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Abstract

The ability to predict the consequences of one’s behavior in a particular environment is a mechanism for adaptation.
In the absence of any cost to this activity, we might expect agents to choose behaviors that maximize their fitness, an
example of directed innovation. This is in contrast to blind mutation, where the probability of becoming a new
genotype is independent of the fitness of the new genotypes. Here, we show that under environments punctuated
by rapid reversals, a system with both genetic and cultural inheritance should not always maximize fitness through
directed innovation. This is because populations highly accurate at selecting the fittest innovations tend to over-fit
the environment during its stable phase, to the point that a rapid environmental reversal can cause extinction. A less
accurate population, on the other hand, can track long term trends in environmental change, keeping closer to the
time-average of the environment. We use both analytical and agent-based models to explore when this mechanism is
expected to occur.
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Introduction

One of the distinguishing features of biological evolution is the

production of adaptation through natural selection on blind

variation [1]. A vast amount of theory and empirical work has

been dedicated to this topic, stemming from the earliest works of

Fisher [2] and other classical population geneticists (e.g. [3,4]).

However, this mechanism is not the only method by which

adaptation can be produced.

Population genetics is fairly sparse on the subject of directed

adaptation, or the overproduction of new phenotypes that adapt

the organism well to the current environment. This is, of course,

because genetic mutation is blind. However, the behavioral

innovations of some animals are not necessarily blind. Some

animals can predict the consequences of their actions within their

environment, which increases their probability of choosing a

behavior or innovation among a large pool of possibilities that fit

them well to the current environment. These behaviors can then

be transmitted via cultural inheritance to the next generation.

Thus they can adapt behaviorally in a directed way.

Intuitively, we can believe that such directedness promotes the

maintanence of high fitness. In fact, the scholarly work on the

capacity for predicting the consequences of our actions is littered

with optimistic statements, going all the way back to Malthus, who

spoke of:

‘‘…that distinctive superiority in [human] reasoning faculties,

which enables [them] to calculate distant consequences’’ [5].

The intution that being able to predict the consequences of

one’s actions is good for fitness remain today in the works of most

authors on this topic (e.g. [6,7] and comments in [7]). For

example, D’Argembeau in a comment to [7] says:

‘‘S&C [Suddendorf and Corballis] argues that the primary

fitness function of mental time travel is to enhance biological

fitness in the future: Mentally simulating various versions of the

future, and their respective consequences, enables one to act

flexibly in the present to increase one’s future survival chances. We

completely agree…’’

The reasoning seems to be that agents with the ability to predict

the consequences of their action in the environment can choose

the best possible action out of the pool of all possible actions, and

thereby increase its adaptedness, and therefore its fitness.

However, these predictions ignore the effects of environmental

fluctuations, including sudden changes in fitness optima, which

often have counterintuitive consequences for evolution [8,9]. One

would like a more rigorous argument of when the directedness of

innovations is advantageous, as well as quantitative predictions of

just how advantageous [10]. After all, it is reasonable to assume

that the capacity for directed innovation increases with brain size,

which is expensive in terms of energy [11], obstetric difficulties

[12], and a long childhood [13]. A clearer theoretical understand-

ing would allow us to predict trade-offs involving directed

innovation, as well as the situations in which directed innovation

can be more, or less, important.

Here, we derive a scenario where maximizing one’s accuracy in

choosing the fittest innovation in the current environment can be

detrimental. The systems we study are those with dual inheritance

[14], where the parent is able to pass on both genes as well as

learned behavior. Our approach is based on the intuition that
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agents that are too good at choosing fitness-enhancing innovations

can overfit environmental change. This possibility has already

occurred to Darwin, who wrote that

‘‘If animals became adapted to every minute change, they

would not be fitted to the slow great changes really in progress.’’

[15].

Thus, agents who are capable of assessing the consequences of

their own actions in the immediate environment, but who are

incapable of forecasting the changes of the environment, might be

thrown off by environmental noise rather than adapting

themselves to long term trends or time-averages. We more

specifically show how the occurrence of sudden changes in the

environment can limit the degree of directed innovation. We first

provide an intuitive description of this scenario. We then present a

formal analytical treatment, and finally we report results from an

agent-based simulation applied to a historical example to which

our scenario might apply.

Models and Results

Toy model
Let us begin with an oversimplified toy model in order to

formalize this intuition. Consider an environment, characterized

by a single parameter E that varies around a certain mean. In fact,

let us consider a very particular type of environment, where E

slowly increases over a long period of time, then quickly reverses

and crashes (see Figure 1).

Let’s say there are two agents exposed to E and there is a pool of

actions from which each of the agents can choose. Different

actions alter their fitness in response to E. However, the pair of

agents differ in their ability to assess the consequences of any

particular action in the environment. We call the one who can

assess better the ‘‘accurate’’ agent and the one who assess less well

the ‘‘inaccurate’’ agent. Note that this is not yet a model of

evolution, rather of competition between two agents who do not

die. The competition is based on how well the agents learn from

the environment.

We model the capacity for directed innovation as the average

reduction of the distance between individual fitness and the fitness

optimum following each innovation. This is intutively reasonable

because the agents who can assess better can change its behavior

to be more in tune with changes in the environment, and hence

produce better adaptations. The inaccurate agent, on the other

hand, cannot adapt its behavior to environmental change so well.

Consider the case where the inaccurate agent is so poor that, on

average, its innovations cannot even track the enviromental

changes during the phase of slow increase in , and remain near the

long term environmental mean despite the slow environmental

change. Thus, for the period of slow environmental change, the

accurate agent will do better. However, when the environment

rapidly reverses, the accurate agent might in fact do worse. It

might do worse because it fits the previous change so well that the

rapid reversal meant the environment moved further away from its

optimum than the optimum of the inaccurate agent, which had

stayed near the environmental mean.

We can reason out the conditions allowing inaccurate types to

maintain a higher long-term fitness than accurate types. First of all,

if the accurate agent is able to perfectly adapt to the phase of rapid

enviromental change, then it will always have a higher fitness than

the inaccurate agent. The perfect strategy for agents is to perfectly

track the environment. However, this strategy is impossible if

environment changes so rapidly in its rapid phase as to escape the

capacity of both types of agents to adapt.

Secondly, the environment must possess a strong central

tendency and be varying about some longer-term mean, or trend,

since if its rapid phase is in the same direction as the slow phase,

then the accurate agent will be superior. Finally, the fitness

function must be non-linear in the sense that the cost to the

accurate agent after the rapid environmental reversal must

outweigh the fitness advantage it has accumulated over the period

of slow environmental change.

The first assumption, that perfect adaptation is impossible,

seems to be a reasonable one in view of how the environment

changes at all scales of time. It is impossible for organisms to adjust

themselves to every minute change that occurs with great rapidity.

The second one also seems reaonable, since most environmental

conditions do vary about a certain mean, although whether they

change slowly in one direction and then quickly in another

depends on the scenario at hand, and we will give an example in

the final section.

The third assumption is more subtle. Superficially, it already

seems quite reasonable, since most fitness curves are convex near

the optimum [16–19]. The usual theoretical curve used here is a

gaussian curve, so both theoretically as well as empirically the

fitness drops more precipitously as the agent’s phenotype moves

away from the enviromental optimum. Thus, a short moment of

severe maladaptation can strongly outweight long periods of

relative better adaptation. On the other hand, a more subtle

Figure 1. An artificial environment used by the agent based model. E(t) represents the environmental value at time t.
doi:10.1371/journal.pone.0026770.g001

Fitness-Enhancing Innovations Can Be Detrimental
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theoretical point is that the curvature of the fitness curve is not

necessary, although a strong curvature makes the less accurate

type much more likely to be more fit. This is due to the well-known

principle that natural selection maximizes the geometric mean

fitness over time, not the arithmetic mean [20–23]. Thus, while

maximizing fitness, natural selection also minimizes variance in

fitness over time, and since the worst fitness of the accurate agent is

worse than the worst fitness of the inaccurate agent, the accurate

agent accrues more variance in its fitness, lowering its geometric

mean fitness over time.

We next construct an analytical model to provide a formal

theory of maladaptive directed innovation under sudden environ-

mental changes.

Analytical model
The above section describes a toy model in which maximizing

the fitness of each decision may not be an optimal strategy when

the environment changes slowly in one direction for long periods

and then rapidly reverses. This can be illustrated with a numerical

example. Consider a simple cyclical environment with cycle 4 that

looks like the following: E(t)~f0,1,2,{1,0,1,2,{1,:::g, where t
indicates the timestep.

Consider two agents, A and B, where A is more accurate than

B. Due to greater accuracy, A can adapt to the environment more

quickly than B by choosing better actions. Let us say, for example,

A can change its optimal phenotype by a maximum of xA~1 per

time step in the direction that will take its phenotype closer to the

environmental optimum. B, on the other hand, is incapable of

choosing so well and xB~0:5. Let both agents be perfectly

adapted to the enviroment initially, and let w(t) be the phenotype

of the agent at time t. The phenotype is measured as the

environment to which the organism is best adapted. We thus set

E(0)~wA(0)~wB(0)~0.

We give the first few entries of the sequence of E(t), wA(t), and

wB(t) for clarity:

E(t)~f0, 1, 2, {1, 0, 1,:::g

wA(t)~f0, 1, 2, 1, 0, 1,:::g

wB(t)~f0, 0:5, 1, 0:5, 0, 0:5,:::g

We introduce the fitness curve

l~
1

jE(t){w(t)jcz1
ð1Þ

where c is a tunable parameter. This fitness curve looks a great

deal like a Gaussian curve, but is easier to compute with (Figure

S1, see Information S1). c controls the rate at which the curve falls

off as jE(t){w(t)j increases; a greater c means a sharper threshold

of jE(t){w(t)j at which fitness falls off precipitously.

It turns out that B is more fit than A for cw3:238:::. In fact, the

existence of some critical cc is true in general; for similar

environments and fitness curves, then an agent B with less

foresight than agent A will be more fit than agent A if c is large

than some cc (see Information S1). Moreover, we can show that for

any such environment (such as the one in Figure S2), agents

behave cyclically and there is an intermediate value of x which is

locally optimal for any c. (See Figure S3, Information S1).

Agent-based model
Our model of directed innovation differs from models of blind

mutation. In blind models, mutations themselves do not take the

agent closer to the environmental mean. Any movement towards

the environmental mean is due to the differential effects of natural

selection. In the above analytical model, however, the directed

movement is purely due to the capacity of the agent to choose, on

average, an innovation that takes it closer to the environment. The

previous model is not a model of evolution. We did not include

variance in innovations and there was no reproduction or

selection.

The analytical model shows that agents with less directedness

can be more fit than agents with more directedness. In order to

make the model evolutionary, we extend the above analytical

model with a dual inheritance agent-based model, where the

agent’s behavior begins as being learned (culturally inherited) from

its parent, then changes according to its genetically determined

capacity to learn from the environment, which is genetically

inherited from the parent. This allows us to evaluate the likelihood

of mutating off the local optimum, severity of conditions required

on c (if any), robustness to drift effects, limited population sizes,

and the applicability of this theoretical scenario to the real world.

We confirm that the intermediate accuracy under the conditions

described by the analytical model is a robust prediction under

these scenarios.

In the agent-based model, as in the analytical model, individual

agents have a phenotypic value (w) that represents their adaptation

to an environment. The environment is uniform with one

dimension of variability described by E(t). At each time step,

behavioral innovations become available. Agents can adopt or

refuse these innovations and as a result move their phenotype

closer or farther away from the environmental optimum,

increasing or decreasing their fitness. Agents have a second trait

(x) that represents their probability of knowing how behavioral

innovations will affect them. Accurate agents (higher x) are better

at determining whether any behavioral innovation will move their

phenotypic value closer to the current environmental value.

Inaccurate agents have lower x. Agents adopt the behavioral

innovation if and only if they can determine that it is beneficial.

The probability of adoption is xPb, where Pb is the probability

that a new behavior is beneficial. Agents reject the behavioral

innovation if they are unable to determine whether it is beneficial,

or if they determine it to be harmful. The assumption that new

behaviors are always rejected if agents cannot foresee their

consequences reduces the noise in simulation results. Otherwise

inaccurate agents would have a great range of fitnesses (depending

on what behaviors they adopt by chance), and these fitnesses

would be independent of their foresight. This essentially turns the

model into one of blind mutation, which we would like to avoid.

Consider N agents over the time period ½0,T �, and the

environment changes as E(t). Each agent i is defined by two

parameters, fwi,xig, where wi is the environment that i is adapted

to, and xi is the probability that agent i can assess the

consequences of adopting a behavioral innovation, that is, whether

the new behavior will move the agent closer or farther from the

environmental optimum. At each timestep, there is a probability,

finnov, that a new behavior will be available for adoption. This

behavior will increase or decrease wi by sinnov with equal

probability (so Pb~0:5) if adopted by any given agent. sinnov thus

gives an upper bound to the maximum rate of adaptation to the

current environment.

At each timestep, N agents are chosen with replacement for

update. During each update, agent i survives with the probability

Fitness-Enhancing Innovations Can Be Detrimental
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l~
1

jE(t){w(t)jcz1
ð2Þ

We used survival instead of reproductive fitness to increase

simulation speed, but preserve the same qualitative behavior of the

fitness curves [24]. The dynamics of the model are robust to

implementation scheme; for example, a random agent can be

chosen to replicate with this fitness, pushing out another random

agent.

In our implementation, if agent i does not survive, a random

agent j (not including i) is chosen from the population to

reproduce. Its progeny then replaces i. Thus, a new agent i�, a

progeny of agent j, replaces the agent i that has just died. The new

agent i� is very similar to j with small modifications. Specifically,

wi�~wj , which is an act of cultural transmission (the passage of a

learned behavior from parent to progeny), and xi�~xjzh, an act

of genetic transmission with mutation, where h[½{s,s�, a uniform

distribution. xi� is a probability that is kept bounded between 0

and 1. We do not allow mutations in the culturally learned

behavior because we wish for all movement of the phenotype

towards the environmental mean to be a result of directed

innovations by choice of the agents, rather than blind chance and

selection.

If agent i survives and a new behavior is available, it has xi

chance of accurately assessing whether the new behavior will take

it closer to the environmental optimum. If it assesses successfully,

and the new behavior moves the agent closer to the environment,

then it adopts the behavior and modifies its wi. Else it does not

adopt the new behavior. This is how we model directed

innovations.

We tested the model with a variety of environments. We report

the results with an artificial environment (Figure 1) and one based

on the Vostok ice core data [25,26] (see next Section). In order to

make the different environments comparable, we normalize them

so the the minimum environmental value is 0 and the maximum

environmental value is 1. We examine a range of c’s and we note

the minimum c value for which the agents settle into an

intermediate, rather than a maximal ability to foresee the

consequences of new behaviors. For all simulations,

N~10000,finnov~0:1,sinnov~0:005,s~0:01. For the artificial

environment presented in Figure 1, predicted x values are

independent of initial conditions for all c§6. The results for

c~5,c~6,c~10 are presented in Figure 2. As expected from the

analytical model, for large enough c (cw6)agents do not evolve to

maximum possible foresight. Each sudden environmental reversal

will favour anew the inaccurate agents.

This result depends on the assumption that even maximum

foresight is not sufficient to perfectly track the environment during

the sudden reversal. If perfect tracking was possible, the agents

that could perfectly track would necessarily be the most fit. We

argued in our Introduction that the inability to perfectly track the

environment during sudden environmental changes is a reason-

able assumption, and we will return to this assumption in the

Discussion.

The main differences between the agent-based and the

analytical models presented here are the dissociation between x
and w, and limited population size introduced in the agent-based

model. If the environment slowly rises in one direction for too

long, or if c is too small, then all agents with low x die before the

onset of sudden environmental change, in which case high x
dominates, or the population goes extinct (which is prevented in

this model). The minimum c values needed to generate

intermediate optimal x from the model means that we need a

fitness curve that drops off quickly when the distance between the

phenotype and the environmental optimum reaches a threshold.

This way, inaccurate agents can survive until the catastrophic

event (since they do not cross that threshold), but the catastrophic

event is sufficient to kill off most of the accurate agents (since they

do cross that threshold). Thus, although the analytical model

predicts a locally optimal x for all c, a minimum c is required in

the agent-based model to observe a local optimum.

Agent-based modeling using the Vostok ice core data
The artificial environment we use in the previous section can be

argued to be too artificial; the rise and the fall are both clean of

noise and the sudden reversal might be too sudden and too quick

to be realistic. To address this issue, we insert a more realistic

timeseries in the form of the Vostok ice core data [25,26]. This

data indicates that the temperature environment over the last 400

000 years has been characterized by rapid deglaciation events,

interspersed across periods of slower cooling and cold plateaus. We

test whether this could result in an intermediate, locally optimal

adaptive rate. We replace our artificial environment with the

Vostok ice core data (Figure 3), where each timestep counts for a

Figure 2. Intermediate adaptive rate (x) is optimal for agents in
the environment of Figure 1. Brightness denotes density of agents.
From top to bottom: c~5,c~6,c~10. All other parameters are identical
(see text for more details). Initial conditions: E(0)~wi(0)~0,xi[½0,1�.
The results are independent of initial conditions. Note how the larger
the gamma, the stronger the movement to intermediate, rather than
maximal, accuracy.
doi:10.1371/journal.pone.0026770.g002

Fitness-Enhancing Innovations Can Be Detrimental
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single year. All other details remain identical to the previous

model. Even c~5 in this model favored agents of moderate or

even low ability to foresee the consequences of adopting different

behaviors (Figure 4). As expected, the effect increases with

increasing c.

The first significant period of change is a rapid glaciation

400kya that causes inaccurate agents to have a fitness advantage.

Four rapid deglaciation events 350kya, 250kya, 150kya, and a last

one in the past 20ky, all allow low inaccurate agents to persist for

long periods. In other words, there is an advantage to reducing the

overall ability of the agents to discriminate between beneficial and

harmful innovations under these circumstances. We believe that a

large range of environmental variables display this pattern of slow

movement in one direction interspersed with catastrophic

reversals, which potentiates the type of scenario described in this

paper. Natural disasters, for example, might happen quickly,

followed by long and slow periods of recovery.

Discussion

In this paper, we show a somewhat counterintuitive point that

agents which can best assess the consequences of their actions in

the current environment can nevertheless be at a fitness

disadvantage relative to less accurate competitors. We reason that

the ability of agents to predict the consequences of their actions in

a given environment acts like a greedy algorithm; it constantly tries

to optimize for the moment. In the cases reported here, the greedy

algorithm fails because the accurate agent over-optimizes for the

immediate present, and so fails to track the long term average of

the environment.

Several veins of earlier theoretical work shed light on these

results. The first is the work on optimal rates of mutation (e.g. [27–

30]). Another related line is natural selection and mutation rates in

changing environments (e.g. [21,31,32]). The first body of work

established that in the majority of cases, a low or zero mutation

rate is preferable since the vast majority of mutations are

deterimental. The fact that mutation rates are not zero is likely

due to the physiological cost of increasing copying fidelity ([30]),

especially in sexual beings where the hitchhiking of alleles that

increases mutation rate to beneficial alleles is broken by

recombination. The second line of work established the manner

in which environments must change in order to maintain genetic
variability (e.g. [32]). These results, however, are primarily focused

on blind mutations. Directed innovations, where a larger

proportion of change might be beneficial, require a different sort

of analysis.

The closest work focuses on the evolution of individual learning

(e.g. [8,9,14,33]). The evolution of learning from the environment

is strongly related to this work, since this type of learning (as

opposed to social learning from other agents) can be seen as the act

of choosing new behaviors with feedback from the environment.

Most of this work, however, has focused on the evolution of the

capacity for culture. A recent result that studies learning in

variable environments, for example, showed that in a stable

environment punctuated by sharp bouts of change, agents stop

learning from the environment during the stable periods and

instead opt to choose to learn from each other. When the

environment does change, the agents can no longer learn from the

environment and may go extinct [9]. Our work instead focuses

purely on the dynamics of the evolution of learning from the

environment and on the optimal rates of such learning. Previous

work assumed that better capacity for learning, if costless in other

fitness terms such as time and energy, would likely lead to

improvement of agent fitness, although our results have been

foreseen by [34], who realized that changes in environmental

conditions can lead to a reduction of learning.

Figure 3. The Vostok ice core data. Long periods of cooling are
punctuated by rapid deglaciation.
doi:10.1371/journal.pone.0026770.g003

Figure 4. Agent discrimination ability using the Vostok ice core
data. From top to bottom: c~5,c~6,c~10. Notice how discriminatory
ability rises during periods of slow change, but falls each time there is a
rapid reversal.
doi:10.1371/journal.pone.0026770.g004

Fitness-Enhancing Innovations Can Be Detrimental
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Our model applies to systems of dual inheritance, where the

learning done by the parent generation is passed on to the progeny

through cultural transmission, and the capacity to learn further

from the environment is passed on through genetic transmission.

The model also contains three key simplifying assumptions that

allow for analytical tractability and increase the generality of our

results. First is that agents cannot fully adapt to the environment

using directed innovation when environmental change is at its

quickest. This, we argue, is reasonable. The environment

fluctuates on every timescale; even organisms with learning cannot

adapt to every change. In the absence of prior adaptation, the

maximum rate of environmental change during a volcanic

eruption, for example, must be very quick indeed and no cognitive

capacity is likely to cope with it in an optimal way. A recent review

of the evolution literature [35] falls in very neatly with this

assumption, that the environment constantly exerts considerable

selection pressure on organisms, but with many changes in

direction and with longer trends of change that proceed at a much

slower pace.

The second assumption is that agents are incapable of

forecasting the environment. Forecasting denotes agents’ knowl-

edge of the future environment. If there are agents with good

environmental forecasting abilities who can know the environment

many timesteps in advance, they can preadapt and nullify these

theoretical predictions. Future explorations will allow us to

understand the sensitivity of this model to forecasting. However,

we expect our results to be robust to some amounts of forecasting,

which would be consistent with overall difficulty of predicting

environmental fluctuations.

The third assumption of the model is that agents are incapable

of remembering or reusing behavioral innovations they adopted in

the past. This assumption is implicit in the fact that the agents’

directed rates of adaptation are the same in any direction, whether

or not they previously explored that parameter range. This

assumption is realistic for many animal species using only limited

forms of social learning, so behavioral innovations gained by

ancestors are forgotten as quickly as they become unfit. The

assumption holds when there is no repertoire of past behavior

from which the current generation can draw to deal with

environmental conditions that occurred in the past.

We make the important caveat that we do not believe that the

evolution of directed innovation, particularly in the vastly more

complex system of humans, in fact occurred in the way we

describe it here. Too many parameters, including the three

assumptions stated above: the maximum rate of directed

innovation, the existence of memory and forecasting abilities,

remain unknown. We have, however, stated a theoretical

possibility with clear and general implications. It can potentially

provide insights into the cultural evolution of many animal species.

Future work will provide more quantitative predictions that can be

directly tested for particular species, cultural systems and

environmental regimes.

Supporting Information

Figure S1 An example fitness curve for c = 4, E = 0, and w
from 25 to 5. It is very similar to the normal distribution curve

but is easier to compute.

(TIFF)

Figure S2 The environment used in the analytical
model. The environment increases in discrete steps of 1 each

timestep for c timesteps, then drops to 0 in a single time step.

(TIFF)

Figure S3 Agent behavior in this environment over the
first cycle. Dashed lines and diamonds indicate the phenotype of

the agent, solid lines and circles the environment. The particlular x

(maximum rate of phenotypic change) used here is x = 0.5, but

changing x will only change the amplitude of the cycle, not its

phase or frequency.

(TIFF)

Information S1.

(PDF)
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