP_001706424,
respectively) (Table 1). Genomic DNA was isolated from the
WB strain of G. intestinalis (ATCC # 30957) using Qiagen
DNeasy Blood & Tissue Kit using protocol recommended for
cultured cells. For biochemical analysis, the entire intron less
open reading frames (ORFs) of GiACS1 and GiACS2 genes were
amplified from the genome DNA by PCR using high-fidelity
Pfu Turbo HotStart DNA polymerase (Agilent Technologies, Los
Angeles, CA, USA). Linker sequences containing BamHI and
HindIII restriction sites were added to the sense and antisense
primers, respectively (Table 2). The PCR products were digested
by BamHI andHindIII, and ligated into the linearized pMAL-c2E
vector. The ligated plasmids were transferred into the Rosetta 2
strain of Escherichia coli competent cells (Novagen) and cultured

5http://zhanglab.ccmb.med.umich.edu/TM-align/

TABLE 2 | Primers used in the cloning of GiACS1 and GiACS2 genes.

Gene
Name

Orientation Linker Sequence (5′–3′)1

GiACS1 Forward BamHI ctggatccATGATCTTTCCATTTCTAAAAC

GiACS1 Reverse HindIII gcaagcttCTCTCCTTATCAACCATGGCTTC

GiACS2 Forward BamHI ctggatccATGTCGGATTTCATCTGCC

GiACS2 Reverse SalI gcgtcgacCTTACTAGATGGTCTAGA

1Lower cases indicate added linker sequences.

in LB agar plates containing 100 μg/mL ampicillin, from which
plasmids were isolated from individual colonies by E.Z.N.A.
plasmid DNA miniprep kit (Omega Bio-Tek, Atlanta, GA, USA)
and sequenced by Sanger sequencing technique at the Texas
A&MUniversity Gene Technologies Laboratory6 to confirm their
identity and sequence accuracy.

The expression of MBP-fusion proteins was carried out as
described (Guo and Zhu, 2012; Guo et al., 2014; Yu et al., 2014).
Briefly, engineered plasmids were transferred into the Rosetta 2
strain of E. coli to grow colonies in LB agar plates containing
100 μg/mL ampicillin and 34 μg/mL chloramphenicol, from
which bacterial colonies (less than 1 week old) were individually
transferred into 25 mL LB broth containing 0.2% glucose and
allowed to grow at 37◦C overnight. The next day, bacterial broths
were diluted by 1:100 with fresh medium and incubated at 37◦C
for 2 h or until OD495 reached to ∼0.5, followed by the induction
of expression by isopropyl β-D-1-thiogalactopyranoside (IPTG)
(0.3 mM) at 16◦C overnight. Bacteria were collected by
centrifugation (6000 × g, 10 min) and lysed by sonication in
Tris-HCl buffer (pH 7.5), from which the recombinant proteins
were purified by amylose resin-based affinity chromatography
according to the manufacturer’s instructions (New England
Biolabs). The quality and quantity of purified proteins were
analyzed by SDS-PAGE and Bradford assay using BSA as the
protein standard. Proteins were used immediately after the
purification or stored at –20◦C.

Biochemical Assays
The ACS activity was determined by a five, 5′-dithio-bis-(2-
nitrobenzoate) (DTNB) colorimetric assay for both GiACS1 and
GiACS2. In the assay, free CoA in reduced form (CoA-SH)
reacted with DTNB to form 5-thionitrobenzoic acid that was
measured at OD412 (Bernson, 1976; Zhuravleva et al., 2012; Guo
et al., 2014). Reactions were carried out in 200μL Tris-HCl buffer
(0.1 mM, pH 8.0) containing 10 mM KCl, 50 μM CoA, 500 μM
ATP, 10 mM MgCl2, and 100 μM FA. The concentrations of
substrates and cofactors might be varied for determining their
dose-response curves and FA with carbon chains ranging from
C2:0 to C30:0 were used for determining substrate preference.
Reactions were started by the addition of 1 μg of recombinant
MBP-GiACS proteins, followed by incubation at 32◦C for 10min,
and then stopped by heating samples at 80◦C for 5min. Following
sample cooling to room temperature, 4 μL of DTNB (5 mM) was
added into each reaction that was allowed for color development
for 5 min, followed by the measurement of OD412 values with
a Multiskan Spectrum spectrophotometer (Thermo Scientific).
Serial concentrations of CoA in the same reaction buffer were
assayed and used as standard curves for calculating the amounts
of CoA reduced in experimental samples. Enzyme kinetic
parameters were determined using varied concentrations of
palmitic acid (10–600μM) and ATP (10– 3000μM), respectively.

To confirm the formation of palmitoyl-CoA catalyzed by
GiACS1 and GiACS2, we performed a radioactive assay in
which reactions were carried out with the use of 3H-palmitic
acid (25 μM) and other reagents as described above. Negative

6http://www.idmb.tamu.edu/gtl/
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controls consisted of anMBP-tag to replaceMBP-GiACSproteins
for background subtraction. After the reaction, samples were
subjected to a heptane extraction procedure to remove free
palmitic acid, and the radioactivity of 3H-palmitoyl-CoA in the
aqueous phase was counted in a Beckman Coulter LS 6000SE
counter as described (Fritzler and Zhu, 2007; Fritzler et al., 2007).
We also evaluated the effects of an ACS inhibitor, triacsin C
(2,4,7-undecatrienal nitrosohydrazone; CAS 76896-80-5) on the
GiACS activity, in which 1–32 μM of triacsin C was used to
determine the IC50 value. In each experiment, there was a set of
reactions under the same conditions, but without enzyme for use
as controls for background subtractions.

Efficacy of Triacsin C on the Growth of
G. intestinalis In Vitro
The effect of triacsin C on the growth of G. intestinalis (WB
strain) in vitro was assessed by subculture in liquid medium as
described (Arguello-Garcia et al., 2004). In this assay, 1 × 106
Giardia trophozoites were cultured in 4.5-mL screw-capped
vials containing fresh TYI-S-33 medium (less than 1 week old)
containing varied concentrations of Triacsin C (0.13–16 μM) for
24 h at 37◦C. Then 1 × 105 drug-exposed trophozoites were
transferred to new 4.5-mL vials containing drug-free medium
and incubated for additional 48 h at 37◦C. Parasites were then
counted and the parasite growth was expressed as the percent
of surviving trophozoites in comparison to those in the negative
controls that did not received an inhibitor.

Results

The Genome of G. intestinalis Encodes Five
Long Chain FA-CoA Synthetases that are
Differentially Expressed the Parasite
By data-mining the genome sequences of G. intestinalis (WB),
we identified eight candidate genes encoding proteins that either
exhibited high degree of identities with other known ACS
proteins or annotated as long-chain FA CoA ligases or ACSs by
the GiardiaDB (Table 1). Among them, five genes (designated
as GiACS1 to GiACS5) appear to encode for ACS enzymes based
on their identities to other ACS proteins and by the presence of
AMP-binding domain, ACS signature motifs, and other active
sites in their protein sequences (Figure 1C; Supplementary
Figure S1). The top hit at the NCBI CDD for all five GiACS
proteins is LC_FACS_euk (CDD No. cd05927) with expectation
values (E-values) ranging from 1.92E-157 to 5.37E-117 (Table 1).
Among the other three genes, GL50803_17170 (GenBank:
XP_001707853) was annotated as “LCFA CoA ligase 5,” and
several short regions within the sequence could be mapped to
the “VL_LC_FACS_like” domain at CDD (cd05907) with a much
less significant E-value at 6.85E-19 (Table 1). The sequence also
lacked most of the active sites in ACS, but only contained limited
conserved amino acids at the two signature motifs, suggesting
that GL50803_17170 was derived from an ancient very-long
LC-FACS, but probably lost its ACS function. The remaining
two genes were annotated as ACSs (GL50803_86511, GenBank:
XP_001710279; and GL50803_16667, GenBank: XP_001709605)

FIGURE 1 | Fatty acid (FA) metabolism and acyl-CoA synthetase (ACS)
in Giardia intestinalis. (A) Highly streamlined FA metabolism in
G. intestinalis based on the genome sequences. This parasite relies on
exogenous FA due to the incapability of synthesizing FA de novo. FA are
transported into parasite cell by undefined transporters or other mechanisms.
FA are activated by ACS immediately or from the FA pool to form FA-CoA
thioesters that may be elongated via the ER-associated elongation system
(ELO) table before entering subsequent synthetic pathways. The ACS activity
may be inhibited by triacsin C. (B) ACS catalyzes a two-step reaction to form
FA-CoA thioesters from FA and CoA; (C) Multiple alignments of the five GiACS
proteins at the AMP-binding domain conserved in acyl-activating enzymes
and ACS signature motif. Residues conserved in all GiACSs are shaded, while
those important to the catalytic function and interacting substrates are boxed
and marked with asterisks, respectively. Also, see Supplementary Figure S1
for a multiple alignment of the five full-length GiACS protein sequences with
annotation of predicted active sites.

(Table 1). They both contained an ATP_grasp-5 domain (CDD:
pfam549) with less significant E-values at 4.05E-38 and 1.16E-
38, respectively. Interestingly, proteins encoded by these two
genes were ortholog of CoA-binding proteins from prokaryotes,
suggesting they were derived from prokaryotic genes by lateral
gene transfer and might more likely function as CoA-binding
proteins than as ACS. Based on these observations, we concluded
that the G. intestinalis genome encoded five ACSs and three
ACS-related proteins.

Further transcriptome analysis by data-mining previously
published transcriptome data generated using various platforms
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(i.e., SAGE, RNA-seq, and microarray) and available at
GiardiaDB (Palm et al., 2005; Morf et al., 2010; Ringqvist et al.,
2011; Franzen et al., 2013), we noticed that the five GiACS
genes were differentially expressed in different parasite stages
(Figure 2). In trophozoites, an earlier SAGE analysis detected
the transcripts of four GiACS genes (with the exception of
only GiACS4) (Figure 2A), whereas a more recent RNA-seq
analysis was able to detect the transcripts of all five GiACS
genes (Figure 2B). However, the general expression profiles in
these two datasets were similar (i.e., the highest for GiACS3
and GiACS5, moderate for GiACS1 and GiACS2, and the lowest
for GiACS4). In other stages including cysts and parasites
during encystation and excystation, GiACS1 was the most
highly expressed among all GiACS genes in all stages in the
SAGE dataset (Figure 2A). GiACS1 also maintained the highest
levels of expression during excystation process, but mid-level
expressions during the encystation process (Figure 2A). GiACS2
was consistently expressed at moderate levels in all parasite
stages, while GiACS3 had relatively high transcript levels in
trophozoites and during encystation, but generally lower levels
in cysts and excysation. GiACS4 was consistently the lowest or

undetectable in all stages, whereas GiACS5 was highly expressed
in trophozoites and during encystation, but slightly expressed
during excystation (Figure 2A). In agreement with the SAGE
analysis, a microarray analysis also detected apparent down-
regulation of GiACS3 and up-regulation of GiACS5 during the
encystation process (Figure 2C). Although GiACS4 gene displays
the lowest or even undetectable expression levels in all parasite
life cycle stages, this gene significantly elevated its expression
during the interaction with host cells or when culture medium is
changed from DMEM to TYDK medium (Figure 2D). Although
further functional studies are needed to delineate the biological
roles played by the five Giardia ACS genes, their differential
expressions in various biological processes and conditions clearly
imply that they might play differential roles in the parasite life
cycle.

Insights from GiACS1 and GiACS2 Protein
Models
Considering the aforementioned data and the fact that
chemotherapy in giardiasis is mostly directed against the
trophozoite stage, the GiACS1, and GiACS2 proteins were

FIGURE 2 | Differential expressions of the five GiACS genes as
determined by data-mining previously published transcriptome data
available at GiardiaDB. All data were derived from G. intestinalis
assemblage A WB strain. (A) Expression profiles based on serial analysis of
gene expression (SAGE) in trophozoites (Troph), cysts, and during excystation
and encystation (Palm et al., 2005). S1 (stage 1) = under acidic condition to
mimic the stomach. S2 (stage 2) = trypsin and slight alkaline conditions to
mimic the small intestines. (B) Transcriptional levels in trophozoites based on
strand-specific RNA-seq using the Illumina HiSeq2000 platform (Franzen

et al., 2013). FPKM = fragments per kilobase of exon model per million
mapped reads; (C) Transcriptional changes in response to encystation stimuli
based on a dual-color hybridization of a full-genome microarray analysis, in
which encystation was induced in vitro for 45 min, 3 h, and 7 h by standard
2-step protocol or for 7 h by lipid starvation (7hLS) (Morf et al., 2010).
(D) Transcriptional changes in trophozoites during interacting with host cells
as determined by a full-genome microarray analysis, in which trophozoites
were used to infect Caco-2 cells in DMEM medium or cultured in cell-free
TYDK medium for varied times (Ringqvist et al., 2011).
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considered as potential drug targets due to their stable and
comparable transcription levels in trophozoites (Figure 2B),
even though expression of both proteins differ upon trophozoite-
epithelial cell interactions. GiACS2 was up regulated while
GiACS1 was down regulated at ≤ 6 h of interacting with host
cells (Figure 2D). In addition, GiACS1 is a much larger protein
(853 aa) than the other GiACSs and their human counterparts
(generally <700 aa); hence, the GiACS1 represents a divergent
ACS.

In an initial mining of ACS crystals in PDB, protozoan
templates were absent. When the GiACS1 and GACS2 sequences
were submitted to preliminary modeling, the retrieved models
shared the highest scores with members of the CoA synthetase
family as firefly luciferase, ACS of Saccharomyces cerevisiae
and acetoacetyl-CoA synthetase of Streptomyces lividans (PDB
IDs: 2D1S, 1RY2, and 4WD1, respectively). From these, the

yeast homolog (1RY2) was chosen as template for refinement
of protein models due to its ACS nature that closely matches
with the proposed GiACS functions. In this way, a template-
directed modeling was performed and the two GiACS models
(Figures 3A,D) had satisfactory scores: C-score: –2.57, TM-
score = 0.636, and RMSD = 0.95 for GiACS1; C-score: –1.04,
TM-score = 0.773, and RMSD = 1.65 for GiACS2. These data
reflect that GiACS models share 63.6% (GiACS1) and 77.3%
(GiACS2) homology (average deviation <2Å) with respect to
the yeast ACS template. Also, the identity in sequence may
be indicated with the available PDB structures resolved since
I-Tasser is good for modeling protein targets in the “twilight
zone” (20–30% identity), which have no or weakly homologous
templates (Roy et al., 2010).

In a further assessment of the quality for GiACS1/2 protein
models, the Ramachandran plots were constructed. This tool

FIGURE 3 | Protein modeling features of GiACS1 and GiACS2. The
protein folding models for GiACS1 (A) and GiACS2 (D) were retrieved using
yeast ACS (PDB ID: 1RY2) as a template. Protein models are colored from
N-terminus (blue) to C-terminus (red) and oriented in relation to the AMP/ATP
heterogen (insets). The Ramachandran plots calculated for GiACS1 (B) and

GiACS2 (E) display glycine (triangles), proline (squares), and non-glycine
non-proline (circles) residues. The structural alignments of GiACS1 (magenta)
with HsACS5CRAc (cyan) (C) and 541 GiACS2 (magenta) with HsACS5b
(cyan) (F) display folding differences between giardial and human
counterparts.
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TABLE 3 | Ramachandran plots statistics of GiACS1 and GiACS2.

Residues in Ramachandran plot GiACS1
(853 aa)

GiACS2
(693 aa)

In most favored regions 581 (78.30%) 443 (72.63%)

In additionally allowed regions 125 (16.85%) 104 (17.04%)

In generously allowed or disallowed regions 36 (4.85%) 63 (10.33%)

Non-Gly and non-Pro residues 742 (100%) 610 (100%)

# Gly (triangles) 66 43

# Pro (squares) 45 40

not only predicts secondary structures from dihedral angles of
individual amino acids (ϕ and ψ), but also provides distributions
of residues in “favored regions” (contoured in blue line),
“additionally allowed regions” (contoured in pink line), and the
external “generously allowed” and “not allowed” regions as stated
by the ProCheck platform (Figures 3B,E). The special cases of
glycine and proline are ruled out as recommended and only
residues contained in the two former regions were considered
of satisfactory conformation. These distributions for GiACS1 and
GiACS2 are listed in Table 3. In this, more than 75% of residues
fall within favored regions, more than 15% fall within allowed
regions and <10% are in external regions. In summary, up to
95.15% of residues in GiACS1 and 89.67% of residues in GiACS2
have a satisfactory conformation within the protein structure
predicted for these molecules; hence, the protein models obtained
have an acceptable quality.

Further analyses to evaluate GiACS1 and GiACS2 as likely
druggable targets were performed to determine the structural
alignment of GiACSs with their most resembling human
counterparts. In these, two isoforms of the human long chain
fatty acyl CoA synthetases had the closest similarity to these
GiACSs: the 5CRAc isoform (HsACS5CRAc, Acc. No. gb|
EAW49534.1, 663 aa) displaying the highest expectation value
(8e-76) and 37% of sequence identity with GiACS1 over a 64.1%
coverage and the 5b isoform (HsACS5b, Acc. No. NP_976313.1,
683 aa) that displayed the highest expectation value (5e-60)
and 26% of sequence identity with GiACS2 over a 79.4%
coverage. Despite the high E-values, the structural comparison
of giardial and human counterparts revealed striking differences:
GiACS1 and HsACS5CRAc had 31.0% of structure identity over
a span of 561 aa (RMSD: 3.20; TM-score: 0.769 normalized
with HsACS5CRAc) while GiACS2 and HsACS5b shared 23.9%
of structure identity over a span of 594 aa (RMSD: 3.90; TM-
score: 0.775 normalized with HsACS5b). In general, there were
obvious folding differences between the Giardia and human ACS

counterparts (Figures 3C,F), particularly in the case of GiACS1
as a consequence of the multiple insertions contained in this
unusually large (853 aa) molecule. Based on these observations,
it was tempting to compare purified GiACS in terms of catalytic
abilities and susceptibility to specific inhibitors.

Functional Confirmation of GiACS1 and
GiACS2 as a Long Chain FA-CoA Synthetase
After we determined that G. intestinalis possessed five ACSs,
we decided to first investigate the biochemical features for
two of them. We selected GiACS1 and GiACS2 in our initial
study because both genes were relatively highly and consistently
expressed in different life cycle stages, and GiACS2 appeared
to be important in host–parasite interaction. Their whole ORFs
were successfully cloned into the pMAL-c2E expression vector,
and their products were expressed as MBP-fusion proteins
(Figure 4A, inset). GiACS1 protein was purified into high purity,
while the majority of GiACS2 was expressed at expected size,
but some lower bands were present, suggesting some incomplete
translation of GiACS2 probably due to the differences in codon
usage between G. intestinalis and E. coli.

Using DTNB assay, we were able to individually evaluate the
activity of GiACS1 and GiACS2 toward various saturated FA
with chain lengths ranging from C2:0 to C30:0. Both GiACS1
and GiACS2 displayed the highest activity over palmitic acid
(C16:0) and myristic acid (C14:0) (Figure 4A). Their activity on
other FA was much lower, mostly ranging from ∼5% to ∼25%.
These observations confirmed that both GiACS1 and GiACS2 are
long-chain FACS with a relatively restricted substrate preference
toward C14:0 and C16:0 FA. This feature makes these two GiACS
proteins differ from the two Cryptosporidium ACSs that could
use C12:0–C18:0 FA with comparable levels of activity (Guo
et al., 2014). In kinetic studies, these two enzymes exhibited
allosteric and Michaelis–Menten kinetics toward palmitic acid
and ATP, respectively (Figures 4B,C). Their kinetics parameters
are listed in Table 4. We also validated the function of GiACS1
and GiACS2 by directly detecting the formation of palmitoyl-
CoA using a radioactive assay, in which both enzymes exhibited
specific activities comparable to those obtained using DTNB
assay (Figure 4E).

Triacsin C Inhibits GiACS1 and GiACS2
Enzyme Activity as Well as the In Vitro Growth
of G. intestinalis
We further tested whether GiACS1 and GiACS2 were amendable
to the inhibition by an ACS inhibitor triacsin C, and observed

TABLE 4 | Kinetic parameters for GiACS1 and GiACS21.

Enzyme Substrate K′ or Km (µM) Vmax (µmol/mg/min) h2 Ki of triacsin C (µM)

GiACS1 Palmitic acid 13.09 ± 2.42 1.25 ± 0.12 1.36 0.18

ATP 279 ± 18.46 2.19 ± 0.04

GiACS2 Palmitic acid 11.15 ± 0.54 2.64 ± 0.06 2.19 0.23

ATP 175 ± 18.68 3.55 ± 0.08

1Values for K′, Km, and Vmax are expressed as mean ± SD; 2h = Hill coefficient.
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FIGURE 4 | Enzyme kinetic features of recombinant GiACS1 and
GiACS2 as determined by a 5, 5′-dithio-bis-(2-nitrobenzoate) (DTNB)
colorimetric assay. (A) Substrate preference of GiACS1 and GiACS2
toward FA with varied carbon chain lengths. Relative activities were
shown in comparison with that on the C16:0 palmitic acid. Inset showed
SDS-PAGE analysis of purified recombinant GiACS1 and GiACS2 as
maltose-binding protein (MBP)-fusion proteins; (B) Allosteric kinetics of

GiACS proteins on palmitic acid; (C) Michaelis–Menten kinetics of GiACS
on ATP; (D) Inhibition of triacsin C on the GiACS enzyme activity; and
(E) Enzyme activity by detecting the formation of 3H-palmitoyl-CoA using
a heptane extraction-based radioactive assay. Bars represent SEM derived
from three or more reactions. At least two independent assays were
performed for each experiment, and the data from one representative
assay were shown here. U = μmol/mg/min.

that this compound could inhibit their enzyme activity with
IC50 values at 1.56 and 2.28 μM on GiACS1 and GiACS2,
respectively (Figure 4D). Their corresponding K i values were at
0.18 and 0.23μM, respectively, based on a competitive inhibition
model (Cheng and Prusoff, 1973) (Figure 4D). The efficacy data
were comparable to those observed for the two ACSs from the
apicomplexan parasite Cryptosporidium parvum (i.e., IC50 values
at 3.70 and 2.32μMfor CpACS1 and CpACS2, respectively) (Guo
et al., 2014).

Since the major goal of this study is to explore the potential
of GiACSs to serve as drug targets, we further investigated the
in vitro efficacy of triacsin C against the growth of G. intestinalis
in axenic culture. We observed that triacsin C indeed effectively
inhibited the parasite growth in a dose-dependent manner with
an estimated IC50 value at 0.8 μM (Figure 5). At other tested
doses, 2.2 μM and ≥10 μM triacsin C achieved 90 and 100%
inhibitions, respectively.

Discussion

FA are essential to all organisms as one of the major components
of biomembranes. In most organisms, FA also serves as an

FIGURE 5 | Efficacy of triacsin C on the growth of G. intestinalis (WB
strain) in vitro, in which axenically cultured trophozoites were treated
with various doses of inhibitor for 24 h, transferred to drug-free
medium, and allowed to grow for additional 48 h before being counted
for calculating the parasite growth.

energy source. Because FA needs to be activated to form FA-CoA
before they can enter subsequent metabolic pathways, enzymes
catalyzing the formation of FA-CoA are essential and considered
as potential drug targets. We have recently reported that ACS
enzymes could serve as effective drug targets in Cryptosporidium
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(Guo et al., 2014), which prompted us to explore whether
ACSs could also be targeted for developing novel anti-Giardia
drugs. Indeed, in the present study, we have confirmed that the
ACS inhibitor could inhibit not only the reactions catalyzed by
GiACS2, but also the in vitro growth of G. intestinalis at sub-
micromolar levels (Figure 5). The possibility to consider GiACS1
and GiACS2 as likely drug targets was further supported by
bioinformatics data in which protein modeling analyses showed
structural differences between giardial and human counterparts
(Figure 3F). This fact could be the result of evolutionary
processes in which the giardial ACSs are likely ancestors of other
ACSs counterparts. In this context, it is conceivable that GiACS1
(853 aa) could have had a reductive process during evolution. In
spite of the predicted satisfactory quality of the protein models in
this study, further crystallographic studies in purified GiACS1/2
will offer additional insights not only for site-targeted drug
design, but also to assess if a differential adaptation in the catalytic
pocket of GiACS2, as compared to GiACS1, exists. Moreover,
the possibility to recover enzyme activities from recombinant
GiACS1/2 will allow refining crystallographic analyses at distinct
enzyme conformations and under interaction with Triacsin C
or other specific inhibitors. This renders an advantage over the
failure to detect enzyme activities in other parasitic recombinant
ACSs (Matesanz et al., 1999; Guo et al., 2014).

Triacsin C is an analog of polyunsaturated FA that was
first isolated from the fungal Streptomyces aureofaciens (Omura
et al., 1986). It is known as a long-chain ACS-specific inhibitor
with little effect on short-chain or mitochondrial-type ACSs in
mammals (Omura et al., 1986; Tomoda et al., 1987; Hartman
et al., 1989; Van Horn et al., 2005). Mammals possess six
genes encoding long-chain ACS enzymes that are designated as
ACSL1-6 including some variants produced by alternative intron-
splicing with varied spectra of substrate preferences (Soupene and
Kuypers, 2008; Watkins and Ellis, 2012). Among them, triacsin

C is an effective inhibitor for ACSL1, ACSL3, and ACSL4 (IC50
values between 4 and 7.5 μM), but not for ACSL5, ACS6_v1,
and ACS6_v2 (Van Horn et al., 2005). The abundance of ACSLs
and their varied sensitivities to triacsin C might explain its
ineffectiveness on the recycling of FA into phospholipids in
mammalian cells (Igal et al., 1997) and its selective inhibition
on Cryptosporidium both in vitro and in vivo (Guo et al., 2014).
Collectively, the present study not only supports the notion
that ACS enzymes can be explored as drug targets in Giardia,
but also provides strong proof-of-concept data for the further
identification of triacsin C analogs and other classes of small
molecules for developing more selective inhibitors against the
parasite.
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