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Abstract

Objective: Our daily activities require frequent switches among competing responses at 

the millisecond time scale. We determined the spatiotemporal characteristics and functional 

significance of rapid, large-scale brain network dynamics during task switching.

Methods: This cross-sectional study investigated patients with drug-resistant focal epilepsy who 

played a Lumosity cognitive flexibility training game during intracranial electroencephalography 

(iEEG) recording. According to a given task rule, unpredictably switching across trials, 
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participants had to swipe the screen in the direction the stimulus was pointing or moving. Using 

this data, we described the spatiotemporal characteristics of iEEG high-gamma augmentation 

occurring more intensely during switch than repeat trials, unattributable to the effect of task 

rule (pointing or moving), within-stimulus congruence (the direction of stimulus pointing and 

moving was same or different in a given trial), or accuracy of an immediately preceding 

response. Diffusion-weighted imaging (DWI) tractography determined whether distant cortical 

regions showing enhanced activation during task switch trials were directly connected by white 

matter tracts. Trial-by-trial iEEG analysis deduced whether the intensity of task switch-related 

high-gamma augmentation was altered through practice and whether high-gamma amplitude 

predicted the accuracy of an upcoming response among switch trials.

Results: The average number of completed trials during five-minute gameplay was 221.4 per 

patient (range: 171–285). Task switch trials increased the response times, whereas later trials 

reduced them. Analysis of iEEG signals sampled from 860 brain sites effectively elucidated 

the distinct spatiotemporal characteristics of task switch, task rule, and post-error-specific high-

gamma modulations. Post-cue, task switch-related high-gamma augmentation was initiated in the 

right calcarine cortex after 260 ms, right precuneus after 330 ms, right entorhinal after 420 ms, 

and bilateral anterior middle-frontal gyri after 450 ms. DWI tractography successfully showed 

the presence of direct white matter tracts connecting the right visual areas to the precuneus 

and anterior middle-frontal regions but not between the right precuneus and anterior middle-

frontal regions. Task-related high-gamma amplitudes in later trials were reduced in the calcarine, 

entorhinal and anterior middle-frontal regions, but increased in the precuneus. Functionally, 

enhanced post-cue precuneus high-gamma augmentation improved the accuracy of subsequent 

responses among switch trials.

Conclusions: Our multimodal analysis uncovered two temporally and functionally distinct 

network dynamics supporting task switching. High-gamma augmentation in the visual-precuneus 

pathway may reflect the neural process facilitating an attentional shift to a given updated task 

rule. High-gamma activity in the visual-dorsolateral prefrontal pathway, rapidly reduced through 

practice, may reflect the cost of executing appropriate stimulus-response translation.

Keywords

Synchronization; Epilepsy surgery; Responses; Electrocorticography; Ebb and Flow ; Cognitive 
control

1. Introduction

At the millisecond scale, our daily activities require frequent switches among competing 

responses (Monsell, 2003), such as braking and handling while driving in a traffic jam. 

When task switching is required, it is challenging to execute correct motor output, but this 

response is improved with practice (Monsell, 2003; Fröber and Dreisbach, 2017; Steyvers 

et al., 2019; Steyvers and Schafer, 2020). The present study aimed to clarify the rapid, 

large-scale brain network dynamics involved in task switching. Collective evidence from 

lesioning, imaging, and electrophysiology studies suggests that the prefrontal and parietal 

cortices play causal roles in task switching. For example, frontal or parietal lobe lesions, 

regardless of hemisphere, were reported to impair task switching (Rogers et al., 1998; Stuss 
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et al., 2001; Rushworth et al., 2003; Aron et al., 2004; Gläscher et al., 2012; Kopp et al., 

2015; Arbula et al., 2021). Furthermore, studies of healthy adults using functional magnetic 

resonance imaging (fMRI) localized the cortical regions involved in task switching. Task 

switching trials, compared to repetition, were associated with more intense hemodynamic 

activations in large-scale brain regions, including the dorsolateral prefrontal areas (Dove 

et al., 2000; Sohn et al., 2000; Braver et al., 2003; Badre and Wagner, 2006; Yeung et 

al., 2006; Karayanidis et al., 2010; Kim et al., 2012; Jamadar et al., 2015; Vallesi et al., 

2015; Cole et al., 2016) and medial parietal regions, on either hemisphere (Dove et al., 

2000; Crone et al., 2006; Kim et al., 2012; von der Gablentz et al., 2015; Worringer et 

al., 2019). Invasive studies of non-human primates reported that prefrontal and parietal 

neurons were commonly activated during response preparation in task switch trials, but the 

spatial sampling was limited in these studies, making it challenging to identify network-wide 

modulations (Johnston et al., 2007; Phillips et al., 2014). Circumventing this issue, studies 

of healthy adults using scalp electroencephalography (EEG) reported that event-related 

potential (ERP) amplitudes at 300-ms post-cue differed between switch and repetition trials 

(Swainson et al., 2003; Kieffaber and Hetrick, 2005; Gajewski et al., 2010, 2018). However, 

such noninvasive electrophysiology studies were not designed to clarify the spatiotemporal 

order of local neural modulations (i.e., activation or suppression) occurring across the 

large-scale cortical networks.

Our present study visualized the neural dynamics involved in task switching using 

intracranial electroencephalography (iEEG). Event-related high-gamma activity at 70–110 

Hz determined the spatiotemporal order of neural modulations while a given participant 

played a cognitive training game requiring occasional task switching. High-gamma activity 

is an outstanding biomarker of neural activity, capable of tracking millisecond-scale 

fluctuations (Shmuel et al., 2006; Crone et al., 2011; Lachaux et al., 2012; Miller et al., 

2014). Augmentation of high gamma activity is associated with increased neural firing 

(Ray et al., 2008; Manning et al., 2009), hemodynamic responses (Scheeringa et al., 2011; 

Hermes et al., 2012), and glucose metabolism (Nishida et al., 2008). Notably, the iEEG’s 

outstanding signal fidelity (Ball et al., 2009) makes trial-by-trial high-gamma analysis 

possible at an individual-patient level (Vidal et al., 2012; Dastjerdi et al., 2013; Nourski 

et al., 2013; Uematsu et al., 2013; Coon and Schalk, 2016; Forseth et al., 2020). Considering 

the various iEEG frequency bands ranging from alpha through high-gamma, event-related 

high-gamma augmentation was reported to best predict the severity of cognitive deficits 

following focal brain resection (Sonoda et al., 2022). Diffusion-weighted imaging (DWI) 

tractography can visualize the direct white matter tracts allowing neural communications 

between distant cortical regions concurrently involved in a cognitive process (Sonoda et al., 

2021). The present study elucidated the spatiotemporal dynamics and functional significance 

of iEEG-derived neural modulations during task switching by addressing the following aims.

[Aim 1: Temporal order of switch-related neural activations] We initially clarified the 

relative timing of local neural activations specifically involved in task switching at the 

millisecond time scale. Unlike scalp recording, iEEG allowed us to measure neural 

modulations directly from deep cortices such as the precuneus, a part of the medial parietal 

lobe region. This analysis successfully tested the hypothesis that high-gamma augmentation 

specific to switch trials would initially arise in the parietal cortex, followed by prefrontal 
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areas. This hypothesis was partly motivated by the electrophysiological studies of non-

human primates mentioned above (Johnston et al., 2007; Phillips et al., 2014). We also 

considered functional imaging studies of healthy human adults suggesting that the parietal 

cortices support the control or shift of spatial attention based on the visually cued context 

(Behrmann et al., 2004; Sato et al., 2010; Whitlock, 2017), whereas the prefrontal regions 

support the subsequent stimulus-response translation, including context-based decision 

(Brass et al., 2003; Koechlin et al., 2003; Sohn et al., 2007; Nee and D’Esposito, 2017).

[Aim 2: Association between behavioral priming and switch-related neural activation] 

We aimed to localize functionally distinct, task switch-related brain regions, in each of 

which event-related high-gamma activity was expected to be differentially correlated to 

practice-related behavioral improvement. Our principal hypothesis was that the neural cost, 

as quantified by high-gamma amplitude, would be extensively reduced in later trials, due 

to practice effects. This hypothesis was inspired by the recurrent behavioral observations 

that learning through practice allows humans to make relevant, rapid responses in a 

progressively effortless manner (Monsell, 2003; Steyvers et al., 2019; Steyvers and Schafer, 

2020). Previous iEEG studies reported that repeated visual stimuli were correlated with a 

progressive reduction of high-gamma augmentation at perceptual (Matsuzaki et al., 2012; 

Eliades et al., 2014; Engell and McCarthy, 2014; Merzagora et al., 2014; Vidal et al., 2014; 

Rangarajan et al., 2020) and prefrontal areas (Korzeniewska et al., 2020). Such phenomenon 

of reduced neural responses to repeated stimuli is referred to as repetition suppression or 

neural adaptation (Summerfield et al., 2008; Khalighinejad et al., 2019). Conversely, we 

expected our iEEG analysis to localize small, distinct regions showing increased neural 

responses in later trials (i.e., repetition enhancement). To that point, a meta-analysis of 137 

fMRI studies (Kim, 2017) reports that repetition enhancement is common in the precuneus 

region, which is suggested to support the allocation of spatial attention based on a task rule 

update (Shulman et al., 2009; Tosoni et al., 2013; Vandenberghe and Gillebert, 2009).

[Aim 3: Direct connectivity between distant cortices showing switch-related neural 

activation] We determined whether DWI-based white matter tracts existed between cortical 

regions showing switch-related high-gamma augmentation (i.e., more intense augmentation 

during switch than repeat trials and also unattributable to the effects of task rule, within-

stimulus incongruence, or preceding erroneous response). We performed this analysis to 

provide the biological plausibility for direct functional connectivity between distant cortical 

areas concurrently involved in task switching. It is suggested that cognitive processes 

are supported by spatially-distinct, simultaneous high-frequency neural events generated 

by monosynaptically connected cortical networks (Singer, 1993, 2018; Buonomano and 

Merzenich, 1998; Sonoda et al., 2021).

[Aim 4: Prediction of upcoming responses using a model incorporating high-gamma 

activity] Finally, we tested the hypothesis that iEEG high-gamma amplitude would predict 

the accuracy of the forthcoming responses among switch trials. If more intense high-gamma 

augmentation accurately forecasted higher response accuracy, such neural activation would 

be considered to support task switching. We hypothesized that enhanced high-gamma 

amplitude at a region showing repetition enhancement, as described in [Aim 2], would 
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facilitate a successful attentional shift to a given updated task rule, and this would increase 

the chance of responding correctly.

2. Methods

2.1. Participants

The inclusion criteria consisted of (i) extraoperative iEEG recording at Children’s Hospital 

of Michigan (Detroit, Michigan) between September 2017 and August 2019, (ii) aged four 

years or older, (iii) played five, 1-minute sessions of Ebb and Flow (Fig. 1), a cognitive 

flexibility game on the Lumosity platform (https://www.lumosity.com/; Lumos Labs, Inc, 

San Francisco, CA), (iv) gameplay during the interictal state, (v) swipe responses strictly 

using the same hand, and (vi) correct responses in more than 60% of trials (chance level = 

25%). The exclusion criteria included (i) massive brain malformations deforming the central 

or lateral sulcus (Nakai et al., 2017) and (ii) history of previous resective epilepsy surgery 

(Nakai et al., 2017). The Institutional Review Ethics Board at Wayne State University has 

approved the present study. We obtained informed consent from the legal guardians of 

patients and assent from pediatric patients.

2.2. Extraoperative iEEG and MRI data acquisition

We acquired iEEG and MRI data using methods, as reported previously (Nakai et al., 

2017; Mitsuhashi et al., 2021). We placed platinum disk electrodes (10 mm center-to-center 

distance) on the pial surface of the brain (Fig. 2). Clinical need determined the spatial extent 

of iEEG sampling, in each patient, with no attempt to place electrodes unnecessary for 

diagnosis (Asano et al., 2009; Kambara et al., 2018). The sampling rate was 1000 Hz, and 

the amplifier bandpass was 0.016–300 Hz. We excluded the following electrode sites from 

further analysis, including the common average reference calculation: those located in the 

seizure onset zone (Asano et al., 2009), in structural lesions, and those affected by artifacts 

(Sperling, 2003; Kahane and Dubeau, 2014).

Before intracranial electrode placement, we acquired 3-tesla MRI, including T1-weighted 

spoiled gradient-recalled echo and fluid-attenuated inversion recovery sequences (Nakai et 

al., 2017). Using a brain CT scan following electrode implantation, we generated a three-

dimensional surface image with implanted electrodes co-registered to anatomically accurate 

sites on the pial surface (Nakai et al., 2017; Stolk et al., 2018). The FreeSurfer script (http://

surfer.nmr.mgh.harvard.edu) spatially normalized given electrode sites to standard Montreal 

Neurological Institute (MNI) space (Fig. 2; Ghosh et al., 2010; Mitsuhashi et al., 2021).

2.3. Task-switch paradigm

Each participant played five sessions of Ebb and Flow, during extra-operative iEEG 

recording (Fig. 1; Video S1). Before initiating the first game session, all patients underwent 

a brief tutorial session provided by this gaming platform, to understand the task rules. Each 

session lasted one minute, and participants played five consecutively, at their own pace. 

All participants played the game on an iPad (screen display width: 14.7 cm; length: 19.6 

cm; Apple Inc., Cupertino, CA) in a comfortable position at the bedside. In each trial, the 

screen displayed a set of leaves moving in a specific direction (either left, right, upward, 
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or downward; Video S1). When the leaf color was green, participants needed to swipe the 

screen in the same direction the leaves were pointing. When the leaf color was orange, they 

rather swiped in the direction the leaves were moving. A detected response immediately 

triggered the next cue with a feedback sound (Video S1), and response time was defined 

as the interval between two consecutive feedback sound onsets. Feedback sounds were 

continuously integrated into the iEEG acquisition system via the DC input, temporally 

synchronizing the gaming and neural signals (Kambara et al., 2018). We treated the task 

cue onset (i.e., the moment of response detection = feedback sound onset) as the zero time 

point in the time-frequency iEEG analysis described below. Each trial was classified as [a] 

‘task switch’ or ‘repeat’, [b] ‘moving (orange leaves)’ or ‘pointing (green leaves)’ based on 

the task rule, [c] ‘incongruent’ or ‘congruent’ based on the congruency in direction between 

the moving and pointing of stimulus leaves, and [d] ‘prior incorrect response’ or ‘prior 

correct response’ based on the response accuracy in the immediately preceding trial. The 

first author (T.M.) assessed these trial features strictly based on the simultaneous video and 

audio recordings while blinded to the results of iEEG analysis. When subsets of the trial 

features mentioned above (e.g., congruency) were difficult to determine due to suboptimal 

visibility of the iPad monitor, we treated them as missing values in the mixed model analysis 

described below.

2.4. Assessment of the effect of trial type on patients’ responses

Mixed model analysis tested the hypothesis that, compared to repeat, switch trials were 

independently associated with increased response times in our patient cohort. The dependent 

variable was the response time, in a given trial. The fixed effect predictors included [a] task 

switch (1 if switch), [b] task rule (1 if response was required to be congruent with leaf 

motion; 0 if congruent with direction of leaf pointing), [c] stimulus leaves’ pointing-moving 

incongruency (1 if incongruent), [d] prior incorrect response (1 if prior incorrect response), 

[e] log10-transformed trial number in a given game session, and [f] game session (ranging 

from 1 to 5). We incorporated a log10-transformed trial number in the mixed model because 

response times were previously reported to reduce logarithmically, as a function of trial 

number (Steyvers et al., 2019; Steyvers and Schafer, 2020). The random factors included 

patient and intercept.

The chi-square test determined whether switch, moving, incongruent trials, and those 

immediately preceded by an incorrect response more frequently resulted in an incorrect 

response than given counterparts.

2.5. Measurement and visualization of event-related high-gamma modulations

We measured event-related high-gamma activity, as reported in our previous studies 

(Mitsuhashi et al., 2021; Sonoda et al., 2022). Using the FieldTrip toolbox (http://

www.fieldtriptoolbox.org/), we performed the Morlet wavelet time-frequency analysis on 

iEEG signals referenced to a common average (Crone et al., 2001; Mitsuhashi et al., 2021). 

We transformed iEEG voltage signals during a 2400 ms period centered on each task cue 

onset into time-frequency bins, at a 30–110 Hz broadband range (5 Hz frequency bins; 

a given frequency band divided by seven cycles; sliding in 10 ms steps; Mitsuhashi et 

al., 2021). To compare gameplay-related high-gamma amplitude (a measure proportional 

Mitsuhashi et al. Page 6

Neuroimage. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.fieldtriptoolbox.org/
http://www.fieldtriptoolbox.org/


to the square root of high-gamma power) with that during the baseline period before task 

initiation, we sampled 2400 ms resting wakefulness epochs as many as the total number 

of trials played by a given patient. To minimize the potential effects of interictal spikes 

on gameplay-related high-gamma modulations, we excluded time-frequency bins with 30–

85 Hz amplitude above an absolute z-score of 2 from further analysis (Sonoda et al., 

2022). Next, we computed the percent change of high-gamma (70–110 Hz) amplitude at 

each electrode site, compared to the non-gameplay reference mean (Fig. 3; Video S2). We 

also calculated and visualized the high-gamma amplitude changes relative to the mean of 

each gameplay period (Figs. 4–7; Video S3). Finally, we created movies animating the 

spatiotemporal dynamics of high-gamma amplitude changes on the average FreeSurfer pial 

surface image with a Gaussian half-width at half-maximum of 7.5 mm (Videos S2 and S3).

2.6. [Aim 1] region of interest (ROI) analyses of event-related high-gamma modulations

We presented plots to visualize the time windows in which high-gamma amplitudes were 

modulated (i.e., augmented or suppressed), compared to the non-gameplay reference period 

(Fig. 3E). A nonparametric permutation one-sample t-test evaluated the null hypothesis that, 

compared to the reference period, the high gamma amplitude percent change would be zero 

at each 10-ms bin (1000 permutations; random sign swapping; Maris and Oostenveld, 2007; 

Cohen, 2014; Bassez et al., 2020; Sonoda et al., 2022). A two-sided 5% significance level 

was used with a false discovery rate (FDR) correction for repeated comparisons for 121 bins 

in a 2400 ms period (Fig. 1B).

We also provided plots visualizing the effects of [a] task switch (Fig. 4), [b] task rule 

(Fig. 5), [c] stimulus incongruency (Fig. 6), and [d] prior incorrect response (Fig. 7) 

on the gameplay-related high-gamma amplitudes, at a given region of interest (ROI) 

defined by the Desikan FreeSurfer Atlas (Fig. S1; Desikan et al., 2006; Nakai et al., 

2017). The permutation test likewise determined the time windows showing significant 

differences in high-gamma amplitudes between two given trial types. We treated high-

gamma augmentation as “trial type-specific”, when it showed significantly greater high-

gamma amplitudes during a particular trial type (e.g., switch), based on both the permutation 

test mentioned above and the following mixed model analysis. The purpose of this mixed 

model analysis was to determine whether the observed difference in high-gamma amplitudes 

between trial types (e.g., switch vs. repeat) was unattributable to the effects of the other trial 

domains (e.g., task rule, stimulus incongruency, or prior incorrect response). The dependent 

variable in this mixed model analysis was high-gamma amplitudes during a given trial at 

each ROI. The fixed effect predictors included [a] task switch, [b] task rule, [c] stimulus 

incongruency, [d] prior incorrect response, [e] log10-transformed trial number, and [f] game 

session. The random factors included patient and intercept. In this mixed model analysis, we 

performed an FDR correction for repeated analyses for 56 ROIs that included electrode sites 

(Fig. S1).

[Aim 2] The aforementioned mixed model analysis was designed to clarify the association 

between practice-related behavioral improvement and local neural activity. If a mixed model 

estimate was smaller than zero for log10-transformed trial number or game session, a 

given ROI was considered to show repetition suppression. In contrast, a mixed model 
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estimate larger than zero would suggest repetition enhancement. The mixed model analysis 

furthermore determined whether high-gamma amplitudes were likewise reduced through 

practice at the whole-electrode level.

2.7. [Aim 3] structural connectivity between cortical regions showing switch-related high-
gamma augmentation

The DWI tractography analysis determined whether direct white matter tracts existed 

between distant ROIs showing switch-related high-gamma augmentation with temporal 

proximity (i.e., not more than 50 ms apart). Investigators have suggested that large-scale 

cortico-cortical neural propagations through direct white matter tracts generally take 50 ms 

or less (Alarcon et al., 1994; Matsumoto et al., 2017). As previously performed (Mitsuhashi 

et al., 2021; Sonoda et al., 2021), we generated DWI tractography using the open-source 

data averaged across 1065 individuals participating in the Human Connectome Project 

(http://brain.labsolver.org/diffusion-mri-templates/hcp-842-hcp-1021; Yeh et al., 2018). We 

previously validated this analytic approach by demonstrating that neural propagations 

based on the open-source data were spatially similar to those found on the individual 

DWI (Sonoda et al., 2021). We placed seed-spheres with a radius of 4 mm at all 

electrode sites within ROIs with switch-related high-gamma augmentation. The DSI Studio 

(http://dsi-studio.labsolver.org/) generated streamlines between these ROIs within Montreal 

Neurological Institute (MNI) standard space. We built a connectome map based on the 

number of streamlines for given edges and a 3D map of the observed streamlines. We 

considered streamlines satisfying the following criteria to be legitimately significant: a 

fractional anisotropy threshold of 0.5, a maximum turning angle of 70°, a step size of 0.3 

mm, and a streamline length of 10 to 250 mm.

2.8. [Aim 4] prediction of upcoming responses using iEEG high-gamma activity

Using trial-by-trial iEEG analysis, we tested the hypothesis that successful high-gamma 

augmentation at an ROI showing repetition enhancement, as revealed in [Aim 2], would help 

optimize response accuracy during switch trials. A multivariate logistic regression-based 

model classified the response accuracy (1 if an upcoming response was correct). The 

predictors included [a] high-gamma amplitude (% change) in a given trial, [b] task rule, 

[c] stimulus incongruency, and [d] game session. This logistic regression-based prediction 

model did not incorporate behavioral variables such as a prior incorrect response or log10-

transformed trial number in each 1 min game session, to minimize the risk of circular 

analysis (Kriegeskorte et al., 2009). A receiver operating characteristics (ROC) analysis 

(Kuroda et al., 2021) determined how accurately the logistic regression model incorporating 

high-gamma activity classified the upcoming responses during switch trials. We employed 

a 5-fold cross-validation approach to reduce the risk of over-fitting; in short, one trial was 

excluded from the initial logistic regression model and used to assess its performance. A 

total of 1209 trials were available for this analysis.

2.9. Statistical analysis

Statistical analyses were performed using ‘IBM SPSS Statistics version 27′ (IBM Corp., 

Armonk, NY, USA) and ‘Statistical and Machine Learning Toolbox MATLAB 2018b’ 

(Mathworks, Natick, MA, USA). The significance was set at an FDR p-value of 0.05.
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2.10. Data and code availability

All iEEG data and the MATLAB-based codes used in the analyses are available upon 

request to the corresponding author.

3. Results

3.1. Behavioral observations

Nine patients who satisfied the inclusion and exclusion criteria (Table 1) were investigated. 

We analyzed an average of 95.6 [standard deviation: ±16.9] subdural electrodes from 

each patient (Fig. 2). The total number of trials per patient was 221.4 [±33.7], which 

corresponded to 37.3 [±5.8] switch, 111.1 [±19.9] moving, and 103.7 [±19.8] incongruent, 

and 49.7 [±16.0] trials were immediately preceded by an incorrect response. The mean 

response time was 1.36 [±0.52] seconds. Fig 8 shows changes in response time, as a function 

of trial in a given session and game session.

Mixed model analysis of trial type demonstrated that switch, moving, incongruent trials, and 

those immediately preceded by an incorrect response independently increased the response 

times (Table 2). In contrast, a later game session was independently associated with reduced 

response times (Table 2). The mean proportion of correct responses was 77.6 [±5.6]%, and 

the proportion of incorrect responses was significantly higher, compared to complimentary 

trial types, in switch, moving, and incongruent trials, as well as those immediately preceded 

by an incorrect response (Table 3).

3.2. Animation of neural modulations during gameplay

Videos S2 and S3 demonstrate the spatiotemporal dynamics of high-gamma modulations 

during Ebb and Flow gameplay. Compared to the non-gameplay resting period, ROI-based 

time-frequency analysis revealed high-gamma amplitude augmentation maximally between 

+80 and +330 ms post-cue, in visual pathways including the calcarine, fusiform, and 

entorhinal gyri of each hemisphere (Fig. 3B). High-gamma amplitudes were likewise 

increased in the posterior superior-temporal gyrus (STG) of both hemispheres, peaking 

at +210 and +190 ms post-cue (Fig. 3C). In the left precentral and postcentral gyri, high-

gamma amplitudes were enhanced most drastically at 380 and 290 ms before task cue onset, 

respectively (i.e., at 47 ms before and 43 ms after the estimated onset of screen tapping; Fig. 

3D and E).

3.3. High-gamma augmentation specific to switch trials

[Aim 1] The ROI-based iEEG analysis identified the spatiotemporal characteristics of high-

gamma augmentation specific to switch trials. Fig. 4 contrasts the difference in high-gamma 

amplitudes between switch and repeat trials, at each ROI. Specifically, the permutation test 

demonstrated that the right calcarine, right precuneus, right entorhinal, and bilateral anterior 

middle frontal gyrus (MFG) regions showed high-gamma amplitudes greater during switch 

trials, compared to repeat ones. According to the permutation test, significant difference was 

noted in the right calcarine between +260 and +720 ms post-cue (maximum difference: 

12.6% at +310 ms), right precuneus between +330 and +780 ms post-cue (maximum 

difference: 15.2% at +440 ms), right entorhinal between +420 and +580 ms post-cue 
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(maximum difference: 8.6% at +440 ms), right anterior MFG between +450 and +1200 ms 

post-cue (maximum difference: 5.9% at +840 ms post-cue), and left anterior MFG between 

+670 and +1200 ms post-cue (maximum difference: 8.3% at +1100 ms post-cue). At each of 

these five ROIs, mixed model analysis demonstrated that switch trials were associated with 

increased high-gamma amplitudes compared to repeat trials (p < 0.001 and t = +4.271 at 

right calcarine; p < 0.001 and t = +5.247 at right precuneus; p = 0.008 and t = +3.445 at 

right entorhinal; p = 0.013 and t = +3.117 at right anterior MFG; p < 0.001 and t = +5.134 

at left anterior MFG), independently of the effects of task cue, stimulus incongruency, and 

immediately prior response.

[Aim 2] Fig. 8 demonstrates the changes in high-gamma amplitude with practice. The mixed 

model analysis, employed at all 860 electrode sites, demonstrated that an increase in the 

log10-transformed trial number within a given game session (mixed model estimate: −1.35; 

p < 0.001; t = −14.700) and a later game session (mixed model estimate: −0.30; p < 0.001; t 
= −12.154) independently reduced overall post-cue high-gamma amplitudes.

The ROI-based mixed model analysis (Tables S1–S5) likewise demonstrated that an increase 

in the log10-transformed trial number reduced the post-cue high-gamma amplitudes in the 

right calcarine (mixed model estimate: −5.63; p < 0.001; t = −5.845) and right anterior MFG 

(mixed model estimate: −1.91; p < 0.001; t = −3.664). Additionally, a later game session 

was associated with reduced post-cue high-gamma amplitudes in the right calcarine (mixed 

model estimate: −0.33; p = 0.047; t = −2.481), right entorhinal (mixed model estimate: 

−0.73; p < 0.001; t = −6.704), right anterior MFG (mixed model estimate: −0.71; p < 0.001; 

t = −4.988), and left anterior MFG (mixed model estimate: −0.58; p < 0.001; t = −3.783).

Conversely, an increase in the log10-transformed trial number was found to increase the 

post-cue high-gamma amplitudes in the right precuneus (mixed model estimate: +2.2; p = 

0.003; t = +2.958).

3.4. High-gamma augmentation specific to moving trials

The ROI-based analysis identified the spatiotemporal characteristics of high-gamma 

augmentation specific to moving trials. Fig. 5 contrasts the difference in high-gamma 

amplitudes between moving and pointing trials, at each ROI. The permutation test 

demonstrated that moving trials enhanced and sustained high-gamma amplitude at the left 

anterior MFG region, and this augmentation was statistically significant, independent of the 

remaining fixed-effect predictors (between +0 and +1200 ms post-cue; maximum difference: 

5.2% at +990 ms post-cue; p = 0.038; t = +2.646).

3.5. High-gamma augmentation specific to incongruent trials

The ROI-based analysis failed to identify ROIs showing high-gamma modulations specific 

to incongruent trials. Fig. 6 contrasts the difference in high-gamma amplitudes between 

incongruent and congruent trials at each ROI. The permutation test demonstrated that the 

right anterior MFG region showed high-gamma amplitudes smaller during incongruent 

trials (between +240 and +640 ms post-cue; maximum difference: −5.5 % at +510 ms 

post-cue). However, the mixed model analysis failed to demonstrate the effect of stimulus 
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incongruency was independent of the remaining fixed-effect predictors (p = 0.835; t = 

−0.508).

3.6. High-gamma augmentation specific to trials preceded by incorrect responses

The ROI-based analysis identified the differing spatiotemporal characteristics of high-

gamma augmentation specific to trials immediately preceded by an incorrect or correct 

response, and the results are displayed in Fig. 7. Significant differences were noted in the 

right inferior-frontal gyrus (IFG) region between +0 and +1150 ms post-cue (maximum 

difference: 11.9% at +490 ms), right anterior MFG between +0 and +1000 ms post-cue 

(maximum difference: 9.2% at +130 ms), right posterior STG between +130 and +670 ms 

post-cue (maximum difference: 13.4% at +260 ms), and left posterior STG between +120 

and +420 ms post-cue (maximum difference: 7.8% at +220 ms). At each of these four ROIs, 

the mixed model analysis demonstrated that trials preceded by an incorrect response were 

associated with increased high-gamma amplitudes (p < 0.001 and t = +12.647 at right IFG; 

p < 0.001 and t = +7.864 at right anterior MFG; p < 0.001 and t = +6.484 at right STG; p < 

0.001 and t = +5.566 at left STG), independent from the effects of task switch, task rule, and 

stimulus incongruency.

3.7. [Aim 3] structural connectivity between task switch-related cortical regions

Fig. 9 demonstrates the structural connectome between cortical areas showing switch-related 

high-gamma augmentation. Direct white matter tracts were found from the right calcarine 

to precuneus (number of streamlines: 87), entorhinal (1157), and anterior-middle frontal 

regions (603), between the right entorhinal and precuneus regions (211), as well as 

connecting the right and left anterior MFG regions (1025).

3.8. [Aim 4] high gamma-based prediction of upcoming responses among switch trials

We performed this analysis on the right precuneus ROI, which showed switch-related 

high-gamma augmentation during +330 to +780 ms post-cue period (Fig. 4) as well as 

enhancement in high-gamma responses as a function of the log10-transformed trial number 

(Fig. 8). The multivariate logistic regression analysis indicated that right precuneus high-

gamma amplitude independently had a modest, yet significant impact on the accuracy of 

predicting responses among switch trials. Each 1% increase in the right precuneus high-

gamma amplitude increased the odds of responding correctly by 1.003 times (i.e., e1.003; 

95%CI: 1.000 to 1.007). Furthermore, progressing forward by one session also increased 

the odds of correct responses by 1.121 (95%CI: 1.048 to 1.193). The logistic regression 

model’s accuracy was calculated via ROC analysis, and it indicated that correct responses 

were predicted with an area under the curve of 0.674 (95%CI: 0.563 to 0.785).

4. Discussion

4.1. Temporally and functionally distinct large-scale brain network dynamics involved in 
task switching

To our knowledge, this is the first-ever study that identified temporally, functionally distinct 

large-scale cortico-cortical network dynamics that support task switching. We refer to one 

as the visual-precuneus network and the other as the visual-dorsolateral prefrontal network. 
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Based on the current study results, both networks are believed to originate from the low- and 

high-order ventral visual areas, including the calcarine and entorhinal regions. The visual-

precuneus network is proposed to include the precuneus, whereas the visual-dorsolateral 

prefrontal network includes the anterior MFG.

Our findings suggest that the visual-precuneus network is engaged in task switching 

before the dorsolateral prefrontal region. Our iEEG analysis revealed that switch-related 

high-gamma augmentation in the visual and precuneus areas occurred at least 120 ms before 

that in the anterior MFG region. The networks’ anatomical feasibility was confirmed by our 

DWI tractography analysis, as it revealed direct white matter connectivity from the visual 

to the precuneus and anterior MFG in the right hemisphere; interestingly, it failed to show 

connectivity between the precuneus and anterior MFG.

Synthesizing the above, we propose that the visual-precuneus and visual-dorsolateral 

networks play distinct, functional roles, given their distinct, local high-gamma responses 

as a function of trials. The right precuneus showed repetition enhancement, whereas the 

right anterior MFG showed repetition suppression similar to the overall brain regions.

4.2. Roles of the visual-precuneus network dynamics in task switching

The visual-precuneus network dynamics may be involved in awareness of task switching 

cues and allocating attention to the newly switched cues, considering the timing of 

high-gamma augmentation and the findings reported in previous literature. The collective 

evidence from previous lesion, electrophysiology, fMRI, and stimulation studies suggests 

that the ventral visual pathways are essential for perceiving and recognizing changes in 

shape, color, and movement of objects (Zeki 1990; Riesenhuber and Poggio, 2000; Gilaie-

Dotan et al., 2013; Kravitz et al., 2013; Lafer-Sousa et al., 2016). The existence of direct 

connectivity on DWI tractography (Fig. 8), concurrent iEEG high-gamma augmentation 

related to task switching (Fig. 4), and functional connectivity on resting-state fMRI in 

healthy adults (Zhang and Li, 2012) support the notion that the precuneus receives neural 

input directly from visual areas. Previous fMRI studies of healthy adults indicate that tasks 

requiring a shift of visual attention were associated with increased hemodynamic responses 

in the precuneus regions (Shulman et al., 2009; Huijbers et al., 2011; Tosoni et al., 2013), 

while conversely, lesions involving the precuneus impaired this process (Vandenberghe and 

Gillebert, 2009).

The observed repetition enhancement of high-gamma amplitudes in the right precuneus 

is consistent with the notion that precuneus activations trigger an attentional shift during 

switch trials. Our iEEG analysis among switch trials indicated that each 1% elevation 

of precuneus high-gamma amplitude increased the chance of responding correctly to the 

upcoming stimulus by approximately 0.3%. Further studies using electrical stimulation 

mapping may be warranted to determine whether neural activation in the right precuneus 

region is essential for task switching.

4.3. Roles of the visual-dorsolateral prefrontal network dynamics in task switching

The visual-dorsolateral prefrontal network dynamics may be involved in executing 

appropriate stimulus-response translation in switch trials without interference from old rules 
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(Brass et al., 2003; Koechlin et al., 2003; Sohn et al., 2007; Hyafil et al., 2009; Nee and 

D’Esposito, 2017). To the point, many fMRI studies of healthy adults reported that more 

intense hemodynamic activations were induced in the dorsolateral prefrontal regions when 

a task switch was required (Dove et al., 2000; Sohn et al., 2000; Braver et al., 2003; Badre 

and Wagner, 2006; Yeung et al., 2006; Karayanidis et al., 2010; Kim et al., 2012; Jamadar 

et al., 2015; Vallesi et al., 2015; Cole et al., 2016). The current study provided anatomical 

justification for this phenomenon, demonstrating that the inferior fronto-occipital fasciculus 

directly connects the right visual and anterior MFG regions (Fig. 9). In this present 

work, switch-related high-gamma augmentation co-occurred in the right visual and anterior 

MFG regions (Fig. 4). A previous iEEG study using single-pulse electrical stimulation 

provided evidence that low-order visual areas can directly transfer neural information to the 

dorsolateral prefrontal regions within 50 ms (Sugiura et al., 2020). Thus, it is plausible to 

expect the right anterior MFG could receive neural input directly from the visual areas.

High-gamma amplitudes in the right anterior MFG showed repetition suppression, based 

on our trial-by-trial iEEG time-frequency analysis. Such reduction of overall high-gamma 

amplitudes, including those seen in the visual-dorsolateral prefrontal network, likely reflects 

a practice-related decrease of neural cost related to task switching.

4.4. Network dynamics involved in tracking moving objects

The present study also uncovered the spatiotemporal dynamics of high-gamma modulations 

related to functions other than task switching. For example, higher behavioral and neural 

costs were required for swiping in the direction of leaf motion, compared to leaf pointing. In 

this vein, moving trials were associated with a > 100 ms longer response time, about 20% 

lower response accuracy, and continuously greater high-gamma amplitudes in the bilateral 

anterior MFG (Fig. 5). A possible explanation is that movement recognition required more 

laborious cortical processing than shape recognition. During pointing trials, a single glance 

may be sufficient to identify leaf orientation and make a relevant response. Conversely, 

additional spatial working memory may be required during moving trials to mentally store 

the position of leaves and then recognize their directional movement. Lesion studies infer 

that the dorsolateral prefrontal regions, including the anterior MFG, are necessary for spatial 

working memory in humans (Barbey et al., 2013; Mackey et al., 2016). Non-human primate 

analogues of these studies suggest that the dorsolateral prefrontal regions are involved in 

transient coding of visual space (Funahashi et al., 1989; Kim and Shadlen, 1999), lending 

support to our hypothesis.

4.5. Network dynamics occurring after erroneous responses

Post-error high-gamma augmentation appeared in the right IFG and anterior MFG, at 

the moment of response detection (Fig. 7). Both IFG and MFG post-error high-gamma 

augmentation preceded that in the bilateral STG by > 100 ms (Fig. 7). Thus, it is plausible 

to consider that at least certain patient subsets may have realized their erroneous responses 

before receiving feedback sounds. Trials immediately preceded by an error were associated 

with a > 150 ms longer response time and about 25% lower response accuracy. Post-error 

response high-gamma augmentation in the right IFG and anterior MFG may reflect the 

neural processes for detecting incorrect responses and subsequent behavioral adjustment 
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to prevent future transgressions. Similarly, previous fMRI and iEEG studies reported that 

erroneous responses during spatial-attention tasks requiring a choice among competing 

options were associated with increased hemodynamic and high-gamma activations in the 

IFG and MFG with right-hemispheric dominance (Huster et al., 2011; Rae et al., 2014; 

Völker et al., 2018). A previous iEEG case study reported that high-gamma augmentation 

took place in the right IFG when preparing to stop in a stop-signal task (Swann et al., 2012), 

and lesion studies have localized such inhibitory function to the right IFG (Aron et al., 

2004).

4.6. Usage of computer tablet game in functional brain mapping

The present study has provided preliminary evidence that time-frequency iEEG analysis 

during gameplay on a tablet computer can help localize eloquent cortices to be preserved 

in brain surgery. This finding has the potential to drastically improve extra-operative 

mapping for pediatric focal epilepsy patients, since electrical stimulation mapping is not 

always efficacious in young children (Haseeb et al., 2007) and was reported to localize 

language areas in less than 20% of those younger than ten years old (Schevon et al., 2007). 

Measurement of event-related high-gamma modulations is widely practiced in tertiary 

epilepsy surgery centers but previously reported tasks may not have been entertaining for 

children (Crone et al., 2011; Lachaux et al., 2012; Arya et al., 2018; Mooij et al., 2016; 

Sonoda et al., 2022). In our current study, patients made an average of 221.4 responses 

during five-minute gameplay sessions. The task cue onset (accompanied by feedback 

sounds) induced high-gamma augmentation in the low- and high-order visual areas as well 

as in the posterior STG regions bilaterally (Fig. 3B, C). Apart from the precuneus and MFG, 

swipe responses using the right finger induced high-gamma augmentation in the left pre- and 

post-central gyri (Fig. 3D). Real-time mapping tools (Brunner et al., 2009; Korostenskaja 

et al., 2014; Wang et al., 2016) is expected to improve the practicality of using task-related 

high-gamma modulations in epilepsy presurgical evaluation.

The present study successfully localized swipe-related neural activation in the primary 

sensorimotor area contralateral to the hand used for responses. Since inception of the 

iPhones in 2007, these finger gestures are an evolutionary new behavior that humans 

have rapidly mastered over the past 14 years, and now 3.8 billion people worldwide are 

estimated to own a smartphone, as of July 2021 (https://www.bankmycell.com/blog/how-

many-phones-are-in-the-world).

4.7. Methodological considerations

In Ebb and Flow, a task cue (i.e., green or orange leaves) and a target stimulus (i.e., 

pointing and moving leaves) are presented simultaneously; thus, the cue-target interval 

was effectively zero in the present study. Conversely, in scalp EEG studies, investigators 

designed tasks with several hundred-millisecond cue-target intervals (Nicholson et al., 2005; 

Jamadar et al., 2010; Karayanidis and Jamadar, 2014). Such cue-target intervals allowed 

differential ERP measurements [a] during a proactive (anticipatory) period immediately 

after presenting a cue indicating a given task rule and [b] during a reactive period after 

target presentation. Switch trial-preferential ERPs on scalp recording were characterized by 

a surface-positive deflection in the posterior brain region during a proactive period and a 
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deflection with a frontal-positive/posterior-negative dipole during a reactive period (Jamadar 

et al., 2010). Some may hypothesize that switch-related high-gamma augmentations 

observed in the present study reflect a mixture of neural processes reported to occur 

differentially during proactive and reactive periods (Karayanidis and Jamadar, 2014).

Limited iEEG signal sampling, size of ROIs, and number of iEEG frequency bands analyzed 

in the present study may account for the failure to find neural engagement more intense in 

incongruent than congruent trials. One cannot rule out the possibility that iEEG electrodes 

failed to sample critical sites or that a given ROI may have been too large to include 

critical sites specifically. For example, the medial frontal region, such as the anterior 

cingulate cortex, was sparsely sampled in the present study, and this region reportedly shows 

intense high-gamma and hemodynamic responses in tasks requiring conflict monitoring 

for stimuli containing incongruent information (e.g., Stroop task; Kerns et al., 2004; Koga 

et al., 2011). Our behavioral analysis demonstrated that stimulus incongruency prolonged 

the response time significantly. Still, the effect size of stimulus incongruency (mixed 

model estimate: +92 ms) was smaller than those of switch (+161 ms), moving leaves 

(+176 ms), and prior incorrect response (+151 ms; Table 2). Thus, greater iEEG electrode 

sample sizes at a smaller ROI could have been needed to reveal a significant difference in 

high-gamma amplitude between incongruent and congruent trials. Further studies involving 

iEEG oscillations other than high-gamma activity are warranted to determine the network 

dynamics supporting cognitive flexibility. Prior scalp EEG studies reported that the theta 

amplitude and coherence across frontal and parietal regions differed between switch and 

repeat trials (Cooper et al., 2015; Capizzi et al., 2020; McKewen et al., 2021).

Our study also does not rule out the roles of cortico-subcortico-cortical networks in task 

switching. None of our study patients had iEEG signals recorded from the basal ganglia or 

thalamus because such spatial sampling was not clinically indicated. Pertinently, a previous 

lesion study reported that patients with a focal lesion in the basal ganglia frequently failed 

to perform task switching when needed (Yehene et al., 2008), and an fMRI study of 

healthy adults reported that requiring a task switch enhanced hemodynamic responses in 

the basal ganglia (Crone et al., 2006). The mechanistic significance of subcortical structures 

in task switching may be clarified by future studies measuring event-related high-gamma 

modulations at depth electrodes implanted in subcortical structures as part of the clinical 

management of epileptic seizures or movement disorders.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The task-switching paradigm. (A) Examples of task cues in Ebb and Flow, a Lumosity 

cognitive flexibility training game. During Trials 1 and 2, when the leaf color was green, 

players must swipe the screen in the direction the leaf was pointing (i.e., ‘Left’ on Trial 1 

and ‘Up’ on Trial 2). On Trials 3 and 4, when the leaf color was orange, players must swipe 

in the direction the leaf was moving (i.e., ‘Right’ on Trial 3 and ‘Up on Trial 4 ′). Trial 3 

was treated as a switch trial. The task rule (i.e., leaf color) was switched unpredictably; the 

percentage of same-color run lengths of 1 up to 10 were reportedly 6.4%, 10.6%, 13.5%, 

14.8%, 14.3%, 12.6%, 10.0%, 7.3%, 4.8%, and 5.7% (Steyvers et al., 2019). All trials 

presented here were considered incongruent because the leaves’ pointed direction did not 

match their moving direction. Video S1 is helpful to understand the paradigm. In each trial, 

all stimulus leaves moved in a given direction, and none were static. (B) In each trial, a 

swipe covering 50 pixels (4.8 mm) was detected as a response, which immediately triggered 

the next cue together with a feedback sound lasting for 0.4–0.6 s. We defined the moment of 

task cue onset (i.e., response detection = feedback sound onset) as the zero time point in the 

time-frequency analysis of intracranial electroencephalography signals. With the inherent 

processing latency of the gameplay platform on our iPad, the screen tapping onset was 

estimated to be 333 ms, on average, before the zero-time point (95% confidence interval: 

325 to 341 ms). We defined a 1200 ms period after the n th response as the n th post-cue 

period and a 1200 ms period before the n + 1 th response as the n th pre-cue period (Fig. 

3E). (C) A given trial was defined as a switch trial when the leaf color wachanged from 

orange to green or from green to orange.
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Fig. 2. 
The anatomical locations of subdural electrode contacts included in the analysis. Dark green 

spheres denote the locations of all electrode sites (four patients had electrode implantation 

on the right hemisphere; five patients on the left hemisphere). Regions of interest defined in 

the current study are presented in Fig. S1.
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Fig. 3. 
High-gamma modulations during the Lumosity gameplay. (A–D) The snapshots of Video S2 

demonstrate the percent change of high-gamma amplitude relative to that during the resting, 

non-gameplay reference period before the initiation of the Lumosity game. (A) 0 ms: task 

cue onset (i.e., feedback sound onset/response detection). (B) +100 ms post-cue (C) +200 

ms post-cue. (D) 400 ms before task cue onset. (E) The percent change in high-gamma 

amplitudes at each region of interest (ROI) compared to the non-gameplay reference period. 

Solid line: mean across all available electrode sites within a given ROI. Blue shade: 95% 

confidence interval. Arrows: Estimated screen tapping onset (333 ms before the task cue 

onset). For interested readers, we have provided Fig. S2 showing the broadband evoked 

responses averaged across all electrode sites within a given ROI.
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Fig. 4. 
The dynamics of high-gamma modulations in switch and repeat trials. The brain surface 

map shows the subtraction of high-gamma amplitudes during the 1200 ms post-cue period 

of repeat trials from those of switch trials. Plots present the dynamics of high-gamma 

modulations at given regions of interest. Red lines: switch trials. Blue lines: repeat trials. 

Shading: 95% confidence interval. High-gamma values presented herein are amplitude 

changes compared to the average during the 1200 ms post-cue period. The zero-time point: 

task cue onset. With the inherent processing latency of the gameplay platform on our iPad, 

the screen tapping onset was estimated to be 333 ms before the zero-time point. Horizontal 

bar: time windows showing a significant difference in high-gamma amplitudes between 
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switch and repeat trials based on the permutation test. Fig. S3 presents the dynamics of 

high-gamma modulations during the 1200 ms pre-cue period.
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Fig. 5. 
The dynamics of high-gamma modulations in moving and pointing trials. The brain surface 

map shows the subtraction of high-gamma amplitudes during the 1200 ms post-cue period 

of pointing trials from those of moving trials. Plots present the dynamics of high-gamma 

modulations at given regions of interest. Orange lines: moving trials. Green lines: pointing 

trials. High-gamma values presented herein are amplitude changes compared to the average 

during the 1200 ms post-cue period. The zero-time point: task cue onset. The screen 

tapping onset was estimated to be 333 ms before the zero-time point. Horizontal bar: time 

windows showing a significant difference in high-gamma amplitudes between moving and 

pointing trials based on the permutation test. Fig. S4 presents the dynamics of high-gamma 

modulations during the 1200 ms pre-cue period.
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Fig. 6. 
The dynamics of high-gamma modulations in incongruent and congruent trials. The brain 

surface map shows the subtraction of high-gamma amplitudes during the 1200 ms post-cue 

period of congruent trials from those of incongruent trials. Plots present the dynamics of 

high-gamma modulations at given regions of interest. Magenta lines: incongruent trials. 

Cyan lines: congruent trials. High-gamma values presented herein are amplitude changes 

compared to the average during the 1200 ms post-cue period. The zero-time point: task cue 

onset. The screen tapping onset was estimated to be 333 ms before the zero-time point. 

Horizontal bar: time windows showing a significant difference in high-gamma amplitudes 

between incongruent and congruent trials based on the permutation test. Fig. S5 presents the 

dynamics of high-gamma modulations during the 1200 ms pre-cue period.
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Fig. 7. 
The dynamics of high-gamma modulations in trials preceded by an incorrect and correct 

response. The brain surface map shows the subtraction of high-gamma amplitudes during 

the 1200 ms post-cue period of trials preceded by a correct response from those of 

trials preceded by an incorrect response. Dark green lines: trials preceded by an incorrect 

response. Brown lines: trials preceded by a correct response. High-gamma values presented 

herein are amplitude changes compared to the average during the 1200 ms post-cue period. 

The zero-time point: task cue onset. The screen tapping onset was estimated to be 333 ms 

before the zero-time point. Horizontal bar: time windows showing a significant difference in 

high-gamma amplitudes between trials preceded by an incorrect and correct response based 

on the permutation test. Fig. S6 presents the dynamics of high-gamma modulations during 

the 1200 ms pre-cue period.
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Fig. 8. 
Changes in response time and gameplay-related high-gamma amplitudes with practice. (A) 

Changes in response time are presented. Left: as a function of trial in a given session. Right: 

as a function of game session. (B) Changes in high-gamma amplitudes are presented. Left: 

all 860 electrode sites. Middle: right anterior middle-frontal region (29 sites). Right: right 

precuneus region (6 sites).
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Fig. 9. 
Structural connectivity between cortical regions specifically involved in task switching. 

(A and C) show the connectome between the cortical regions showing switch-related 

high-gamma augmentation. The blue and red spheres represent nodes in the right and 

left hemispheres, respectively. The light blue and purple lines represent the edges within 

the right hemisphere and across the hemispheres, respectively. Thick lines reflect greater 

numbers of streamlines identified on diffusion-weighted imaging tractography. (B and D) 

show the anatomical courses of given streamlines.
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Table 3

Effects of trial types on response accuracy.

Proportion of correct response Chi-square

Switch trial 72.3 (%) (243/336 trials) 5.0

Repeat trial 78.0 (1285/1648) (p = 0.025)

Moving trial 67.3 (673/1000) 119.4

Pointing trial 88.2 (809/917) (p < 0.001)

Incongruent trial 65.9 (615/933) 134.5

Congruent trial 88.1 (867/984) (p < 0.001)

Prior incorrect response 58.2 (262/450) 121.6

Prior correct response 82.9 (1279/1542) (p < 0.001)
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