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Abstract

The synaptonemal complex (SC) is a proteinaceous, meiosis-specific structure that is highly conserved in evolution. During
meiosis, the SC mediates synapsis of homologous chromosomes. It is essential for proper recombination and segregation of
homologous chromosomes, and therefore for genome haploidization. Mutations in human SC genes can cause infertility. In
order to gain a better understanding of the process of SC assembly in a model system that would be relevant for humans,
we are investigating meiosis in mice. Here, we report on a newly identified component of the murine SC, which we named
SYCE3. SYCE3 is strongly conserved among mammals and localizes to the central element (CE) of the SC. By generating a
Syce3 knockout mouse, we found that SYCE3 is required for fertility in both sexes. Loss of SYCE3 blocks synapsis initiation
and results in meiotic arrest. In the absence of SYCE3, initiation of meiotic recombination appears to be normal, but its
progression is severely impaired resulting in complete absence of MLH1 foci, which are presumed markers of crossovers in
wild-type meiocytes. In the process of SC assembly, SYCE3 is required downstream of transverse filament protein SYCP1, but
upstream of the other previously described CE–specific proteins. We conclude that SYCE3 enables chromosome loading of
the other CE–specific proteins, which in turn would promote synapsis between homologous chromosomes.
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Introduction

Meiosis is a special type of cell division which gives rise to

haploid, genetically diverse gametes. For organisms that reproduce

sexually the correct haploidization of paternal and maternal

genomes is of utmost importance. To ensure the correct separation

of homologous chromosomes during anaphase I, homologs first

have to find each other before coming into close physical

proximity. This process takes place during prophase I of meiosis,

which is highly regulated and can be subdivided into five stages:

leptotene (chromosome condensation), zygotene (initiation of

synapsis), pachytene (full synapsis), diplotene (desynapsis), and

diakinesis (visible chiasmata) [1]. One key component that enables

synapsis and crossover formation is the synaptonemal complex

(SC), a largely proteinaceous, meiosis-specific nuclear structure.

The SC consists of three components: two lateral elements (LEs),

each of which are associated with a pair of sister chromatids, and a

central region between the two LEs, that is composed of numerous

transverse filaments and the central element (CE). The central

region physically links homologous chromosomes in a zipper-like

manner and thus mediates synapsis (reviewed in [2,3]). The

tripartite structure of the SC is strikingly conserved from budding

yeast to humans emphasizing its prominent function during

meiosis. Much of our current understanding in the field was

obtained from organisms such as Saccharomyces cerevisiae, Caenorhab-

ditis elegans, and Drosophila melanogaster [4–10]. However, the mouse

also has advanced to a widespread model system for the analysis of

SC composition and regulation [11,12]. Investigations in the

mouse are expected to provide a better insight into causes of

infertility in humans [13–15]. Several mouse models have been

generated over recent years in order to illuminate the process of

mammalian SC assembly. With the aid of these a first molecular

model of SC assembly, synapsis initiation and propagation was

proposed [11].

SC assembly in mice is initiated during leptotene with the

formation of the axial elements (AEs; i.e. the precursor structures

of LEs) by the AE proteins SYCP2 and SYCP3 [2,16]. The AEs

colocalize with cohesin cores consisting of cohesin complex
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proteins [17–19]. Mice deficient for SYCP3 lack AEs and fail to

form continuous cohesin cores [20–22]. Interestingly, knockout of

the Sycp3 gene results in a sexually dimorphic phenotype: SYCP3-

deficient males are sterile due to massive apoptotic cell death

during zygotene [20], whereas females are fertile, but exhibit a

sharp reduction in litter size caused by aneuploidy resulting in

embryo death in utero [21].

AEs become linked by numerous transverse filaments (hence,

AEs are referred to as LEs) when synapsis is initiated in zygotene

of wild-type mice. Transverse filaments (TFs) are mainly

composed of SYCP1, a fibrillar protein with a central coiled-coil

domain flanked by two globular N- and C-terminal domains [23].

SYCP1 molecules most likely form homodimers with a parallel

orientation with both C-termini anchored in an LE and the N-

termini interacting head-to-head in the CE with a SYCP1 dimer of

the opposite LE [24–26]. Two facts indicate the prominent

function of SYCP1 during SC assembly: (1) disruption of the

mouse Sycp1 gene leads to sterility in both sexes, which is caused by

massive apoptotic events during spermatogenesis and oogenesis.

Detailed analysis of Sycp1 null mice revealed a complete

breakdown of synapsis of homologous chromosomes, although

the mice show normal AE formation and chromosome alignment.

Furthermore, SYCP1 is required for crossover formation and the

repair of DNA double-strand breaks (DSBs) [27]. (2) When

expressed in a heterologous system SYCP1 molecules have the

capability to self-assemble and form structures that closely

resemble SCs (i.e. polycomplexes; [26]). Therefore, SYCP1 may

function as a molecular framework to which other proteins attach

to accomplish SC assembly and progression of recombination

events ([26,27]; and below).

Because of the prominent function of SYCP1 in meiosis and its

relevance for fertility, the identification and characterization of its

interaction partners has received intense interest over the past

years. Of particular interest are three proteins, SYCE1, SYCE2

and Tex12, which exclusively localize to the CE and, interestingly,

contain a coiled-coil domain, which constitutes a common protein

interaction motif [28,29]. These proteins, together with SYCP1,

form a complex in the CE. SYCE1 and SYCE2 were found to

bind to each other and to SYCP1, whereas Tex12 forms a

complex with SYCE2 and, therefore, indirectly interacts with

SYCP1. The hypothesis that SYCP1 serves as a molecular

framework is supported by the fact that disruption of the central

region by eliminating Sycp1 results in a mislocalization of all three

CE-specific proteins [29]. In addition, knockout models of each of

the three known CE proteins revealed that loss of either of these

alters higher order polymerization properties and localization of

SYCP1 [30–32]. This indicates that the in vivo relationship

between SYCP1 and all currently known CE proteins is reciprocal.

Correct SC assembly is required for proper meiotic recombi-

nation and conversely, recombination is essential for correct SC

assembly. This is particularly well documented in mice deficient

for Spo11, which are characterized by the lack of Spo11-dependent

DSBs. In these mice SC formation is much reduced or SCs form

between non-homologous chromosomes [33,34]. Thus SC assem-

bly and meiotic recombination are mutually dependent on each

other.

Here we report on the characterization of SYCE3, a novel

protein specifically located in the CE of the mammalian SC.

SYCE3 is exclusively expressed during male and female meiosis

and colocalizes with SYCP1 and SYCE1. We show that SYCE3 is

part of the previously described CE complex [28,29] where it

interacts with SYCE1 and SYCE2. To gain more insights into the

function of SYCE3 we generated a Syce3 knockout mouse. These

mice are characterized by infertility in both sexes as well as

complete disruption of synapsis and mislocalization of previously

described CE proteins, indicating that SYCE3 is required for

synapsis initiation and chromosomal loading of the other CE

proteins (i.e. SYCE1, SYCE2 and Tex12). Furthermore, we

demonstrate that loss of SYCE3 has no influence on the initiation

of meiotic recombination, but is required for its progression.

Results

Identification and Characterization of SYCE3
We selected a set of genes identified by means of (1)

predominant expression in testis and (2) a predicted nuclear

localization, as well as a coiled-coil domain, within the encoded

protein sequence from a gene expression profile initially used to

elucidate the impact of Dazl knockout on gene expression in the

developing gonads [35]. Using RT-PCR we demonstrated the

selective expression of one of these genes -1700007E06Rik [35] -

in adult testes and embryonic ovaries, and its absence in somatic

tissues (Figure 1B). 1700007E06Rik encodes a protein (which we

have named SYCE3) consisting of 88 amino acids. SYCE3 can be

found in all vertebrate classes from fish to human (Figure 1A). It is

highly conserved among mammals with an identity of 90% (96%

similarity) at the amino acid level between mouse and human.

PSORTII and SMART prediction of protein structural motifs

revealed that SYCE3 contains a short coiled-coil motif (amino

acids 6–39) which is conserved in all analyzed vertebrate

sequences except for fish.

In order to determine the exact temporal expression pattern of

SYCE3 mRNA during spermatogenesis, we performed additional

RT-PCR experiments with whole mRNA fractions of pubertal

mice testes of different ages. Analysis of the first wave of

spermatogenesis revealed that SYCE3 mRNA is first detectable

on day 12 (i.e. the onset of the prophase I of meiosis) and persists

in older animals. Comparison of the temporal expression profile of

SYCE3 mRNA with that of SYCP3 revealed a striking similarity,

suggesting that SYCE3 also functions during the prophase I stage

of meiosis (Figure 1C). To analyze SYCE3 expression at the

protein level, we generated two antibodies against the full-length

Author Summary

Meiosis is a special type of cell division that takes place in
the germ line of sexually reproducing diploid organisms.
Major events during meiosis are the pairing, recombina-
tion, and segregation of homologous chromosomes. As a
consequence, daughter cells are haploid and genetically
diverse. Therefore, meiosis is of utmost importance for the
life of sexually reproducing species as it maintains the
species-specific chromosome number and generates
genetic diversity within a species. Proper segregation of
homologous chromosomes during meiosis requires ho-
molog pairs to be physically linked. The synaptonemal
complex (SC), a meiosis-specific structure conserved in
evolution, is essential for this process. Defective assembly
of the SC has deleterious effects on germ cells and can
cause infertility in mice and humans. Here, we report on a
newly identified protein component of the mammalian SC
that we have named SYCE3. SYCE3 is strongly conserved
among mammals. Using the mouse as a model system, we
demonstrate that loss of SYCE3 leads to infertility in both
sexes. Infertility is caused by disruption of meiosis due to
the inability of Syce32/2 mice to assemble the central
element of SCs. Our findings provide new insights into the
complexity of SC assembly and its relevance to mamma-
lian fertility.

Novel Synaptonemal Complex Protein SYCE3
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protein (see materials and methods). Western blot analysis of total

protein fractions of pubertal mouse testes of different ages revealed

a single band with the expected mass (12 kDa) from day 12

onwards, validating the fact that SYCE3 is first expressed with the

onset of meiosis (Figure 1C). In addition, SYCE3 restriction to

meiotic cells was confirmed by immunofluorescence analysis on

frozen mouse testis sections: SYCE3 expression is confined to

spermatocytes and completely absent in spermatogonia, sperma-

tids and spermatozoa (Figure S1B).

SYCE3 Selectively Localizes to the Central Element of the
Synaptonemal Complex

Using immunocytochemistry on spread mouse spermatocytes,

we investigated the subcellular localization of SYCE3 in meiotic

cells. For proper staging of meiotic cells we used SYCP3 as a

marker for AEs/LEs (Figure 2A). Fluorescence staining of SYCE3

showed that it specifically localizes to the synapsed regions of

homologous chromosomes, whereas SYCP3 was present in AEs

and LEs. SYCE3 was first detectable during zygotene when

synapsis is initiated and staining persisted on synapsed regions of

homologous chromosomes until diplotene. The localization to

synapsed regions was verified by double-labeling experiments

performed with SYCE3 and TF-protein SYCP1 (a marker for

synapsed regions) in which a virtually identical staining pattern

was observed (Figure 2B). In pachytene oocytes SYCE3 also

localized to synapsed chromosomes (Figure 2C). For a detailed

analysis of SYCE3 localization within the SC we performed

immuno-gold electron microscopy on testis sections using an

affinity-purified SYCE3 antibody and an antibody against the

coiled-coil region of SYCP1 as a control (Figure 3A). In

preparations incubated with SYCE3 antibodies, gold particles

exclusively localized to the CE of the SC. This is in strong contrast

to the findings when using an antibody against the coiled-coil

region of SYCP1, where - as expected - TFs between CE and LEs

are labeled (see also [29]). For a quantitative analysis of

immunogold data we sub-divided the distance between the SC

center and the outer edge of LEs into 7 equal sections and counted

the immuno-gold particles in each section (see [36]). In the case of

SYCE3 the bulk of gold particles (n = 304) localized to the two

sections adjacent to the SC center. In contrast, gold particles

corresponding to the SYCP1 coiled-coil domain (n = 135) largely

localized to the area between LEs and CE (see also [25];

Figure 3B).

Since three CE-specific proteins had been discovered previously

(SYCE1, SYCE2 and Tex12; [28,29]), we became interested in

the localization of SYCE3 in respect to the other CE-specific

proteins. As previously described, SYCE1 is distributed rather

continuously in pachytene along synapsed areas of homologous

chromosomes, whereas SYCE2 and Tex12 localize in a more

punctuated pattern. Co-localization of SYCE3 and SYCE1 on

spread mouse spermatocytes revealed that in both zygotene and

pachytene cells these two proteins co-localize in a rather

continuous pattern along the synapsed chromosomes (Figure 4,

see inset). In contrast, double-labeling experiments with SYCE3

and SYCE2 showed that in zygotene and pachytene cells SYCE3

does not necessarily co-localize with SYCE2 (Figure 4, see inset).

Here, SYCE3 was distributed in a more continuous pattern

whereas SYCE2 appeared more punctuated.

Lateral Element Assembly As Well As Central Element
Components SYCE1, SYCE2, and Tex12 Are Not Required
for SYCE3 Chromosome Loading

To investigate the possible dependence of SYCE3 localization

on the presence of other SC-proteins, we performed immunocy-

tochemistry on spread spermatocytes of mice deficient for SYCP1

[27], SYCP3 [20], SYCE1 [30], SYCE2 [31] and Tex12 [32]. In

the absence of SYCP3, double-labeling for SYCE3 and SYCP1

showed that SYCE3 mimics SYCP1 localization, indicating that

SYCE3 is loaded only to synaptic chromosome regions (Figure 5B).

In Sycp12/2 mice, SYCE3 is completely absent from the AEs

(Figure 5A). In the absence of CE protein SYCE1, on the other

hand, SYCE3 localizes to the AEs in a weak discontinuous pattern

which is independent of whether AEs are in close apposition or not

(Figure 5C, and insets therein). In mice lacking CE protein

Figure 1. Identification and characterization of mouse SYCE3. (A) Multiple alignment of full-length SYCE3 protein sequences of various
vertebrates. A predicted tyrosine phosphorylation site is marked in green, and a conserved serine phosphorylation site in red (calculated for the
mouse protein sequence). (B) Tissue-specific expression pattern of SYCE3 mRNA as shown by RT-PCR analysis with SYCE3 specific oligonucleotides.
(C) Temporal expression pattern of SYCE3 during mouse spermatogenesis analyzed by RT-PCR using RNA of testicular cells from mice of different
ages (day 8–25) and Western blot analysis using 56105 cells of the same mice separated on a 16%/6 M urea tricine-SDS gel and detection of SYCE3
with affinity purified guinea pig anti-SYCE3 antibody.
doi:10.1371/journal.pgen.1002088.g001
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SYCE2, SYCE3 localized to small foci at closely aligned

chromosome axes (Figure 5D, and insets therein). As expected,

SYCE3 also localized to small foci in mice lacking Tex12 (data not

shown).

Taken together, the results described in the first part of this

study lead to the conclusion that SYCE3 is a novel, meiosis-

specific component of the CE of mammalian SCs. Chromosome

loading of SYCE3 appears to require SYCP1, but no other

currently known, CE-specific proteins.

SYCE3 Is Required for Male and Female Fertility
To gain deeper insights into the function of SYCE3, we

generated a mouse strain lacking the SYCE3 protein. To this end,

we replaced the two exons coding for the full-length protein with a

neomycin cassette by electroporating a modified pKSloxPNT

vector for gene-replacement into R1/E ES cells (Figure S2A; [37]).

Using PCR and Southern blot we identified one positive ES cell

clone (Figure S2B, S2C), which was injected into blastocysts of a

C57BL/6 mouse to generate chimeric animals. Mating of

chimeras resulted in heterozygote animals, which produced

Figure 2. SYCE3 selectively localizes to the synapsed areas of
homologous chromosomes. (A) Mouse spermatocytes in zygotene,
pachytene, diplotene and diakinesis stages stained for SYCE3 (green)
and SYCP3 (red). Bar, 10 mm. (B) Pachytene spermatocytes marked with
SYCE3 (green) and SYCP1 (red). (C) Mouse pachytene oocyte labeled
with SYCE3 (green) and SYCP3 (red). Images were acquired using a
fluorescence microscope. Bar, 7.5 mm.
doi:10.1371/journal.pgen.1002088.g002

Figure 3. SYCE3 localization is restricted to the CE of the SC. (A)
Immunoelectron microscopy of frozen rat testis sections marked with
affinity purified rabbit anti-SYCE3 antibody (left panel) and a specific
antibody directed against the coiled-coil region of SYCP1 (right panel).
Arrowheads indicate gold-particles. Bar, 0.1 mm. (B) Quantification of
gold-particle distribution in EM images of SYCE3 labeled (left, n = 304)
and SYCP1 labeled samples (right, n = 135). The distance between the
center of the SC and the LE was divided into seven sections and gold-
particles were counted in each section. The CE of the SC is marked with
a horizontal grey bar whereas the horizontal black bars correspond to
LEs.
doi:10.1371/journal.pgen.1002088.g003
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offspring with the mutated locus in Mendelian ratio. Correct

deletion of Syce3 in heterozygote and homozygote animals was

confirmed by Southern blot analysis (Figure S2D). Syce32/2 mice

displayed no overt somatic phenotype, but repeated mating

attempts of wild-type with both Syce32/2 male and female mice

did not produce offspring implying that both male and female

Syce32/2 mice were infertile. Consistent with this, Syce32/2 testes

of adult mice have a clearly reduced size compared to their wild-

type littermates as previously reported for other infertile mice

(Figure S2E; i.e. [27]). In addition, many TUNEL-positive meiotic

cells (Figure S3A) and no postmeiotic cells were found in

histological sections of Syce32/2 testes, indicating a defect during

meiosis resulting in programmed cell death at stage IV (Figure 6

and Figure S3B). Compared to wild type females, ovaries of

Syce32/2 littermates showed a sharp size reduction and lacked

mature follicles suggesting a disruption of oogenesis (Figure 6).

Initiation of Synapsis Is Dependent on SYCE3
To address the question why Syce3 knockout leads to disruption

of meiosis, we performed immunofluorescence analysis on spread

mouse spermatocytes in which AEs were labeled with SYCP3 and

TFs with SYCP1 as a marker for synapsis. As expected, in wild-

type spermatocytes homologs were aligned in close juxtaposition

during zygotene (data not shown) and full synapsis was achieved

during pachytene (Figure 7A). In Syce32/2 pachytene-like

spermatocytes the vast majority of AEs of the homologs were

paired and aligned along their entire lengths. Incorrect alignment

of autosomes was very rare (Figure 7A) and was most probably due

to harsh chromosome spreading. Sex chromosomes on the other

hand were frequently unpaired and appeared as univalents

mimicking the phenotypes previously described for other CE

proteins [27,30–32]. In clear contrast to the wild-type situation,

AEs completely failed to synapse in pachytene-like Syce32/2

spermatocytes (Figure 7A).

To further investigate the effects of SYCE3 depletion on

synapsis, we compared SYCP1 localization in Syce32/2, Syce12/2

and Syce22/2 spermatocytes. As previously described, in Syce22/2

cells SYCP1-staining is confined to regions where homologous

chromosomes are in closer association (see Figure S4B and [31]).

In contrast, in Syce12/2 cells SYCP1 localizes to the chromosome

axes in a weak discontinuous pattern regardless of whether they

are closely aligned or not (see Figure S4A and [30]). A similar

distribution of SYCP1 was observed in cells deficient for SYCE3:

here, too, SYCP1 was distributed in a weak, discontinuous pattern

along the AEs, irrespective of whether they were closely aligned or

not (Figure 7A). This is in strong contrast to wild-type

spermatocytes, where SYCP1 localizes only to the synapsed areas

of homologous chromosomes, but not to aligned AEs (Figure 7A).

This suggests that SYCP1 is able to bind to the AEs via its C-

terminus, and that the N-terminal interactions are impaired in the

absence of SYCE3. Furthermore, these data clearly show that

immunofluorescence analysis obtained under our experimental

conditions can reproduce previously obtained weak immunofluo-

rescence signals (compare Figure S4 and [30,31]) and thus allow

precise comparison of the different CE-mutant phenotypes.

We also investigated the localization of other CE proteins in

Syce32/2 mice. To this end, we labeled spread Syce32/2

spermatocytes with SYCP3 as an AE marker in combination with

either SYCE1 or SYCE2. Interestingly, both SYCE1 and SYCE2

were completely absent from the axes in cells lacking SYCE3

(Figure 7A). These results provide clear evidence that SYCE3 is

required for loading of the other CE proteins.

To obtain more detailed information about synapsis defects in

the Syce3 knockout mice, we performed electron microscopic

analysis on Syce32/2 testis. In wild-type spermatocytes, normal

SCs composed of LEs with attached chromatin and a CE were

observed. In contrast, we found partially aligned AEs in Syce32/2

spermatocytes, but no CE or CE-like structures at all (Figure 7B).

This phenotype resembles the situation found in Sycp12/2 and

Syce12/2 mice, but differs from that of Syce22/2 and Tex122/2

mice in which synapsis appears to initiate due to the assembly of

short CE-like structures [30–32].

SYCE3 Is Essential for Normal Progression of Meiotic
Recombination

During leptotene, meiotic recombination is initiated by the

introduction of DNA DSBs. These sites become marked by histone

cH2AX. During leptotene and zygotene, cH2AX is located in

large domains around the DNA breaks, but as meiotic prophase I

progresses, it becomes restricted to the sex chromosomes [38]. In

Syce32/2 spermatocytes, however, immunostaining of cH2AX

revealed altered dynamics. While distribution of cH2AX in early

(leptotene, zygotene) mutant spermatocytes resembles that of early

wild-type cells (data not shown), cH2AX is not restricted to the sex

chromosomes during the pachytene-like stage (Figure 8). Instead,

cH2AX remains associated with most of the chromosomes in a

cloud-like manner. The persistence of cH2AX-staining up to the

Figure 4. SYCE3 mirrors SYCE1 localization. Co-labeling of
zygotene and pachytene spermatocyte spread preparations with SYCE3
(red) and SYCE1 or SYCE2 (green) acquired using a confocal microscope.
Co-staining for SYCE3 and SYCE1 in zygotene and pachytene
spermatocytes shows that these two proteins co-localize along the
synapsed chromosomes (see inset). In contrast, SYCE3 and SYCE2 do
not necessarily co-localize in zygotene and pachytene cells (see inset).
Here, SYCE3 is distributed in a more continuous pattern whereas SYCE2
appears more punctuated. Bar, 10 mm.
doi:10.1371/journal.pgen.1002088.g004
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advanced stages of prophase I suggests that DSBs are formed in

Syce3-deficient spermatocytes, but that they are not efficiently

repaired.

To gain additional insights into further processing of DSBs in

mutant cells, we performed immunostaining for proteins that are

specific for different recombination nodules. In wild-type mice, one

distinguishes between early nodules (ENs) which appear prior to

synapsis and assemble at sites of DSBs [39,40], transitional nodules

(TNs) during zygotene [41] and late recombination nodules (RNs)

which mark sites of future crossover events [42]. ENs assemble at

the leptotene stage and are made up of the two RecA homologs

RAD51 and DMC1. They form numerous foci along chromosome

cores and catalyze strand exchanges between homologous DNA

molecules as a first step during processing of DSBs to crossover

events [41,43]. During zygotene of wild-type mice, RAD51 and

DMC1 are gradually replaced by RPA. Thereby ENs are

transformed into TNs which appear isochronously to synapsis. It

is likely that TNs are involved in stabilization or resolution of early

Figure 5. SYCE3 chromosome loading requires SYCP1 but is independent of SYCE1, SYCE2, and SYCP3. Confocal images showing the
immunolocalization of SYCE3 (green) on spread preparations of (A) Sycp12/2 pachytene-like spermatocytes co-labeled with SYCP3 (red), of (B)
Sycp32/2 spermatocytes co-stained for SYCP1 (red) and of (C) Syce12/2 and (D) Syce22/2 pachytene-like spermatocytes co-labeled with SYCP3 (red).
In cells lacking SYCP1, SYCE3 loading is defective. In the absence of SYCP3 both SYCE3 and SYCP1 localize to synapsed regions. In cells deficient for
SYCE1, SYCE3 localizes in a weak discontinuous pattern to AE independent of whether they are in close apposition or not (see inset). Here, asterisks
mark SYCE3 staining on AEs that are not closely aligned. In Syce22/2 cells SYCE3 localizes to small foci corresponding to sites at which AEs are closely
associated (see inset). Arrowheads point to sites of SYCE3 localization in Syce22/2 cells. Bars, 5 mm.
doi:10.1371/journal.pgen.1002088.g005

Novel Synaptonemal Complex Protein SYCE3
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recombination intermediates [41,43]. In Syce32/2 spermatocytes,

RAD51 and RPA form numerous foci, localized to chromosome

cores during zygotene (data not shown). This pattern of distribution

resembles that of wild-type spermatocytes in early stages of prophase

I (data not shown). These observations are consistent with the

notion that early DNA-DNA interactions can be mediated by

RAD51 and RPA in the absence of SYCE3. However, the following

processing steps are likely to be disturbed as RAD51 and RPA

remain associated with chromosomes in pachytene-like spermato-

cytes (Figure 8). MLH1 marks presumed future crossover sites [43–

45]. Correspondingly, in wild-type pachytene spermatocytes each

bivalent displayed one or two MLH1 foci. In contrast, male

littermates lacking SYCE3 have no MLH1 foci, pointing to a

disruption of crossover formation (Figure 8).

To rule out the possibility that the persistence of RPA on

chromosome axes and the lack of MLH1 foci in Syce3-deficient

spermatocytes is due to their arrest in pachytene and their

subsequent elimination by apoptosis rather than reflecting a direct

function of SYCE3 in homologous recombination we additionally

performed a close examination of recombination in Syce32/2

oocytes at 19.5 dpc (days post coitum). In concordance with earlier

reports [46,47] the majority of 19.5 dpc oocytes were staged at late

pachytene or diplotene. Consistent with this, SCYP3 labeled AEs

were fully synapsed in wild-type pachytene oocytes. As already

described above for Syce32/2 spermatocytes synapsis was com-

pletely abolished in SYCE3-deficient pachytene-like oocytes.

Compared to the situation in the male (see Figure 7A and

Figure 8), however, pairing and alignment in 19.5 dpc Syce32/2

oocytes seemed to be more strongly affected (Figure 9A). Whether

this finding reflects a female–specific function of SYCE3 in

homologous pairing and/or alignment or is rather a secondary

effect caused by defective synapsis cannot be judged at present.

Careful analysis of recombination markers in 19.5 dpc oocytes

strongly supported the notion that SYCE3 is essential for

progression of meiotic recombination (Figure 9A). Consistent with

our findings in pachytene-like Syce32/2 spermatocytes, in 19.5 dpc

oocytes of SYCE3-deficient animals cH2AX stayed associated

with chromosome axes, unlike in oocytes of wild-type littermates

(Figure 9A). This suggests the persistence of unrepaired DSBs.

Moreover, as judged by quantitative analysis of RPA and MLH1

dynamics, processing of TNs to RNs appeared to be considerably

affected by the absence of SYCE3: In wild-type oocytes the

median of RPA foci per cell was 22 during pachytene and

decreased to 4 at diplotene stage. At the same time, the median

number of MLH1 foci per cell was 22 at pachytene and 7.5 at

diplotene stage in the controls. Thus, both the dynamics of RPA

and MLH1 foci as well as their relative abundance found in our

wild-type controls were consistent with data reported previously

[41]. In clear contrast, the median number of RPA foci in SYCE3-

deficient pachytene-like oocytes was significantly higher compared

to wild-type controls (67 vs. 22; p,0.001). Additionally, RPA foci

persisted on chromosome axes of Syce32/2 oocytes at diplotene-

like stage (median, 27 vs. 4; p,0.001) indicating that processing of

TNs to RNs was impaired in the absence of SYCE3 (Figure 9B). In

line with this notion, MLH1 was virtually completely absent from

chromosome axes of Syce32/2 oocytes at both late pachytene-

(median, 0) and dilpotene-like stage (median, 0) (Figure 9B). To

rule out the possibility that the considerable alterations of RPA

and MHL1 dynamics in SYCE3-deficient oocytes could be caused

by a delay of meiotic progression per se, we quantified the ratio of

pachytene (WT, n = 44; Syce32/2, n = 53) and diplotene (WT,

n = 33; Syce32/2, n = 35) stages in 19.5 dpc oocytes of both

Syce32/2 and wild-type females. Here, no significant difference

could be observed (p = 0,688; Figure 9C).

Together, our data strongly argues that while progression

through meiotic stages per se remains unaffected by the loss of

SYCE3 in females, progression of recombination (i.e. processing of

recombination intermediates into MLH1-marked late RNs, which

Figure 6. Syce3 mutation results in disruption of meiosis. Histological analysis of testes (day 30) and ovaries (day 32) from Syce3+/+, Syce3+/2

and Syce32/2 mice stained with haematoxylin and eosin. Syce32/2 testis lack postmeiotic stages whereas all stages of the spermatogenic cycle occur
in the wild-type testis. The size of mutant ovaries is greatly reduced compared to wild-type littermates and additionally Syce32/2 ovaries are
completely depleted of follicles. (Ser) Sertoli cells, (Sc) spermatocytes, (Sp) spermatids, (eSp) elongated spermatids, (aSc) apoptotic spermatocytes,
(Sg) spermatogonia, (Oc) oocyte, (Od) oviduct. Long and short bars, 100 mm and 175 mm, respectively.
doi:10.1371/journal.pgen.1002088.g006
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are presumed markers of future crossovers in the wild-type) is

critically depending on its presence.

SYCE3 Is Part of a Central Element Protein Complex
We demonstrated that SYCE3 is important for fertility,

initiation of synapsis and for a correct progression of meiotic

recombination. Hence, we were interested in identifying binding

partners of SYCE3 that would provide mechanistic insights into

SYCE3 function. As the localization of the other CE components,

SYCE1, SYCE2 and Tex12, is severely altered in Syce32/2 mice,

they appear to be good candidates for being SYCE3 binding

partners. Therefore, we performed co-transfection/immunopre-

cipitation experiments in somatic cells that do not express meiosis-

specific proteins according to the approach described by Stewart-

Hutchinson et al. [48]. COS-7 cells were transfected with EGFP-

or myc-tagged fusion constructs of SYCE1, SYCE2, Tex12,

SYCP1 N-terminus, SYCP1 C-terminus (as a control) and

SYCE3. We used either a myc or an EGFP-specific antibody for

precipitation. We found that SYCE3 interacts with SYCE1

(Figure 10A, 10B), which is consistent with the highly similar

spatial-temporal expression of these two proteins. Interestingly, we

show that SYCE3 also binds to SYCE2 although these two

proteins do not exactly colocalize in pachytene spermatocytes

(Figure 10C, 10D). However, under these experimental conditions,

we could not detect an interaction between SYCE3 and Tex12 or

the N- or C-terminus of SYCP1 (Figure 10E, 10F, 10G, see also

below).

Discussion

Meiotic chromosome synapsis is essential for proper meiotic

progression as well as for male and female fertility. A critical step

during this process is the assembly of the CE of the SC. In

mammals, four proteins have been described which are essential

for CE assembly: SYCP1, SYCE1, SYCE2 and Tex12. While

Figure 7. Initiation of synapsis is dependent on SYCE3. (A) Immunostaining of spread preparations of wild-type pachytene and Syce32/2

pachytene-like spermatocytes with SYCP3 (red) and SYCP1, SYCE1 or SYCE2 (green) acquired using a confocal microscope. In Syce32/2

spermatocytes, SYCP1 localizes in a weak discontinuous pattern at AEs independent of whether they are closely aligned or not. In contrast, SYCE1 and
SYCE2 are completely absent from the AEs in SYCE3 deficient mice. Bars, 10 mm. (B) Electron micrographs showing synaptonemal complex assembly
in wild-type and Syce32/2 spermatocytes. (LE) lateral elements, (CE) central element, (AE) axial elements. Bar, 200 nm.
doi:10.1371/journal.pgen.1002088.g007
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SYCP1 is a component of the CE and TFs, the latter three

proteins only localize to the CE [23,24,28,29]. Here, we have

identified SYCE3, a novel meiosis-specific protein that selectively

localizes to the CE of the SC.

SYCE3 Is Required for Initiation of Central Element
Assembly and Chromosomal Loading of Central
Element–Specific Proteins

Detailed analyses of Syce2 and Tex12 knockout mice showed that

loss of each of these two genes causes infertility in both sexes. In

both null mice, meiotic chromosomes align, and AEs form, but

they do not synapse. Although synapsis between homologs is

initiated at multiple positions along the axes, it fails to propagate

along the entire chromosomes. SYCP1 and SYCE1 colocalize at

these sites of synapsis initiation and, as revealed at the electron

microscopical level, short CE-like structures become assembled.

Furthermore, correct progression of meiotic recombination is

altered in cells lacking SYCE2 or Tex12. Altogether, these data

and the direct interaction of SYCE2 and Tex12 lead to the model

that both SYCE2 and Tex12 are required for the longitudinal

polymerization of SYCP1 filaments along the axial elements and

thus for the propagation of synapsis along the homologs [31,32].

Elimination of SYCE1 - the other currently known CE protein -

displays a different phenotype. The absence of SYCE1 leads to the

alignment of homologous chromosomes with a disrupted synapsis,

but, in contrast to SYCE2 and Tex12 knockout mice, SYCE1-

deficient mice display no sites of synapsis initiation and no CE-like

structures at all. In these mice, SYCP1 is located in a weak

discontinuous pattern along AEs, whether they are closely aligned

or not. This indicates that under physiological conditions SYCP1

alone is insufficient for formation of stable head-to-head polymers

for which CE proteins are required. Despite this striking difference

to SYCE2 and Tex12 null mice, SYCE1-deficient mice also

exhibit a disturbed progression of meiotic recombination [30].

Taken together, analysis of these central region knockout mice

leads to three main conclusions: (1) The organization of the central

region appears to be highly complex, (2) disruption of any

currently known protein component causes defective synapsis

leading to severe meiotic defects and infertility and (3) the correct

assembly of the central region is also required for normal

progression of meiotic recombination [27,30–32].

Here, we have demonstrated that in wild-type cells SYCE3

distribution closely resembles SYCE1 localization (Figure 4;

[28,29]). Thus, we expected that SYCE3 is likely involved in a

complex with SYCE1. Consistent with this assumption, no CE-like

structures were detected in the EM analysis of Syce32/2 mouse

testis sections (Figure 7B). The complete absence of any CE-like

structure strongly suggests that, in contrast to SYCE2 and Tex12,

Figure 8. Complete repair of DSBs and crossover formation is not observed in Syce32/2 spermatocytes. Immunostaining of spread
preparations of wild-type pachytene and Syce32/2 pachytene-like spermatocytes for cH2AX (red) and SYCP3 (green), RAD51 (green) together with
SYCP3 (red), RPA (green) co-labeled with SYCP3 (red) and MLH1 (green) co-stained with SYCP3 (red). Images shown in row two to four were acquired
using a confocal laser scanning microscope. Bars, 10 mm.
doi:10.1371/journal.pgen.1002088.g008
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SYCE3 is required for initiating synapsis. Furthermore, we have

shown that SYCE1 and the SYCE2/Tex12 complex do not

localize to chromosomes in Syce32/2 spermatocytes (Figure 7A).

The lack of CE-like structures and CE-specific proteins indicates

that SYCE3 is required upstream of SYCE1, SYCE2 and Tex12

and downstream of SYCP1 during the initiation of CE assembly.

A possible function of SYCE3 could be to enable recruitment of

SYCE1 and the SYCE2/Tex12 complex to SYCP1 N-termini.

Loading of SYCE1 and SYCE2 to SYCP1 in turn would stabilize

SYCP1 N-termini as proposed by Costa et al. [28]. This hypothesis

is consistent with our results obtained from co-immunoprecipita-

tion assays with transfected COS-7 cells, revealing that SYCE3 is

capable of binding SYCE1 as well as SYCE2 (Figure 10).

However, whether the role of SYCE3 in CE assembly is of a

structural or regulatory character still needs to be clarified.

Taken together, we conclude that SYCE3 is essential for

initiating synapsis and for chromosomal loading of SYCE1 and the

SYCE2/Tex12 complex.

According to our present knowledge the behavior of SYCP1

and SYCE3 in meiotic cells lacking certain CE-specific proteins

remains somewhat puzzling. In wild-type cells SYCP1 localization

is restricted to synapsed chromosome axes. By contrast, in the

absence of SYCE1, SYCP1 is observed in a weak, discontinuous

pattern at the unsynapsed chromosome axes, no matter whether

they were closely aligned or not. However, this is not the case in

the absence of SYCE2 or Tex12, as under these conditions SYCP1

exclusively localizes to small foci at the sites of synapsis initiation

[31]. These observations led to the hypothesis that SYCE1 is

required to restrict SYCP1 to synapsed areas [30]. Our finding

that SYCE3 also localizes to unsynapsed chromosome axes in

SYCE1 null spermatocytes suggests that SYCE3 restriction to

synapsed areas also depends on SYCE1 (Figure 5C). Nevertheless,

we presently have no satisfactory explanation as to how this

restricted localization can be accomplished. Another aspect that

would require further investigation is the relationship between

SYCP1 and SYCE3. As mentioned above, chromosomal loading

Figure 9. Complete repair of DSBs and crossover formation is not observed in Syce32/2 oocytes. (A) Immunofluorescence analysis on
mouse oocytes collected from 19.5 dpc littermates. Wild-type and Syce32/2 oocytes double stained for cH2AX (first row), RPA (second row) or MLH1
(third row) and SYCP3 are shown. Images were acquired using a confocal laser scanning microscope. Bars, 10 mm. (B) Numbers of RPA foci (left) in
pachytene (WT, n = 21; Syce32/2, n = 27) and diplotene (WT, n = 15; Syce32/2, n = 15) oocytes depicted in a box-and-whisker plot. Box-and-whisker
plot of MLH1 foci (right) counted in pachytene (WT, n = 23; Syce32/2, n = 26) and diplotene (WT, n = 18; Syce32/2, n = 20) oocytes. (C) Pachytene/
diplotene ratio of oocytes collected from control (n = 77) or Syce32/2 (n = 88) 19.5 dpc littermates.
doi:10.1371/journal.pgen.1002088.g009
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of SYCE3 requires SYCP1. On the other hand, in our co-

transfection/immunoprecipitation studies we obtained no evi-

dence for an interaction between SYCP1 and SYCE3 (Figure 10).

One possibility might be that interaction between these two

proteins requires higher order structures of SYCP1 (for example

dimerization or N-terminal association of dimers) that cannot

occur under the conditions of the experimental assays. However,

the existence of additional, yet undiscovered CE proteins that

would mediate this binding cannot be ruled out a priori.

Homologous Recombination Fails to Complete in the
Absence of SYCE3

In early spermatocytes of Syce3-deficient mice cH2AX is

distributed as in wild-type animals suggesting that homologous

recombination is initiated in a wild-type manner. However, in

later stages of prophase I cH2AX shows altered dynamics in

spermatocytes and oocytes. In these cells it remains associated with

chromosomes (Figure 8 and Figure 9). Thus we suggest that

induced DSBs are repaired inefficiently in Syce3 knockout

meiocytes. This assumption is further supported by the analysis

of components of the recombination machinery that assemble at

the sites of DSBs as a further step during the process of meiotic

recombination [41,43]. In the absence of SYCE3, both Syce32/2

spermatocytes and oocytes reveal differences to the wild-type:

RAD51 - as well as RPA foci - stay associated with chromosomal

cores and virtually no MLH1 signal is detectable (Figure 8 and

Figure 9).

The observed defects indicate that the exchange of homologous

DNA strands (catalyzed by RAD51) and the formation of early

recombination intermediates can take place in the absence of

SYCE3, but further processing of the recombination sites fails to

occur. As a consequence, no crossovers are formed in Syce32/2

meiocytes (see also [41,43]). Interestingly, disruption of the CE by

eliminating either Syce1, Syce2 or Tex12 results in a similar

Figure 10. SYCE3 interacts with SYCE1 and SYCE2. Co-immunoprecipitation analysis was carried out by using transfected COS-7 cells. Cells
were transfected with myc-SYCE3 and the respective EGFP fusion constructs of SYCE1, SYCE2, Tex12, SYCP1 1–200 and SYCP1 820–997. Protein-
complexes were immunoprecipitated overnight with either an anti-myc antibody (A, C, E, F and G, bait: myc-SYCE3) or an anti-EGFP antibody (B, bait:
EGFP-SYCE1; D, bait: EGFP-SYCE2) and analyzed by Western blot analysis. As a negative control, we performed an immunoprecipitation using the
same antibody but cells that were solely transfected with the ‘‘prey’’ protein in parallel to each experiment. The input sample contained 5% of the
total proteins used for the immunoprecipitation. Upper panels in each sub-figure show the detection of prey protein. Arrowheads indicate specific
co-immunoprecipitated proteins. The lower part of each panel displays detection of the bait protein. Asterisks mark heavy chains of
immunoglobulins (anti-myc or anti-EGFP antibody) utilized for immunoprecipitation. (A) myc-SYCE3 co-precipitates EGFP-SYCE1 highlighted by the
arrowhead marking the SYCE1 specific band. (B) ‘‘Reverse’’ co-immunoprecipitation showing that EGFP-SYCE1 precipitates myc-SYCE3 (arrowhead
marks myc-SYCE3). It can be seen in (C) that myc-SYCE3 pulls down EGFP-SYCE2 (arrowhead). (D) ‘‘Reverse’’ co-immunoprecipitation with EGFP-SYCE2
pulling down myc-SYCE3. (E–G) myc-SYCE3 does not bind to SYCP1 1-200-EGFP (E), EGFP-SYCP1 820–997 (F) or Tex12-EGFP (G).
doi:10.1371/journal.pgen.1002088.g010
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recombination phenotype. Our observations confirm and extend

the notion that CE assembly and CE-specific protein components

are not necessary for recombination initiation but essential for

recombination progression [27,30–32].

What is the physical link between the recombination machinery

and the SC? In mammals, early recombination events and

formation of ENs take place before SC central region assembly

[27]. Early recombination events also appear to be independent of

AE assembly during leptotene/zygotene as shown in mice lacking

SYCP3. In these mice, AE assembly is impaired. However, they

show normal levels of DMC1 foci formation and synapsis occurs

between homologous chromosome regions [21,22]. Recombina-

tion progression and crossover formation can also take place in the

absence of AE assembly. As shown in female Sycp32/2 mice,

oocytes reveal the presence of chiasmata but at a lower level than

in the wild-type, which results in a reduction but not a complete

loss of fertility [21]. In contrast, assembly of the SC central region

is required for recombination progression and crossover formation

as shown in mice lacking TF protein SYCP1 or any of the CE-

specific proteins ([27,30–32]; this study).

Previous electron microscopical studies revealed a close contact

between RNs and SC components (e.g. [49,50]). RNs seem to

coalesce with the CE and fibers were shown to connect RNs and

LEs [50]. These and other observations lead to the proposal that

components of RNs might play a role in SC assembly. On the other

hand, the SC central region can be seen as a platform for

attachment and organization of RN components required for

proper recombination progression (see [50], [30] and references

therein). Our knowledge about the protein-protein interactions

between components of the recombination machinery and the SC

of mammals is rather fragmentary. Interactions have been reported

between RAD51 and TF protein SYCP1 as well as CE protein

SYCE2 [30,51], and between TN component Tex11 (ZIP4H) and

LE protein SYCP2 [52]. Although still preliminary, the emerging

picture leads to the proposal that SCs and RNs are held together

through a network of protein-protein interactions. Therefore, the

recombination phenotype described here might be caused by the

inability of RN components to bind SYCP1 and SYCE2 due to the

defective localization and assembly of these proteins. However, a

direct involvement in these interactions of additional CE element

proteins (including SYCE3) cannot be excluded at present. Despite

the progress in recent years, elucidation of the mutual dependence

between SC assembly and meiotic recombination events would

require additional experiments.

Materials and Methods

Ethics Statement
All animal care and experiments were conducted in accordance

with the guidelines provided by the German Animal Welfare Act

(German Ministry of Agriculture, Health and Economic Cooper-

ation). For the generation of Syce3 knockout mice we obtained

approval from the Landesdirektion Dresden (24-9168.11-9/2005-

1). Animal housing and breeding was approved by the regulatory

agency of the city of Würzburg (Reference ABD/OA/Tr;

according to 111/1 No. 1 of the German Animal Welfare Act).

All aspects of the mouse work were carried out following strict

guidelines to insure careful, consistent and ethical handling of

mice.

Primary Structure Analysis, Posttranslational
Modifications, and Sequence Alignment

Taking the mouse SYCE3 protein sequence (GenBank

accession number: NP_001156354) as query we analyzed

predicted coiled-coil domains using PSORTII (http://psort.hgc.

jp/) [53] and predicted phosphorylation sites (http://www.cbs.dtu.

dk/services/NetPhos/) [54]. The mouse Syce3 cDNA sequence

also served as query for searching all GenBank sequences with

the BlastN and TBlastN algorithm (http://blast.ncbi.nlm.nih.

gov/Blast.cgi). Multiple sequence alignments were performed

online with CLUSTALW (http://www.ebi.ac.uk/Tools/clustalw2/

index.html) [55].

RNA Extraction, Reverse Transcription, PCR, and cloning
of SYCE3 cDNA

Whole RNA from mice testes from different ages and from

various tissues of adult mice was extracted using peqGOLD

TriFastTM (Peqlab, Erlangen, Germany) according to the

manufacturer’s protocol. cDNA was synthesized from 1 mg of

RNA by reverse transcription with Oligo(dT) primers and M-

MLV reverse transcriptase (Promega, Mannheim, Germany).

Reverse transcribed cDNA samples were stored at 220uC before

they were used in a polymerase chain reaction. Specific primers

used for RT-PCRs and respective PCR conditions are listed in

Table S1. In order to clone SYCE3 cDNA (GenBank accession

number: HQ130280), we amplified full-length SYCE3 from

cDNA derived from a reverse transcription of total testis RNA,

as described above and using the same oligonucleotides and PCR

conditions described for SYCE3 RT-PCR (Table S1).

Antibody Generation
To raise SYCE3 specific antibodies, we generated and purified

a GST-SYCE3 fusion protein using the vector pGEX-5X-1

(Amersham Pharmacia Biotech, Braunschweig, Germany) and the

Bulk GST Purification Module (Amersham) according to the

manufacturer’s protocol. Anti-SYCE3 antisera were raised by

immunizing a rabbit and a guinea pig with the purified GST-

SYCE3 fusion protein (Seqlab, Göttingen, Germany). Specificity

of both affinity-purified antibodies was validated by testing them

on separate Western blots with protein lysates from wild-type,

Syce3+/2 and Syce32/2 littermates (generation of Syce32/2 mice is

described below). The presence of the expected band of 12 kDa in

wild-type and Syce3+/2 testis lysates and moreover the absence of

the aforementioned band in Syce32/2 testis lysates confirmed the

specificity of both antibodies (see Figure S1A).

SDS-PAGE, Tricine-SDS-PAGE, and Immunoblot Analysis
Protein samples derived from co-immunoprecipitation analysis

were separated on 10%–15% polyacrylamide gels [56]. Separation

of protein samples from testicular cells of adult mice was carried

out by using tricine-SDS-PAGE (16% separating gel/6 M urea;

[57]). Proteins were transferred to nitrocellulose membranes using

the semi-dry Western blotting system described by Matsudaira

[58]. The membranes were blocked overnight at 4uC in TBST

buffer (10 mM Tris/HCl, pH 7.4, 150 mM NaCl, 0.1% Tween

20) containing 5% milk powder. Incubation with the respective

primary antibody was carried out in blocking solution for 1 h at

room temperature: guinea pig anti-SYCE3 (1:1000), rabbit anti-

SYCE3 (1:1000), mouse anti-myc (1:2000; R950-25, Invitrogen,

Darmstadt, Germany), mouse anti-GFP (1:200; sc-9996, Santa

Cruz Biotechnology, Heidelberg, Germany), guinea pig anti-

SYCE1 (1:1000) [29], guinea pig anti-SYCE2 (1:400) [29], mouse

anti-actin (1:10000, A4700, Sigma-Aldrich, Munich, Germany).

Peroxidase-conjugated secondary antibodies were applied as

specified by the manufacturer (Dianova, Hamburg, Germany).

Bound antibodies were detected with the enhanced chemilumi-

nescence system (Amersham). Western blots were stripped by
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incubating the membranes for 30 min in 0.1 M glycine buffer

(pH 2.5) followed by a 30 min incubation in 0.1 M Tris buffer

containing 2% SDS and subsequently washing three times in

TBST.

Immunocytochemistry and Histology
Spread-preparations of meiocytes were produced as described

by de Boer et al. [59] and in each experiment spread-preparations

were immunostained at the same time with the same mixture of

the appropiate affinity-purified primary antibodies: rabbit anti-

SYCE3 (1:50), guinea pig anti-SYCE3 (1:100), guinea pig anti-

SYCE1 (1:1000) [29], guinea pig anti-SYCE2 (1:200) [29], guinea

pig anti-SYCP1 (1:150) [60], rabbit anti-SYCP1 (1:200) [26],

guinea pig anti-SYCP3 (1:150) [61], rabbit anti-SYCP3 (1:200;

NB300-232, Acris, Herford, Germany) mouse anti-cH2AX (1:500;

05-636, Millipore, Schwalbach/Ts., Germany), mouse anti-RPA

(1:40; NA19L, Calbiochem, Darmstadt, Germany), rabbit anti-

RAD51 (1:30; PC130, Calbiochem), mouse anti-MLH1 (1:30;

551091, BD Pharmingen, Heidelberg, Germany). Secondary

antibodies were applied as specified by the manufacturer (Dianova).

Histology was performed on 5 mm sections of paraffin-embedded

testis or ovary tissue fixed overnight in 4% formaldehyde according

to standard protocols. Staging of mouse seminiferous tubule cross-

sections was done according to Ahmed and de Rooij [62]. A

TUNEL assay was carried out on 10 mm sections of paraffin

embedded testis or ovary tissue fixed overnight in 4% formaldehyde

using the ApopTag Peroxidase In Situ Apoptosis Kit (Millipore)

according to the manufacturer’s protocol.

Statistical Analysis
Statistically significant differences in the medians of RPA and

MLH1 foci comparing Syce32/2 and control cells were verified by

Mann-Whitney U test. Numbers of pachytene and diplotene stages

from control and Syce32/2 19.5 dpc oocytes were statistically

compared using a chi-square test.

Microscopy and Imaging
Fluorescence microscopy was carried out by using a Zeiss

Axiophot fluorescence microscope (Zeiss, Munich, Germany)

equipped with a Plan-NEOFLUAR 406/0.75 or a Plan-NEO-

FLUAR 206/0.5 objective and the AxioCam MRm (Zeiss)

camera. Digital images were pseudocoloured using the AxioVs40

V4.7.1.0 software release and processed using Adobe Photoshop

(Adobe Systems, San Jose, CA). Light microscopy was carried out

using the stereo microscope MZ FLIII (Leica). Confocal laser

scanning microscopy was performed with a Leica TCS-SP2

confocal laser scanning microscope (Leica, Bensheim, Germany)

equipped with a 636/1.40 HCX PL APO lbd.BL oil-immersion

objective. All confocal images are pseudocoloured using the Leica

TCS-SP2 software and are two-dimensional projections calculated

from a series of sequenced optical sections using the maximum

projection algorithm (Leica). Imaging of wild-type and mutant

SYCE1, SYCE2, SYCP1, SYCP3 and SYCE3 cells was

performed using the same microscope settings. Digital images

were processed with the same settings in Adobe Photoshop (Adobe

Systems).

Electron Microscopy
Electron microscopy was performed using ultra thin sections of

testis tissue fixed in 2.5% glutaraldehyde and 1% osmium

tetroxide as described previously [22]. For immunoelectron

microscopy 10 mm cryosections of rat testis were fixed with

acetone for 10 min at 220uC and air-dried. Incubation with

primary antibodies (guinea pig anti-SYCE3 (1:500–1:1500); mouse

anti-SYCP1 (1:50) [26] was carried out in a humidified box for 4 h

at room temperature. After rinsing twice in PBS, sections were

fixed for 10 min in 2% formaldehyde and blocked with 50 mM

NH4Cl. 6 nm gold conjugated secondary antibodies were

incubated overnight at 4uC and samples were washed subsequent-

ly in PBS. Samples were fixed for 30 min in 2.5% glutaraldehyde

and postfixed in 2% osmium tetroxide. After rinsing three times

with H2O, samples were dehydrated in an ethanol series and

embedded in Epon. Ultrathin sections were stained with uranyl

acetate and lead citrate according to standard procedures [22].

Generation of Syce32/2 Mice
We deleted the Syce3 gene by replacing the entire coding

sequence of SYCE3 (exons 2 and 3) with a neomycin cassette in

reverse orientation using a modified pKSloxPNT vector. The

vector for homologous recombination was designed as follows (see

also Figure S2A): a 1.1 kbp genomic fragment (F1) containing part

of intron 1 was cloned into the SalI restriction site downstream of

the neomycin cassette and a 4.1 kbp fragment (F2) containing part

of intron 3 was ligated into the EcoRI restriction site located in

between the thymidine kinase and neomycin cassette. Electropo-

ration of the modified replacement vector into the R1/E

embryonic stem cells, laser assisted microinjection into 8-cell

C57BL/6 morula and transfer of morula into CD1 (outbred) foster

mice was performed at the transgenic core facility of the Max

Planck Institute of Molecular Cell Biology and Genetics, Dresden.

After electroporation and selection, we identified one positive ES

cell clone by PCR with external primers (oligonucleotide sequence

for genotyping: see Table S2) and confirmed correct targeting by

Southern blot. For Southern blot analysis 10 mg BstEII digested

DNA derived from ES cells (or tail tips of Syce3+/+, Syce3+/2 and

Syce32/2 mice) was loaded on a 0.8% agarose gel, subsequently

transferred to a nylon membrane and correct insertion was tested

with both external and neomycin probes. Blastocyst injection of

the ES cell clone produced germline transmitting chimeras.

Mating of chimeras with C57BL/6 mice gave rise to wild-type

and Syce3+/2 mice. Intercrossing of Syce3+/2 mice produced

offspring with all genotypes in Mendelian ratio. To confirm the

absence of SYCE3 we performed PCR, Southern blot, immuno-

fluorescence analysis on spread Syce32/2 spermatocytes and

Western Blot analysis on Syce32/, testis tissue with polyclonal

antibodies raised against the full-length SYCE3 protein (data not

shown and Figure S1A).

Transfection and Co-Immunoprecipitation
In order to express full-length SYCE3, SYCE1, SYCE2, Tex12

as well as SYCP1 N-terminal (aa 1–120) and SYCP1 C-terminal

(aa 820–997) fusion constructs in the culture cell line COS-7

(green monkey kidney) for co-immunoprecipitation analysis, the

respective cDNAs were inserted into pEGFP (Clontech, Heidel-

berg, Germany) or pCMV-Myc (BD Bioscience) vectors [60]. The

fusion-constructs used (including the oligonucleotides used for

cloning) are summarized in Table S3. Cells were transfected with

the respective constructs using the effectene system according to

the manufacturer’s instructions (Qiagen, Hilden, Germany). Co-

immunoprecipitation experiments were performed as described by

Stewart-Hutchinson et al. [48] with the following modifications: (1)

myc and EGFP constructs were immunoprecipitated with 0.5 mg

of mouse anti-myc (R950-25, Invitrogen) or 0.5 mg of mouse anti-

GFP (sc-9996, Santa Cruz Biotechnology) antibody per 60-mm

dish. (2) Immune complexes were pulled down by protein G

dynabeads (100-03D, Invitrogen).
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Supporting Information

Figure S1 SYCE3 is expressed in mouse testis. (A) Specificity of

affinity purified anti-SYCE3 antibodies. Western blot analysis of

Syce3+/+, Syce3+/2 and Syce32/2 testis tissue separated on a 16%/

6 M urea tricin-SDS gel and detection of SYCE3 with an affinity

purified rabbit anti-SYCE3 (left) and an affinity purified guinea pig

anti-SYCE3 antibody (right). The same Western blots were

stripped and incubated with a mouse anti-actin antibody as a

loading control. (B) SYCE3 localization is restricted to meiotic

cells. Immunolocalization of SYCE3 (green) on frozen sections of

an adult wild-type mouse testis. DNA is labeled with Hoechst.

(eSp) elongated spermatids, (Sc) spermatocytes, (Sg) spermatogo-

nia, (Ser) Sertoli cells. Bar, 50 mm.

(TIF)

Figure S2 Generation and characterization of a Syce32/2

mouse. (A) Structures of the Syce3 gene located on chromosome

15, the replacement vector and the mutant containing the

neomycin cassette. The location of the Southern blot probe and

the lengths of expected fragments after BstEII digestion of wild-

type and mutant samples is depicted below. (B) Long arm (F2) and

short arm (F1) PCR of positively tested ES cell clone using external

oligonucleotides. (C) Southern blot of a wild-type and positively

tested ES cell clone with a SYCE3 specific external probe (left) and

neomycin-specific probe (right). (D) Correct insertion of the

replacement vector and genotyping of Syce32/2 mice was

confirmed by Southern blot analysis using a SYCE3 specific

external probe (left) and neomycin-specific probe (right). (E) Testes

from Syce3+/+ (left) and Syce32/2 (right) littermates. Bar, 200 mm.

(TIF)

Figure S3 Loss of SYCE3 results in massive apoptotic events

during spermatogenesis. (A) TUNEL assay on paraffin embedded

testis sections from wild-type, heterozygote and homozygote

Syce32/2 mice (day 30). TUNEL positive stained cells are labeled

in green, DNA is shown in blue. Bar, 40 mm. (B) Light microscopic

images of testis sections from paraffin embedded Syce32/2 mice

showing stage X-II, IV and V–VI tubules. In stage X-II type A

spermatogonia and zygotene or pachytene spermatocytes are

present. Stage IV is characterized by intermediate spermatogonia

and apoptotic pachytene spermatocytes. In type V–VI, B type

spermatogonia can be distinguished. (Ser) Sertoli cells, (P)

pachytene cells, (A) type A spermatogonia, (aP) apoptotic

pachytene cells, (In) intermediate spermatogonia and (B) type B

spermatogonia. Bar, 10 mm.

(TIF)

Figure S4 SYCP1 localization in Syce12/2 and Syce22/2

spermatocytes. Immunofluorescence analysis of spread prepara-

tions of wild-type and (A) Syce12/2 or (B) Syce22/2 mouse

spermatocytes stained with SYCP1 and SYCP3. As previously

described, SYCP1 localizes to Syce12/2 AEs in a weak

discontinuous pattern (A and [30]), whereas SYCP1-staining is

confined to sites of closer association of homologs in Syce22/2

spermatocytes (B, and [31]). These results clearly demonstrate that

under our experimental conditions we can reproduce previously

described weak immunofluorescence signals, consequently allow-

ing a precise comparison of different CE-mutant phenotypes. Bar,

10 mm.

(TIF)

Table S1 Sequence of primers and PCR conditions used for

RT-PCR.

(DOC)

Table S2 Sequence of primers used for genotyping electropo-

rated R1/E cells and SYCE3 knockout mice.

(DOC)

Table S3 EGFP- and myc-fusion constructs used for co-

immunoprecipitation analysis. Columns 2 and 3 show primers

used for cloning and column 4 the target vector.

(DOC)
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22. Liebe B, Alsheimer M, Höög C, Benavente R, Scherthan H (2004) Telomere

attachment, meiotic chromosome condensation, pairing, and bouquet stage

duration are modified in spermatocytes lacking axial elements. Mol Biol Cell 15:

827–837.

Novel Synaptonemal Complex Protein SYCE3

PLoS Genetics | www.plosgenetics.org 14 May 2011 | Volume 7 | Issue 5 | e1002088



23. Meuwissen RLJ, Offenberg HH, Dietrich AJJ, Riesewijk A, van Iersel M, et al.

(1992) A coiled-coil related protein specific for synapsed regions of meiotic
prophase chromosomes. EMBO J 11: 5091–5100.

24. Liu JG, Yuan L, Brundell E, Björkroth B, Daneholt B, et al. (1996) Localization

of the N-terminus of SCP1 to the central element of the synaptonemal complex
and evidence for direct interactions between the N-termini of SCP1 molecules

organized head-to-head. Exp Cell Res 226: 11–19.
25. Schmekel K, Meuwissen RL, Dietrich AJJ, Vink ACG, van Marle J, et al. (1996)

Organization of SCP1 protein molecules within synaptonemal complexes of the

rat. Exp Cell Res 226: 20–30.
26. Ollinger R, Alsheimer M, Benavente R (2005) Mammalian protein SCP1 forms

synaptonemal complex-like structures in the absence of meiotic chromosomes.
Mol Biol Cell 16: 212–217.

27. de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, et al. (2005)
Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombina-

tion, and XY body formation. Genes Dev 19: 1376–1389.

28. Costa Y, Speed R, Ollinger R, Alsheimer M, Semple CA, et al. (2005) Two
novel proteins recruited by synaptonemal complex protein 1 (SYCP1) are at the

centre of meiosis. J Cell Sci 118: 2755–2762.
29. Hamer G, Gell K, Kouznetsova A, Novak I, Benavente R, et al. (2006)

Characterization of a novel meiosis-specific protein within the central element of

the synaptonemal complex. J Cell Sci 119: 4025–4032.
30. Bolcun-Filas E, Hall E, Speed R, Taggart M, Grey C, et al. (2009) Mutation of

the mouse Syce1 gene disrupts synapsis and suggests a link between synaptonemal
complex structural components and DNA repair. PLoS Genet 5: e1000393.

doi:10.1371/journal.pgen.1000393.
31. Bolcun-Filas E, Costa Y, Speed R, Taggart M, Benavente R, et al. (2007)

SYCE2 is required for synaptonemal complex assembly, double strand break

repair, and homologous recombination. J Cell Biol 176: 741–747.
32. Hamer G, Wang H, Bolcun-Filas E, Cooke HJ, Benavente R, et al. (2008)

Progression of meiotic recombination requires structural maturation of the
central element of the synaptonemal complex. J Cell Sci 121: 2445–2451.

33. Romanienko PJ, Camerini-Otero RD (2000) The mouse Spo11 gene is required

for meiotic chromosome synapsis. Mol Cell 6: 975–987.
34. Baudat F, Manova K, Yuen JP, Jasin M, Keeney S (2000) Chromosome synapsis

defects and sexually dimorphic meiotic progression in mice lacking SPO11. Mol
Cell 6: 989–998.

35. Maratou K, Forster T, Costa Y, Taggart M, Speed R, et al. (2004) Expression
profiling of the developing testis in wild-type and Dazl knockout mice. Mol

Reprod Dev 67: 26–54.

36. Moens PB, Heyting C, Dietrich AJJ, van Raamsdonk W, Chen Q (1987)
Synaptonemal complex antigen location and conservation. J Cell Biol 105:

93–103.
37. Kranz A, Fu J, Duerschke K, Weidlich S, Naumann R, et al. (2010) An

improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase.

Genesis;doi: 10.1002/dvg.20641.
38. Mahadevaiah SK, Turner JM, Baudat F, Rogakou EP, de Boer P, et al. (2001)

Recombinational DNA double-strand breaks in mice precede synapsis. Nat
Genet 27: 271–276.

39. Albini SM, Jones GH (1987) Synaptonemal complex spreading in Allium cepa and
A. fistulosum. Chromosoma 95: 324–338.

40. Barlow AL, Benson FE, West SC, Hultén MA (1997) Distribution of the Rad51

recombinase in human and mouse spermatocytes. EMBO J 16: 5207–15.
41. Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, et al. (2002) The

time course and chromosomal localization of recombination-related proteins at
meiosis in the mouse are compatible with models that can resolve the early

DNA-DNA interactions without reciprocal recombination. J Cell Sci 115:

1611–1622.
42. Carpenter AT (1975) Electron microscopy of meiosis in Drosophila melanoga-

ster females: II. The recombination nodule–a recombination-associated

structure at pachytene? Proc Natl Acad Sci USA 72: 3186–9.
43. Moens PB, Marcon E, Shore JS, Kochakpour N, Spyropoulos B (2007) Initiation

and resolution of interhomolog connections: crossover and non-crossover sites
along mouse synaptonemal complexes. J Cell Sci 120: 1017–1027.

44. Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously

induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:
2283–7.

45. Baker SM, Plug AW, Prolla TA, Bronner CE, Harris AC, et al. (1996)
Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over.

Nat Genet 13: 336–342.
46. Borum K (1961) Oogenesis in the mouse. A study of the meiotic prophase. Exp

Cell Res 24: 495–507.

47. Speed RM (1982) Meiosis in the foetal mouse ovary. I. An analysis at the light
microscope level using surface-spreading. Chromosoma 85: 427–37.

48. Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D (2008) Structural
requirements for the assembly of LINC complexes and their function in cellular

mechanical stiffness. Exp Cell Res 314: 1892–1905.

49. Rasmussen SW, Holm PB (1978) Human meiosis II. Chromosome pairing and
recombination nodules in human spermatocytes. Carlsberg Res Commun 43:

275–327.
50. Schmekel K, Daneholt B (1998) Evidence for close contact between

recombination nodules and the central element of the synaptonemal complex.
Chromosome Res 6: 155–159.

51. Tarsounas M, Morita T, Pearlman RE, Moens PB (1999) RAD51 and DMC1

form mixed complexes associated with mouse meiotic chromosome cores and
synaptonemal complexes. J Cell Biol 147: 207–220.

52. Yang F, Gell K, van der Heijden GW, Eckardt S, Leu NA, et al. (2008) Meiotic
failure in male mice lacking an X-linked factor. Genes Dev 22: 682–691.

53. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P (2000) SMART: A Web-

based tool for the study of genetically mobile domains. Nucleic Acids Res 28:
231–4.

54. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based
prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:

1351–1362.
55. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007)

Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.

56. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the
head of bacteriophage T4. Nature 227: 680–685.

57. Schagger H (2006) Tricine-SDS-PAGE. Nat Protoc 1: 16–22.
58. Matsudaira P (1987) Sequence from picomole quantities of proteins electro-

blotted onto polyvinylidene difluoride membranes. J Biol Chem 262:

10035–10038.
59. de Boer E, Lhuissier FGP, Heyting C (2009) Cytological analysis of interference

in mouse meiosis. Meiosis;2): 355–382.
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