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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Spatiotemporal models that account for heterogeneity within microbial communities rely on

single-cell data for calibration and validation. Such data, commonly collected via microscopy

and flow cytometry, have been made more accessible by recent advances in microfluidics

platforms and data processing pipelines. However, validating models against such data

poses significant challenges. Validation practices vary widely between modelling studies;

systematic and rigorous methods have not been widely adopted. Similar challenges are

faced by the (macrobial) ecology community, in which systematic calibration approaches

are often employed to improve quantitative predictions from computational models. Here,

we review single-cell observation techniques that are being applied to study microbial com-

munities and the calibration strategies that are being employed for accompanying spatio-

temporal models. To facilitate future calibration efforts, we have compiled a list of summary

statistics relevant for quantifying spatiotemporal patterns in microbial communities. Finally,

we highlight some recently developed techniques that hold promise for improved model cali-

bration, including algorithmic guidance of summary statistic selection and machine learning

approaches for efficient model simulation.

1. Introduction

Microbial communities are ubiquitous [1]. They are responsible for life-sustaining planetary

processes [2,3], and they maintain health in almost all metazoans, including humans [4].

Humanity has a long history of harnessing the power of natural microbial communities in,

e.g., food fermentation [5], waste water treatment [6], and health [7]. Advances in sequencing

and omics technologies have elucidated the roles of individual microbes within their commu-

nities, and how they contribute to the overall community function. This, in turn, has opened

opportunities for manipulating and designing microbial communities to perform useful tasks

across the bioeconomy [8].

Within microbial communities, species interact through, e.g., physical contact, competition

for nutrients, metabolite exchange, toxin production, antibiotic inactivation, and quorum
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sensing. These interactions are shaped by a multitude of factors such as evolution [9] and abi-

otic features of the environment [10]. The network of interactions determines species abun-

dances in a microbial community, thereby influencing the community’s operation [11–13].

Growth of most communities involves attachment, and so cell–cell interactions influence the

community’s spatial arrangement [14]; the spatial structure may in turn influence the evolu-

tion of cooperative or competitive interactions [15,16]. To complicate things further, the com-

munity composition can also be impacted by the environment’s colonization history [17,18].

The complex dependencies among cellular interactions, spatial dynamics, evolution, and com-

munity function make precision manipulation of microbiomes difficult. Mathematical models

can be used to address this challenge by untangling the factors governing community

behaviour.

To engineer microbial communities to suit our needs, we must first acquire a thorough

understanding of how these communities operate [19]. Mathematical models can be used to

guide rational manipulation and design of microbial communities, to predict how communi-

ties will behave, and to determine how well they will perform desired functions in, e.g., bio-

technology, health and medicine, food and agriculture, and energy production [8]. Fig 1

Fig 1. Modelling frameworks commonly used for capturing the behaviour of microbial communities, with

associated spatial scales. ABM, agent-based model; ODE, ordinary differential equation; PDE, partial differential

equation.

https://doi.org/10.1371/journal.pcbi.1010533.g001
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depicts 3 classes of predictive models commonly used to describe microbial communities: ordi-

nary differential equations (ODEs), partial differential equations (PDEs), and agent/individual-

based models (henceforth referred to as ABMs) [20,21]. The primary distinction between these

model types is their spatial resolution. ODE models are built on the assumption that the dynamics

are not dependent on spatial distribution. Consequently, simulation and analysis of these models

incurs a relatively low computational cost. PDE models explicitly account for spatial distribution,

but describe local averages, rather than individuals. In contrast, ABMs can capture the spatiotem-

poral behaviour of individuals within populations, and so can account explicitly for heterogeneity

among cells. This high degree of resolution comes at substantial computational cost, which scales

(potentially nonlinearly) with the number of individuals and interactions in the population.

ABMs are often combined with PDE and ODE submodels to describe phenomena such as intra-

cellular biomolecular network dynamics and extracellular diffusion. Recent applications of these

modelling frameworks to microbial communities are reviewed in [22].

The choice of modelling framework is influenced by the system under consideration, the

modelling objective, the data available, and the computational resources at hand. For each

modelling framework, there are numerous open-source simulation packages available. The

choice of software depends primarily on whether the built-in features are suitable for the appli-

cation at hand. Reusability can be a challenge due to the diversity of programming languages

and documentation formats employed. Some groups are developing packages with graphical

user interfaces to facilitate reuse of their simulation software [23–25].

Predictive models are necessary for applications that require precise design and manipula-

tion of complex microbial communities [8]. These applications include human and animal

health, food production, and environmental remediation. ABM and PDE models are suitable

for modelling microbial growth in heterogenous environments such as the mammalian gut

and soil. To make accurate predictions, these models must be validated against experimental

data, such as direct observations of populations of cells growing in spatially distributed envi-

ronments. Observations at single-cell resolution can simultaneously provide data at the single-

cell, population, and community scale. Such single-cell data are especially valuable for validat-

ing ABMs that aim to capture emergent population-level features by modelling single-cell

behaviour [26,27]. Validation against independent patterns occurring at multiple scales gener-

ally improves model accuracy and predictive power [28].

To define the scope of the following discussion, we first establish a working definition of

“microbial community.” Although a broad definition could be “microbes living together,”

there is no consensus on how much variability is required to distinguish a microbial commu-

nity from a microbial “monoculture”: Even these exhibit some degree of genetic and pheno-

typic variability. For this review, we define the fundamental property of a community as the

presence of at least 2 distinct characterized organism types, and thus we exclude monocultures

that have developed some uncharacterized genetic heterogeneity. For details on the application

of single-cell technologies to investigations of heterogeneity in such monocultures, the reader

is referred to [29,30]. A number of distinct categories of communities have been investigated

at the single-cell level [31]:

• Communities of “isogenic mutants” are cocultures composed of at least 2 strains derived

from the same parent that exhibit some genetic differences (due to either engineered or nat-

ural genetic alterations). Communities of isogenic mutants commonly serve as testing

grounds for design and characterization of ecological interactions.

• Designer laboratory communities are composed of distinct species purposefully combined

in a laboratory environment. The number of species is typically small compared to natural

communities.
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• Natural communities are sampled from natural or engineered environments (e.g., soil, ani-

mal guts, wastewater treatment plants, fermentation cultures).

Below, we provide a brief overview of current techniques for collecting single-cell level

observations of microbial communities. We then survey how such measurements have been

used to calibrate computational models of community dynamics, and we highlight systemic

approaches that could be used to improve the rigour of model calibration procedures. Finally,

we discuss techniques from (macrobial) ecology, topology, and data science that hold promise

for facilitating efficient calibration.

2. Single-cell level observations of microbial communities

Microbial communities are most commonly observed by flow cytometry and microscopy (Fig

2). Flow cytometry can be used to categorize cells by their morphology and physiological char-

acteristics (e.g., fluorescence). Modern flow cytometers can process approximately 104 cells

per second. The resulting large samples can provide robust statistics characterizing heteroge-

nous populations. The availability of several out-of-the-box software packages for flow cytome-

try [32,33] makes processing cytometry data straightforward in comparison to microscopy

images, which usually call for customized image processing routines [34].

Flow cytometry is often used to determine the relative fraction of subpopulations within a

community. Cells are distinguished by, e.g., fluorescent labeling, viability staining, or morpho-

logical differences. This approach has been used to measure short-term population dynamics

in synthetic consortia [35], rates of plasmid propagation [36,37] and monitoring of eco-evolu-

tionary feedback between cooperators and cheaters [38], among others.

Time-lapse microscopy has been used to collect spatiotemporally resolved measurements of

microbes in confined environments. Cells are typically observed growing in monolayer using a

widefield microscope, but multilayer growth can be resolved by confocal microscopy [39–41].

Fluorescence microscopy experiments can generate data on the spatiotemporal positions of

cells and their fluorescence-associated phenotypes. Time-lapse images can be processed to

reveal growth rates, lineages, gene expression levels, and to infer intercellular interactions,

which together give rise to spatiotemporal features at the population level.

Fig 2. Single-cell measurement techniques for microbial communities. (a) Flow cytometers can measure cell fluorescence and

morphology in large sample sizes. (b) Time-lapse microscopy allows for direct visualization of physical cell–cell interactions and

quantitative measurement of single-cell characteristics over time. (c) End-point microscopy can illustrate large-scale spatial patterns and

features of cell arrangements in 2 or 3 dimensions.

https://doi.org/10.1371/journal.pcbi.1010533.g002
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Time-lapse experiments generally involve observation of cells growing under agar pads or

within microfluidic devices. Agar pads are simple to use but suffer the limitations of batch cul-

tures such as transient effects of nutrient depletion, desiccation, waste product accumulation,

and crowding [42,43]. In contrast, microfluidic devices offer more controlled and sustained

environments, in which multiple cell generations can be observed through transient and

steady-state growth conditions [44].

Quantitative analysis of time-lapse microscopy images demands the use of cell segmenta-

tion and cell tracking algorithms [45,46]. Analysis of time-lapse images reveals individual cell

properties such as elongation rate, motion, and lineage, as well as population-level features

such as population density and species abundance. Populations can sometimes be discrimi-

nated by morphology, but it is more common to use fluorescent markers. Moreover, fluores-

cence intensity can be used as a readout of an internal genetic state [47]. Time-lapse

microscopy has been used to obtain both single-cell and population measurements in both iso-

genic mutant [48–54] and laboratory designer communities [55,56].

By correlating individual cell elongation rates with counts of neighbouring cells, researchers

have gained insight into cell–cell interactions such as metabolite exchange [57,58] and antibi-

otic efflux [59]. Such studies can take advantage of microfluidic device designs that constrain

the proximity of neighbouring cells. For example, Moffitt and colleagues [60] and Gupta and

colleagues [61] designed microfluidic devices permitting nutrient exchange between 2 physi-

cally separated populations.

Contact-dependent interactions can be inferred by comparing changes in cell state to the

presence of directly neighbouring cells. This approach has been employed by several groups

studying type VI secretion (toxin delivery) systems (T6SS). LeRoux and colleagues [62] and

Smith and colleagues [63] measured the efficiency of target cell lysis as a function of contacts

made. Steinbach and colleagues [64] investigated how the accumulation of dead cell debris

reduces T6SS killing efficiency. Time-lapse microscopy studies of conjugation (contact-depen-

dent horizontal gene transfer) have demonstrated the influence of contact mechanics on con-

jugation frequencies [65] and have also revealed enhanced gene transfer by transformation

(uptake of DNA from the environment) in predator–prey communities [66,67].

Some investigations of community behaviour have relied on representative snapshots of

spatial structure provided by single time point (i.e., end-point) microscopy. This approach is

useful when time-lapse approaches may not be feasible, such as in highly structured environ-

ments like biofilms and solid matrices [68], or in microdroplets [69]. (The recent time-lapse

work of Hartmann and colleagues [70] and Nijjer and colleagues [71] characterizing biofilm

growth is a notable exception and may represent a new paradigm for such measurements.)

Data on 3D arrangements within communities provide quantitative insights on how spatial

distributions impact phenotype [72] and vice versa [73,74]. Co-occurrence networks in non-

spatial environments can also be determined in microdroplets [10,69]. End-point cell arrange-

ments constrained in 2 dimensions have been used to measure interaction ranges of quorum

sensing mechanisms involved in horizontal gene transfer [75].

3. Calibration of spatial mathematical models of microbial

communities against single-cell measurements

When mathematical models are employed to explore a range of possible behaviours, parame-

terizations need not accurately capture specific observations (e.g., [76–78]). In contrast, when

models are used for predictive purposes (as in most engineering applications), models must be

fit to observations. In such cases, descriptions of the formulation, calibration, and validation of

the model are needed to specify the predictive strengths and limitations of the model. A first
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step in communicating a model’s formulation is the statement of the model’s purpose, which

clarifies the scope of the model structure and parameterization. This is highlighted in the

ODD (overview, design concepts, and details) protocol [79,80], a formal framework for docu-

menting ABMs. The protocol has been used in documenting several spatiotemporal ABMs of

microbial communities [25,81–83]. In macrobial ecology, this protocol is often used as part of

a larger modelling methodology called pattern-oriented modelling [84,85], discussed further

in Section 4.1.

Model calibration is the process of assigning values to model parameters to best reproduce

available data. Ideally, calibration is complemented by uncertainty analysis, which gauges the

degree of confidence in model predictions and parameter estimates through, for example,

identifiability analysis and sensitivity analysis [86,87]. The simplest approach to model calibra-

tion is to characterize each component of a system independently. This approach is suitable

for simple processes, such as growth or diffusion, for which direct measurements can be made.

In contrast, it is often the case that calibration of biological models must be posed as an

inverse problem: Properties of system components cannot be measured directly and must

instead be inferred from observations of overall system behavior. In such cases, model calibra-

tion involves selection of a “goodness of fit” function, typically defined as a sum of squared

errors (SSE)—the SSE measure aligns with a maximum likelihood measure under idealized

assumptions about system and noise structure [88]. When calibrating linear models, a rich the-

ory provides robust uncertainty analysis, such as 95% confidence intervals for parameter esti-

mates and model predictions. When addressing nonlinear dynamic models, the theory

provides less support; models that minimize the SSE can be found only through nonlinear

optimization procedures (typically iterative global optimization routines; [89]), and uncer-

tainty analysis is approximate (though there are uncertainty tools designed for nonlinear sys-

tems, e.g., profile likelihoods; [90]). Bayesian calibration methods, such as approximate

Bayesian computing [91], offer an alternative to global optimization searches. Bayesian meth-

ods refine uncertainty distributions for model parameter values by comparing with experi-

mental observations.

For nonspatial models (e.g., ODEs), systematic model calibration approaches have become

standard in the field of computational biology, as reviewed in [86,87]. Such ODE models are

used to describe microbial community dynamics through compartmentalization. For example,

Gupta and colleagues [61] used a compartmental ODE model to investigate the behaviour of

physically separated microbial populations; they calibrated their model parameters using a

standard SSE-minimizing approach.

3.1 A survey of calibration approaches for spatiotemporal models

In this section, we survey strategies recently employed for calibration of spatiotemporal models

of bacterial communities against observations at (or near) the single-cell level. The corre-

sponding data (as described in Section 2) are complex, and calibration of these models is chal-

lenging. Calibration strategies used in recent publications can be roughly classified into 3

categories (Fig 3): manual fitting, systematic calibration to nonspatial data, and systematic cali-

bration against spatial summary statistics.

The simplest calibration approach is manual fitting, by which model simulations are quali-

tatively compared to observed data, and model parameter values are adjusted to arrive at a sat-

isfactory alignment. This approach, often used to extend previously established model

structure, is exemplified by comments such as “We chose model parameters to qualitatively fit

the experimental results. . .” [51], and “We adjusted the parameters of our simulations until

the behaviour matched the images of real cells. . .” [92]. Manual fitting is a pragmatic means to
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arrive at qualitative agreements between model and data, which is often perfectly appropriate

for modelling objectives. However, it is poorly suited for situations in which precise calibration

is required, it is unlikely to provide a robust search of high-dimensional model spaces, and it is

unsatisfactory in terms of reproducibility.

A second common calibration tactic is to apply systematic calibration to nonspatial data

compared with an aggregate model output. For example, in their study on the inhibitory role

of antibiotic efflux activity from neighbouring cells, Wen and colleagues [59] observed interac-

tions between 2 bacterial populations, one of which expressed antibiotic efflux pumps. They

used an SSE-based approach to estimate growth and inhibition parameters from data obtained

by suspension growth experiments. They then used those parameters in an ABM that supple-

mented findings from additional single-cell experiments. Another example is provided by the

work of Pande and colleagues [93], who investigated the role of spatial segregation in cross-

feeding populations. They used in-suspension growth curves obtained over a range of nutrient

concentrations (via Monod growth kinetics) to fit growth parameters, which were then applied

to a spatial ABM of the consortium. Such strategies rely on an assumption that the behaviours

measured in suspension are representative of behaviour in the spatially structured environ-

ments under investigation.

Finally, in some instances, model developers have made full use of spatiotemporal data by

systematic calibration against spatial summary statistics that capture the spatiotemporal

aspects of primary interest, fitted with an SSE-based protocol. For example, Hartmann and

colleagues [70] validated a 3D cell tracking algorithm and calibrated an ABM by minimizing

the error between measured and simulated summary statistics in a growing biofilm. Another

Fig 3. Model calibration techniques for spatiotemporal models of microbial communities. Manual fitting involves direct adjustment of parameter values to achieve

qualitative agreement between model predictions and observations. Nonspatial calibration is often systematic (based on a goodness of fit function) but is based on

experiments that do not incorporate the spatial features of the system. Spatial calibration, against spatially distributed data, can be systematic (SSE-based) but must rely

on summary statistics collected from the data.

https://doi.org/10.1371/journal.pcbi.1010533.g003
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example is provided by Leaman and colleagues [94], who collected summary statistics from

spatial distributions of cells and then used a global optimization scheme to fit parameters of an

ABM. Such systematic calibration approaches can be resource-intensive, often requiring

detailed image processing pipelines (e.g., [70]), or numerous auxiliary experiments to fit physi-

cal or chemical parameters. For example, Leaman and colleagues [94] needed to measure both

diffusivity of solute particles in the presence of bacteria and activation time for gene expression

controlled by a quorum sensing molecule before calibrating the rest of the model’s parameter

values.

In the next section, we present a collection of summary statistics that are suitable for valida-

tion of spatiotemporal models of bacterial community dynamics. Use of these summary statis-

tics typically requires development of a data processing pipeline for image processing and

summary statistic calculation.

3.2 A catalogue of spatiotemporal summary statistics for microbial

community dynamics

As discussed in Section 2, modelling projects are frequently built on spatiotemporal data that are

rich and complex, resulting in a tendency to aim for qualitative agreement or calibration against

nonspatial observations. Hartmann and colleagues [70] and Leaman and colleagues [94] provide

examples that make more complete use of the richness of spatiotemporal data by selecting sum-

mary statistics to capture key spatial features in a quantitative manner and applying SSE-based cal-

ibration to ensure accurate representation. As we discuss below in Section 4.1, this strategy has

been adopted for many modelling projects in the macrobial ecology community, where spatio-

temporal datasets of this type have been collected for decades. One of the challenges of this

approach is identification of appropriate summary statistics. These should (i) capture relevant fea-

tures of the system’s behaviour; (ii) be represented by model outputs; and (iii) be computationally

tractable (in terms of image processing). In this section, we survey summary statistics that have

been used to capture spatiotemporal features of microbial dynamics (Table 1), along with some

examples from macrobial ecology that hold promise for use in this context.

Monolayer growth is the simplest setup for observing single-cell characteristics of microbial

population dynamics. In this setting, single-cell features such as elongation rate and division

length threshold can be measured directly. The simplest population to study is an isolated

microcolony descended from a single cell. Several groups have proposed summary statistics to

capture development of such microcolonies. Volfson and colleagues [96] were one of the first

to compare simulations of an ABM to time-lapse images of developing microcolonies within

microfluidic devices. They calculated microcolony density, a cell velocity gradient, and an

order parameter quantifying the global anisotropy in cell orientation. These summary statis-

tics have been used to calibrate parameters governing physical interactions between rod-

shaped bacteria in more recent ABM projects (e.g., [97]). Doumic and colleagues [95] used

similar metrics in their model of microcolony growth that incorporates unequal mass distribu-

tion upon cell division. They also considered the microcolony aspect ratio and the relative ori-

entation of the 2 daughter cells just prior to the second division (called “d2” in Doumic and

colleagues, and dyad structure in Table 1). Doumic and colleagues highlight additional sum-

mary statistics for microcolony development: orientation of cells at the colony boundary

(this is referred to as “active anchoring” in [99]) and relative position with respect to age of

individual cell poles within the colony [102].

Monoculture microcolony development has also been characterized using summary statis-

tics from liquid crystal theory. These measures quantify the degree of physical alignment

between neighbouring cells. The order parameter used by Volfson and colleagues [96]
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Table 1. Summary statistics for quantifying features in microbial communities.

Statistic Goal of Statistic Computational Details Reference

Summary Statistics for Single-Species Populations

Microcolony shape
Microcolony aspect ratio Quantify eccentricity of developing colony Standard image processing feature, defined in 2D (or 3D,

projected to 2D)

[70,95]

Dyad structure Characterize structure of 2-cell “colony” immediately

before the second division

Normalized dot product of the 2 cells’ orientation [95]

Biofilm base circularity Characterize shape of the biofilm base Unity minus aspect ratio of projection onto the horizontal

plane

[70]

Internal microcolony structure
Microcolony density Quantify packedness of cells within developing

colony

Standard image processing feature, defined locally or

globally

[70,95–97]

Order parameter Quantify anisotropy within developing colony Mean of projections of orientation of neighbouring cells;

defined per-cell, recorded as a colony average or as a

distribution

[70,95–99]

Correlation length of scalar

order parameter

Characterize “patchiness”: spatial scale over which

orientation of neighbouring cells is aligned

Correlation of orientation as a function of distance; can be

compared as a mean or a distribution

[98]

Micropatch area Quantify “patchiness”; similar to correlation length

of scalar order parameter

Cells are clustered into patches based on contact and

relative orientation

[100]

Topological defect density Characterize “patchiness”: density of topological

defects (i.e., discontinuities in the order-parameter

field)

Algorithm provided in [101] [98]

Defect velocity Characterizes the evolution of a microcolony’s

internal structure

The position of topological defects is tracked over time [98,99]

Age distribution of cell poles

within the developing

microcolony

Characterize degree of mixing during colony

development

Simple measure is distance from centre of colony to oldest

cell poles. More complete measures additionally account for

younger poles

[102]

Other metrics
Orientation of cells at the

microcolony boundary

Characterize tendency of boundary cells to align

with the colony boundary

Colony boundary must be determined by a smoothing

operation; cells on the boundary and the corresponding

boundary orientation must be identified

[99]

Gradient of cell velocity

normal to microcolony

boundary

Characterize growth inhibition due to pressure

gradients

Measured by particle-image velocimetry [96,97]

Cell–cell distance Characterize cell spacing Centroid-to-centroid distance to nearest neighbour [70]

Vertical and radial alignment Characterize 3D structure; identify transition from

monolayer to multilayer growth

Angle formed by the z-axis and cell’s major axis [70]

Summary Statistics for Multispecies Populations

Composition
Single-strain population

counts; population fractions

Captures population abundances Cell counts for each population [49,58,63,103,104]

Shannon species diversity

index

Species biodiversity metric Determined from cell counts for each population [105]

Spatial configuration; nearest cell–cell adjacencies
Shannon entropy Quantify randomness of pixel identities in an image Total population of each species, heterospecific

neighbouring cell counts

[35,105]

Intensity correlation quotient Characterize colocalization or exclusion of pairs

species in space

Determined by sum of pixel intensities for each

fluorescence channel

[35]

Contagion index Quantify dispersion and intermixing of different

populations; deviation from maximum entropy state

Total population of each species, heterospecific

neighbouring cell counts

[106]

Probability matrix for

adjacent species identities

Global quantification for likelihood of nearest

interspecific adjacencies

Identify neighbour to cell centroid [73]

Neighbour index Characterize interspecific adjacencies relative to the

initial adjacencies

Count physical contacts between pairs of cells of different

phenotypes

[104]

(Continued)
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(mentioned above) is one such example. van Holthe tot Echten and colleagues [98] took the

mean of this measure over the entire colony to compare the evolution of real microcolonies to

ABM simulations. Dell’Arciprete and colleagues [99] use this same statistic, which they call the

global order parameter, to summarize overall microcolony orientational disorder. Orienta-

tional order can also be quantified with discrete measurements. You and colleagues [100]

investigate the inner structure of microcolonies by segmenting them into patches of similarly

oriented cells and comparing the distribution of patch areas between ABM simulations and

experiments. van Holthe tot Echten and colleagues [98] also use correlation length of the sca-

lar order parameter (a measure of patch size) and topological defect density as additional

measures of microcolony structure. (Topological defects are discontinuities in the orientation

field that arise at boundaries between patches of similarly oriented cells. These are locations

that lack a representative trend in orientation.)

Studies of monolayer growth provide valuable insights into microbial activity, but they rep-

resent an idealized version of microcolony formation. In contrast, Hartmann and colleagues

[70] present a comprehensive study of biofilm formation in 3 dimensions. They present novel

imaging and image-processing tools that allow single-cell level tracking of a V. cholera biofilm

from a single progenitor to about 10,000 cells. To quantify growth of this population, they

make use of a collection of spatial summary statistics: vertical and radial alignment, local

order, cell-to-cell distance, density, and aspect ratio of overall population and biofilm base.

In multispecies communities, population counts of each species are a simple, key sum-

mary statistic that encapsules population dynamics (Fig 4A). Microbial interactions that have

been summarized using population fractions include secretion of nutrients and toxins [103],

cell lysis by T6SS [63], and competition for space in microfluidic traps [49]. While population

fractions are often measured globally, localized measures are also used. For example, Bottery

and colleagues [104] measured population fractions as a function of a microcolony radius,

while Dal Co and colleagues [58] measured population fractions within a given radius for each

Table 1. (Continued)

Statistic Goal of Statistic Computational Details Reference

Spatial configuration; cell–cell adjacencies within a neighbourhood
Proportion of conspecific

neighbours

Quantify interspecies mixing from a probability

distribution; β-diversity metric

Probability that a cell is located a defined distance away

from other members of its own species

[107,108]

Structure factor Quantifies characteristic length scales of spatial

patterning; used to characterize transition from well-

mixed to structured populations

Normalized spatial Fourier transform of image data [109]

Segregation index Normalized metric to quantify population

segregation

Cell neighbourhood interaction distance, heterospecific

neighbouring cell counts

[110–113]

Spatial configuration: shape
Colony edge roughness Increased in communities with antagonistic

interactions

Standard deviation of microcolony radius [103]

Fractal dimension “Jaggedness” of species boundaries Distance of each pixel to nearest border of 2 different

populations; algorithm provided in [114]

[115,116]

Spatial configuration; sectors
Intermixing index Estimate spatial mixing between multiple species Average number of species transitions along a straight line

or arc

[117,118]

Single-strain sector size Indirect measurement of spatial mixing between

multiple species

Length scale of single-strain patches [104,119]

Temporal
Order parameter; phase

transitions

Quantify synchrony in gene expression between

populations

Spatiotemporal data are processed into kymographs;

algorithm introduced in [120]

[53]

https://doi.org/10.1371/journal.pcbi.1010533.t001
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cell to quantify the length scale of interactions mediated by secretion of diffusible molecules.

In microbial communities consisting of a large number of species, an index summarizing bio-

diversity, such as the Shannon diversity index [105], may be more informative than specific

population fractions.

Most summary statistics that describe spatial patterns in multispecies communities quantify

the degree of interspecies mixing or (conversely) of monospecies patchiness. These measures

are commonly used in the field of landscape ecology [121]. Metrics from landscape ecology

traditionally rely on counting adjacencies between image pixels, each of which is assigned a

value corresponding to its dominant occupant. These metrics can be applied in the same man-

ner for low-magnification microscopy images of microbial colonies. Shannon entropy is a

canonical metric for species mixing [105]; it quantifies the overall disorder between any num-

ber of populations by counting like- and non-alike pixel adjacencies. Kong and colleagues [35]

used this measure to assess the extent of red-green pixel colocalization in 2-strain microbial

communities from microscopy images taken at 7× magnification. Li and Reynolds [106] devel-

oped a contagion index [122] that quantifies the deviation from the maximum entropy state

using the same type of pixel adjacency counts. This contagion index is used widely in land-

scape ecology because it captures both aggregation of single populations and intermixing of

different populations.

Landscape ecology metrics could be extended to higher-magnification single-cell data by

generating a physical contact network and accounting for nonrectangular adjacency structure

(Fig 4B). Alternatively, single-cell images can be smoothed until continuous single-species

patches are formed [104,119]. Other metrics defining patch shape, aggregation, and species/

strain diversity (discussed below) could also translate to the single-cell level. Mony and col-

leagues [123] discuss applications of other higher-level principles from landscape ecology to

analysis of microbial community assembly and structure.

While the contagion index has not yet been applied to microbial studies, related measures

have been used. For example, Bottery and colleagues [104] counted physical contacts in pairs

of cells of differing strain/species (Fig 4B). They normalized these counts to initial neighbour

counts, arriving at a metric they called the neighbour index. An alternative intermixing mea-

sure that does not require counting all physical contacts between cells is a probability matrix

for adjacent species identities, computed by identifying the species/strain of a cell’s nearest

neighbour. Glass and Riedel-Kruse [73] used this type of measurement to quantify effects of

surface nanobodies and antigens on cell–cell adhesion.

Summary statistics that describe proportions of species within some defined neighbour-

hood (Fig 4C) are also used to describe intermixing of microbial populations. The segregation

index [110–113] measures the degree to which cells within a given neighbourhood radius are

related to one another (by genotype or phenotype). In this case, the radius is defined as the dis-

tance over which interactions mediated by small molecules are expected to equally influence

all cells within the neighbourhood [113]. The segregation index has been applied to simulated

data in numerous microbial ABM studies but has yet to see use in the context of single-cell

microscopy data. Generalizing this measure, the proportion of conspecific neighbours is

defined as the probability that 2 randomly selected individuals separated by some defined dis-

tance will belong to the same population [107]. Computing this metric over a large sample of

individual pairs provides the proportion of conspecific neighbours as a function of distance.

An alternative way to define a neighbourhood is by a characteristic length scale. McNally and

colleagues [109] used a static structure factor to identify transitions from well-mixed to segre-

gated states in antagonistic 2-strain communities. This metric was computed using Fourier

transforms of binarized pixel intensities to assess spatial (patch size) frequencies of each strain

within a characteristic length scale.
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Other metrics for defining intermixing on larger scales use the number of single-species

patches as a measure of interspecific mixing. For example, the intermixing index is deter-

mined by the average number of single-species patch transitions along a line or arc. This met-

ric has been used as a measure of species colocalization in low-magnification images of

biofilms and microbial colonies [117,118]. Blanchard and Lu [103] and Bottery and colleagues

Fig 4. Calculating spatiotemporal summary statistics for microbial communities. (a) Population counts over time capture the overall dynamics in a

multispecies community. (b) The frequency of adjacent species in physical contact, determined by a contact network, provides a measure of intermixing

between different species. (c) Summary statistics can be calculated from data averaged within a particular cell’s neighbourhood. (d) Single-species patch

metrics, such as patch width and number of sectors, are useful for quantifying spatial patterns on a larger colony scale.

https://doi.org/10.1371/journal.pcbi.1010533.g004
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[104] used the number of single-strain sectors of a circular colony to characterize spatial pat-

terns in 2-strain communities growing on a surface with open boundary conditions (Fig 4D).

Some spatial patterns may be observable from the physical shape of single-species sectors or

colony boundaries (Fig 4D). Kan and colleagues [115] and Rudge and colleagues [116] mea-

sured the fractal dimension of species patch boundaries, which quantifies jaggedness. Blan-

chard and Lu [103] noted that the roughness of a growing colony’s edge increases when there

are antagonistic interactions between different strains. Amor and colleagues [119] and Bottery

and colleagues [104] used sector widths as an indirect measurement of spatial mixing, because

larger widths imply less mixing. The perimeter-to-area ratio of single-species sectors could

also be appropriate as a summary statistic for shape [121], although it has not been used yet in

microbial studies.

The summary statistics described above are applicable to end-point measurements. Of

course, these can be measured through times series, but alternative measures rely explicitly on

time series, e.g., through windowed averages and autocorrelation [124]. Periodicity can also be

used as a temporal metric, quantified by, e.g., a periodic order parameter, as demonstrated by

Kim and colleagues [53], who summarized spatiotemporal synchronization of gene expression

in a 2-strain community. Time derivatives of summary statistics can also be assessed. For

example, Dell’Arciprete and colleagues [99] and van Holthe tot Echten and colleagues [98],

discussed above, both use the velocity of topological defects to characterize microcolony

dynamics.

4. Outlooks

There is no doubt that spatiotemporal models of microbial communities will continue to grow

in complexity (and corresponding computational requirements) as researchers continue mak-

ing advances in synthetic ecology, in microbiome engineering, and in characterizing natural

systems. In this section, we survey some outlooks for standardizing and streamlining model

development and validation.

4.1 Pattern-oriented modelling as a guideline for standardizing

microbiological models

It can be challenging to describe ABMs efficiently, but complete descriptions are crucial;

incomplete reporting leads to difficulties with subsequent implementation and replication, as

demonstrated by Donkin and colleagues [125] and discussed in [124,126]. Furthermore, sys-

tematic model documentation can improve model quality by enforcing critical thinking about

the model’s objective, formulation, implementation, and validation. In surveying modelling

practices for microbial communities, we found that modelling and documentation practices

vary considerably, especially regarding model calibration. A systematic framework for model

development and testing, referred to as pattern-oriented modelling (POM) [84,85], sees fre-

quent use in macrobial ecology and has been used occasionally in microbial settings as well

[127–130].

POM addresses “the multi-criteria design, selection and calibration of models of complex

systems” [85]. The framework formalizes all stages of the modelling pipeline, from model for-

mulation, to testing, to calibration and validation. The “patterns” in POM are any quantifiable

features of model simulations; we referred to these as summary statistics in Section 3. These

measures are most useful when they span ecological scales: individual, population, community,

ecosystem. As highlighted by the POM framework, summary statistics facilitate validation by

reducing system dimensionality [131]. Moreover, they can guide model formulation by focus-

ing attention on the aspects of simulations that will be quantitatively captured.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010533 October 13, 2022 13 / 24

https://doi.org/10.1371/journal.pcbi.1010533


POM’s model validation strategy is standard [124,131]: begin with qualitative comparison

of model predictions with experimental data, then sample the parameter space to determine

the sensitivity of summary statistics to parameter values (typically done in a one-at-a-time

fashion, given computational costs) (e.g., [108]). Acceptable parameter fits are then deter-

mined based on systematic minimization of SSE quality-of-fit measures using a weighted aver-

age of the summary statistics, as in, e.g., [132–134]. Documentation of all model formulations

and parameter sets tested can provide insights into model behaviour and can potentially reveal

underlying mechanisms of emergent community properties.

4.2 Feature identification through topological data analysis

The selection of appropriate “patterns” is a subjective task, as acknowledged by the architects of

POM [85]. Moreover, it is not always clear how best to quantify these patterns as summary statis-

tics once they have been identified. Some features are easy to represent numerically (e.g., average

population density), but many relevant patterns are qualitative, or manifest as complex spatiotem-

poral configurations. In some cases, existing theory can offer tools to quantify these features, such

as order parameters from liquid crystals, or Fourier coefficients to identify feature scales (both

described in Section 3). In the absence of such tools, many researchers rely on visual inspection,

which introduces subjectivity into the calibration pipeline. A generic approach to pattern identifi-

cation is provided by the recently developed tools of topological data analysis (TDA).

TDA provides tools to quantify topological (i.e., qualitative) features within datasets. It can be

applied either to discrete datasets, like those from ABMs, or to continuous data, like those from

PDE models. TDA encompasses a wide variety of tools and techniques. Here, we focus on the

most popular: persistence homology. (For a general overview of the field, see [135]; a broad dis-

cussion of applications to biology is presented in [136].) Persistence homology can be thought of

as a nonlinear analogue of a more familiar technique: principle component analysis (PCA) [137].

PCA is used to identify the variational structure within datasets: If there are correlations within

the data, the points will tend to cluster around certain linear subspaces (lines, planes, etc.) and the

data will exhibit less variation in the directions perpendicular to these subspaces. One application

of PCA is dimensionality reduction. Data can be projected onto these linear subspaces, thereby

reducing the dimensionality of the dataset with minimal information loss.

Whereas PCA identifies linear structure within a dataset, persistence homology identifies

arbitrary nonlinear structure. A basic persistence homology workflow for discrete data can be

described as follows (Fig 5). First, data are represented as a collection of points in some (typi-

cally) high-dimensional space that characterizes features of interest. If, for example, TDA were

to be used to characterize the results of an agent-based simulation, each point might represent

an individual agent, with the coordinates corresponding to features of that agent: e.g., species,

position, length, orientation. To proceed, a length scale L is chosen, a ball of radius L is con-

structed around each point, and the topological features of the shape thus produced are deter-

mined, e.g., connected components and loops. This analysis is repeated over a wide range of

length scales (Fig 5A–5C). At small scales, it will produce only a cloud of disconnected points.

As the length scale, L, increases, neighbouring balls intersect, forming larger and larger struc-

tures until, finally, they merge into one fully connected component. As L varies, the length

scales at which various topological features occur (i.e., over which they persist) is recorded.

Each topological feature is thus associated to a pair of numbers: the smallest and largest scales

at which the feature exists. These can be represented by a persistence “barcode” in which bars

are plotted against length scale. Each bar corresponds to topological feature; the bars represent

the length scales over which the features occur. (In Fig 5D, the teal bars end at scales at which

connected components merge.) As an alternative visualization, the pairs of length scales
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associated to each topological feature can be plotted in a persistence diagram (Fig 5E; any fea-

tures near the diagonal occur over only a short range of length scales and may be dismissed as

spurious). A similar analysis can be applied to continuous data (e.g., from a PDE model) by

characterizing the topology of the sublevel sets of a continuous function, such as population

density [135].

Much like PCA, persistence homology provides a natural way to reduce the dimensionality

of the dataset. Features that persist over a narrow range of length scales are likely spurious and

can be discarded. The features that persist over a wide range of length scales more likely corre-

spond to meaningful structure in the dataset: Connected components might correspond to dis-

crete clusters, loops to periodicity. Persistence diagrams can be compared to one another

using a variety of metrics, allowing them to be used directly for model calibration. They can

also serve as a starting point for development of custom summary statistics.

This type of analysis was applied by Topaz and colleagues [138] to study ABMs demonstrat-

ing swarming behaviour. In that case, the agents each have a position and a velocity, so clusters

of points in position-velocity space correspond to swarms—closely grouped agents exhibiting

collective motion. Previously, researchers had developed case-specific order parameters to

quantify such behaviour [139–141]. By applying TDA, Topaz and colleagues [138] were able to

detect features that the previous ad hoc metrics failed to quantify. Similar approaches could be

applied to characterize the dynamics of microbial communities.

Fig 5. Persistence homology. Panels (a-c) illustrate the topology of a dataset changing as the length scale, L, is varied. (a) For small values of L, the balls

(disks) are mostly disconnected; only 2 of the 9 intersect. (b) At an intermediate scale, all 9 balls intersect, forming a single connected component, giving

rise to a loop. (c) At larger scales, there is a single connected component and no loop. (d) The progression illustrated in (a-c) is documented in the

persistence barcode; the blue bars correspond to separate connected components, the ends of which corresponds to intersection (merge) events, e.g., at

L = L1. The red bar corresponds to the loop, which forms at L = L2 and which becomes filled in at L = L3. (e) The same information can be represented in

persistence diagram in which the (x,y) coordinates of points correspond to the right and left ends, respectively, of each bar in the barcode.

https://doi.org/10.1371/journal.pcbi.1010533.g005
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4.3 Machine learning algorithms to accelerate model calibration

Conducting global parameter sweeps over high-dimensional parameter spaces is often infeasi-

ble due to computational limitations. For spatiotemporal models, this problem occurs due to

long simulation runtimes and is exacerbated further for stochastic models, where large simula-

tion ensembles may be required. One approach to address this challenge is to create a simpli-

fied input–output representation of the mathematical model of interest. Such an abstraction is

known as a surrogate model (also commonly referred to as a metamodel, or emulator). A sur-

rogate model is constructed by fitting a statistical model or machine learning model to training

data generated from the mathematical model of interest. Surrogate models can run several

orders of magnitude faster than ABM or PDE models that they are fit to, which has motivated

their application in calibration of spatiotemporal models of microbial communities [142–144].

A surrogate model enables faster exploration of the parameter space for both simulation and

uncertainty analysis, albeit at the cost of relying on emulator approximation of model behav-

ior. Although this approach is relatively new to microbial community modelling, surrogate

models have been used extensively in other fields, including engineering design [145], climate

simulation [146], health economics and public health [147], and ecology [148].

Surrogate models can provide significantly more efficient simulation engines when com-

pared to the original model formulations. However, when comparing computational costs, the

time required to obtain the training data for the surrogate model must be considered. The

time required for training depends on several factors, such as parameter space complexity,

sampling methods for parameter values, and computational cost of the original model. For

example, surrogate models of an ABM for biofilm growth required approximately 1,000 hours

of serial computing time (Table 2) [143,144]. In contrast, a surrogate model of a PDE model

describing spatiotemporal dynamics of pattern-forming bacteria required approximately

100,000 hours of serial computing time [142]. These training times can be reduced through

parallelization. For example, the actual time required to generate the training data for the

works listed in Table 2 would range approximately from 1 to 7 days if 64 simulations were con-

stantly run in parallel.

The use of surrogates for calibrating microbial community models requires familiarity with

data sampling methods, supervised machine learning algorithms, and “big data” processing

tools. Such projects may demand collaboration between data scientists and modellers who

want to access these tools. Software packages, such as SUMO [149], SMT [150], and spartan
[151], are available to facilitate the process of generating surrogate models. A brief discussion

of surrogate model selection for ABM applications is provided in [152].

Surrogate models are not the only use for machine learning in this area. Lee and colleagues

[153] reversed the standard modelling pipeline (of training a model on experimental data) by

training a neural network to ABM data, and then using that network to infer microbial interac-

tions from microscopy data. They demonstrated that the magnitude and direction of interspe-

cific interactions could be quantified from steady-state spatial distributions of 2 interacting

bacterial populations. Their work provides a new perspective on the use of mathematical

Table 2. Requirements for generating training data for microbial community models.

Model

Type

Parameters Simulations

Required

Time per Simulation

(h)

Serial Computing Time

(h)

Est. Parallel Computing Time on 64 CPU cores

(h)

Reference

PDE 231 100,000 0.0972 9,720 152 [142]

ABM 32 300 5–6 1,500–1,800 23–28 [143]

ABM 7 100 6–8 600–800 9–13 [144]

https://doi.org/10.1371/journal.pcbi.1010533.t002
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models and machine learning to supplement experiments on microbial communities. Further

advances in modelling and computer science may reveal previously unexplored features of the

rich experimental data associated with single-cell observations.

5. Conclusions

Potential applications of microbial communities in biotechnology, health, agriculture, and

energy have motivated efforts to design and manipulate both synthetic and natural communi-

ties in a predictable fashion. Predictive tools such as ABMs and PDE models will be an essen-

tial part of the microbiome engineering toolbox. Systematically calibrating microbial

community models to single-cell resolution data is challenging due to the high dimensionality

of the data, the intensive image processing requirements, and the specific data processing algo-

rithms required to generate summary statistics. The study of Hartmann and colleagues [70]

exemplifies how single-cell data collection and application of systematic calibration techniques

can be used to predict community-level properties from single-cell behaviours.

We have compiled a collection of summary statistics relevant to microbial communities to

facilitate quantitative comparison between experimental data and simulation outputs. System-

atic calibration with the aid of these summary statistics can increase confidence in model pre-

dictions and overall model utility. Moreover, such calibration can improve the reusability of

submodels and specific parameter values by allowing developers to confidently use or build

upon these calibrated models. This modular approach is already used in synthetic circuit

design workflows (e.g., [154]).

Work in macrobial ecology demonstrates how adopting standard model documentation

procedures (e.g., the ODD protocol and POM framework) can result in more reproducible

and therefore more useful models. Adoption of a similar standard in microbial ecology could

yield similar boons in reproducibility. TDA and machine learning algorithms hold potential

for facilitating systematic selection of summary statistics and efficient exploration of high-

dimensional parameter spaces. As experimental methods and computational techniques con-

tinue to improve, it is expected that models will play a prominent role in rationally manipulat-

ing microbial communities in complex environments such as bioreactors, guts, soils, and

wastewater treatment plants.
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