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Recent studies have demonstrated that connector hubs, regions considered critical for
the flow of information across neural systems, are mostly involved in neurodegenerative
dementia. Considering that aging can significantly affect the brain’s intrinsic connectivity,
identifying aging’s impact on these regions’ overall connection strength is important to
differentiate changes associated with healthy aging from neurodegenerative disorders.
Using resting state functional magnetic resonance imaging data from a carefully selected
cohort of 175 healthy volunteers aging from 21 to 86 years old, we computed an
intrinsic connectivity contrast (ICC) metric, which quantifies a region’s overall connectivity
strength, for whole brain, short-range, and long-range connections and examined age-
related changes of this metric over the adult lifespan. We have identified a limited number
of hub regions with ICC values that showed significant negative relationship with age.
These include the medial precentral/midcingulate gyri and insula with both their short-
range and long-range (and thus whole-brain) ICC values negatively associated with
age, and the angular, middle frontal, and posterior cingulate gyri with their long-range
ICC values mainly involved. Seed-based connectivity analyses further confirmed that
these regions are connector hubs with connectivity profile that strongly overlapped with
multiple large-scale brain networks. General cognitive performance was not associated
with these hubs’ ICC values. These findings suggest that even healthy aging could
negatively impact the efficiency of regions critical for facilitating information transfer
among different functional brain networks. The extent of the regions involved, however,
was limited.
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INTRODUCTION

Studies have shown that the human brain is functionally
organized into several large-scale networks, which can be
identified using the spontaneous low frequency fluctuations of
resting state functional magnetic resonance imaging (fMRI) data
(Biswal et al., 1995; Greicius et al., 2003; Beckmann et al., 2005;
Seeley et al., 2007). Some of these so-called resting state networks
(RSNs), or their precursors, can already be identified even in the
infant brain (Fransson et al., 2007; Smyser et al., 2010). These
networks continue to mature with age and are continuously
transformed across the life span (Tomasi and Volkow, 2012;
Betzel et al., 2014; Sala-Llonch et al., 2015; Bagarinao et al., 2019).
Characterizing the changes these RSNs undergo throughout
normal development and aging is important as recent studies
have indicated that RSN disruptions can also be associated with
psychiatric (Greicius, 2008; Menon, 2011) and neurodegenerative
disorders (Greicius et al., 2004; Hacker et al., 2012; Yao et al.,
2014; Dai et al., 2015; Kawabata et al., 2018; Yokoi et al., 2018;
Yoneyama et al., 2018; Ogura et al., 2019).

A number of brain regions called cortical hubs, characterized
by numerous strong interconnections with several other regions,
are considered critical for the flow of information within and
between brain networks (Sporns et al., 2007). Prominent hub
regions include the posterior cingulate, lateral temporal, lateral
parietal, and medial/lateral prefrontal, many of which overlap
with regions of the default mode network (Buckner et al., 2009).
Given this critical role, hub regions are generally implicated
in the anatomy of many disorders (Crossley et al., 2014). Its
dysfunctions are also associated with behavioral and cognitive
impairments in several neurological and psychiatric disorders
(Buckner et al., 2009; van den Heuvel et al., 2013; van den
Heuvel and Sporns, 2013; Dai et al., 2015) and could also provide
novel insight into the pathomechanism of cognitive decline
(Ogura et al., 2019).

Since the human brain processes information not only within
adjacent areas but also from distant projections, recent studies
have also investigated hub profiles in a distance-dependent
manner (Sepulcre et al., 2010; Alexander-Bloch et al., 2013;
Liang et al., 2013; Dai et al., 2015). Some hub regions
were found to have high preference to local connectivity
involving regions mostly in primary and secondary cortices
(motor, somatosensory, auditory, visual, etc.), or long distance
connectivity involving heteromodal regions in lateral parieto-
temporal and frontal cortices, or both local and long distance
connectivity involving regions which overlap with the default
mode network (Sepulcre et al., 2010). By taking into account
the distance of functional connections, certain vulnerabilities
to distance-dependent connectivity changes can be identified.
There are also differences in metabolic demands for long-range
brain hubs, which require more energy, as compared to short-
range hubs, making the former more vulnerable than the latter
(Bullmore and Sporns, 2012).

Considering that aging can significantly affect the brain’s
intrinsic connectivity, characterizing age-related changes in the
overall connectivity strength of hub regions is important in order
to differentiate changes associated with healthy aging from that

due to neurodegenerative disorders. In this study, we examined
aging’s impact on the overall connection strength of hub regions.
For this, we used resting state fMRI data to construct an
intrinsic connectivity contrast (ICC) map (Martuzzi et al., 2011),
which reflects each voxel’s overall connectivity strength. Using a
carefully selected cohort of healthy volunteers with age ranging
from 21 to 86 years old, we first investigated the characteristics
of the ICC map in a subgroup of young participants, and then
examined how the ICC values change with age over the adult
lifespan. In addition, we also examined whether some of the
changes are distance-dependent (Euclidean) following earlier
studies highlighting differences in the connectivity profile of
hubs with respect to the distance of their connection. Finally,
we performed seed-based connectivity analyses using as seed
regions those with ICC values that showed significant association
with age to identify the regions’ connections to several well-
known RSNs.

MATERIALS AND METHODS

Participants
Resting state fMRI data from 175 healthy volunteers (85 males/90
females) ranging in age from 21 to 86 years were included in the
analysis. The included participants were carefully selected from
those enrolled in our ongoing Brain and Mind Research Center
Aging Cohort Study (Bagarinao et al., 2018, 2019) using the
following exclusion criteria: 1) inability to complete the Japanese
version of Addenbrooke’s Cognitive Examination-Revised (ACE-
R) assessment, 2) presence of structural abnormalities (e.g.,
asymptomatic cerebral infarction, benign brain tumor, white
matter abnormalities, etc.) in structural MRI as identified by
two Japanese board-certified neurologists (HW, KH) and a
neurosurgeon (SM), 3) Mini-Mental State Examination (MMSE)
score less than 26 or ACE-R total score less than 89, 4)
head motion in resting state fMRI data with mean frame-
wise displacement (FD) (Power et al., 2012) values greater than
0.2 mm, and 5) incomplete imaging data. Although MMSE
score was also assessed, this score was only used for additional
screening of the participants. The participants’ characteristics are
summarized in Table 1. All participants gave written informed
consent before joining the study, which was approved by the
Ethics Committee of Nagoya University Graduate School of
Medicine and conformed to the Ethical Guidelines for Medical
and Health Research Involving Human Subjects as endorsed by
the Japanese Government.

Magnetic Resonance Imaging (MRI) Data
All participants underwent MRI scanning at the Brain and Mind
Research Center using a Siemens Magnetom Verio (Siemens,
Erlangen, Germany) 3.0T scanner with a 32-channel head coil.
For each participant, a high resolution T1-weighted (T1w) image
and resting state fMRI data were acquired. The T1w image was
acquired using a 3D MPRAGE (Magnetization Prepared Rapid
Acquisition Gradient Echo, Siemens) pulse sequence (Mugler
and Brookeman, 1990) with the following parameters: repetition
time (TR)/MPRAGE repetition time = 7.4/2500 ms, echo time
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TABLE 1 | Participants’ characteristics.

Age Range Count M F Mean ACE-R (SD) score

Total Attn Mem Flncy Lang Visu

20–29 39 25 14 96.5 (1.89) 17.9 (0.22) 24.2 (1.11) 13.8 (0.48) 24.9 (1.30) 15.7 (0.68)

30–39 21 10 11 97.9 (2.49) 18.0 (0.00) 25.0 (1.24) 13.4 (1.40) 25.4 (0.81) 16.0 (0.00)

40–49 19 11 8 96.4 (3.13) 17.9 (0.23) 24.3 (1.88) 13.4 (1.07) 25.0 (1.11) 15.7 (0.65)

50–59 34 12 22 97.4 (1.54) 17.9 (0.24) 24.6 (1.35) 13.7 (0.57) 25.4 (0.73) 15.8 (0.50)

60–69 35 14 21 96.1 (2.41) 17.9 (0.40) 23.7 (2.15) 13.8 (0.53) 25.2 (0.83) 15.5 (0.92)

70–79 26 13 13 94.8 (3.06) 17.8 (0.40) 23.6 (1.94) 13.1 (1.14) 24.8 (1.20) 15.5 (0.86)

80–89 1 0 1 91.0 (–) 17.0 (–) 20.0 (–) 14.0 (–) 25.0 (–) 15.0 (–)

Total 175 85 90

SD, standard deviation; M, male; F, female; ACE-R, Addenbrooke’s Cognitive Examination-Revised; Attn, attention; Mem, memory; Flncy, fluency; Lang, language;
Visu, visuospatial.

(TE) = 2.48 ms, inversion time (TI) = 900 ms, flip angle (FA) = 8
degrees, field of view (FOV) = 256 mm, 256 × 256 matrix
dimension, 192 sagittal slices with 1-mm thickness, in-plane
voxel resolution of 1.0 × 1.0 mm2, and total scan time of 5 min
and 49 s. For the resting state fMRI data, an ascending gradient
echo (GE) echo planar imaging (EPI) pulse sequence was used
with the following imaging parameters: TR = 2.5 s, TE = 30 ms,
FOV = 192 mm, 64 × 64 matrix dimension, FA = 80 degrees, 39
transverse slices with a 0.5-mm inter-slice interval and 3-mm slice
thickness, and total scan time of 8 min and 15 s. During resting
state fMRI scan, participants were instructed to close their eyes
but not to fall asleep.

Image Preprocessing
All images were preprocessed using Statistical Parametric
Mapping (SPM12, Wellcome Trust Center for Neuroimaging,
London, United Kingdom) running on Matlab (R2016b,
MathWorks, Natick, MA, United States). Using SPM12’s
segmentation approach (Ashburner and Friston, 2005), the T1w
images were segmented into component images including gray
matter (GM), white matter (WM), cerebrospinal fluid (CSF),
and other non-brain tissue components. Bias-corrected T1w
images and the transformation information from subject space
to the Montreal Neuroimaging Institute (MNI) space were
also obtained. For each resting state fMRI data, the first five
volumes in the series were removed. Based on our previous
work, this number is already sufficient to account for the initial
BOLD signal instability. The remaining images were then slice-
time corrected relative to the middle slice (slice 20), and then
realigned to the mean image, computed after initially realigning
the images relative to the first image. The mean image, together
with the realigned images, were then co-registered to the bias-
corrected T1w image, normalized to the MNI space using
the transformation information obtained during segmentation,
resampled to an isotropic 2 × 2 × 2 mm3 voxel resolution, and
smoothed using an isotropic 8-mm full-width-at-half-maximum
3-dimensional Gaussian filter. The preprocessed images were
then corrected for head motion and contribution from other
nuisance signals. In particular, we regressed out 24 motion-
related signals given by [Rt , Rt2, Rt − 1, and Rt − 1

2], where

Rt = [xt , yt , zt , αt , βt , γt] represents the estimated motion
parameters (x, y, and z for translations and α, β, and γ for
rotations about x, y, and z, respectively) at time t. Mean signals
from spherical regions of interest (radius = 4 mm) within the
CSF and WM, the global signal, as well as derivatives of these
signals were also removed. Finally, a bandpass filter within the
frequency range from 0.01 to 0.1 Hz was also applied. These
additional image preprocessing steps were performed using
functions available in Matlab.

Intrinsic Connectivity Contrast
From the preprocessed functional images, we computed the
voxel-wise ICC (Martuzzi et al., 2011) using Matlab. Specifically,
we used the form of the ICC that computes the power (ICC-pth)
with the threshold set to 0 and computed using the following
formula:

ICC (i) =
1
n

n∑
j6=i

r
(
i, j
)2

where r(i,j) is the connectivity value between voxels i and j
and n is the number of voxels. To exclude unnecessary voxels,
we limit our analysis to only include GM-relevant voxels. For
this, we generated a GM mask by applying a threshold value of
0.2 to SPM12’s GM tissue probability map. Voxels with values
exceeding this threshold were included in the GM mask. The ICC
values of all voxels within the mask were then computed resulting
in a map of ICC values. Finally, the ICC values were standardized
by subtracting the mean ICC computed from all voxels in the
image, and dividing the difference by the standard deviation.
This conversion to z-score does not affect the topography of
the individual maps but enables the maps to be averaged and
compared across participants (Buckner et al., 2009).

Distance-dependent ICC values were also computed. For
the short-range ICC values, only voxels within distance dthr
(Euclidean) from the reference voxel were included in the
computation. On the other hand, for long-range ICC values,
only voxels with distance greater than dthr were included. In this
study, we used dthr = 75 mm to be consistent with the value
used in previous studies (Achard et al., 2006; He et al., 2007).
The different steps in computing the different ICC maps are
summarized in Figure 1.
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FIGURE 1 | Schematic illustration of the different steps to compute the intrinsic connectivity contrast (ICC) values from resting state fMRI data. Using the
preprocessed data, we computed Pearson’s correlation (rij ) between pairs of voxels within the brain resulting in a whole-brain connectivity matrix quantifying
voxel-to-voxel connectivity. The square of the value of each element in the connectivity matrix was then computed in order to obtain the form of the ICC that
computes the power (rij2). The resulting squared connectivity matrix or “power” matrix was then used to generate the whole-brain, short-range, and long-range ICC
maps. For the whole-brain ICC map, the column-wise mean of the power matrix was computed (excluding self-connection). The resulting mean values were then
converted to z-scores to form the map. For the short-range ICC map, only voxels with (Euclidean) distance less than a given threshold, denoted as dthr, relative to
the reference voxel (voxel i for column i) were included in computing the mean values. On the other hand, for the long-range ICC map, only voxels with distance
greater than dthr were included. For both, the computed mean values were also converted to z-scores to form the corresponding maps. L, left; R, right.

Statistical Analyses
Although hub regions identified using the network metric called
degree are known (Buckner et al., 2009), hub regions identified
using ICC are yet to be characterized. Given this, we first
profiled the spatial distribution of ICC values across the brain
for whole-brain, short-range, and long-range connections. For
this analysis, we used data from a subset of participants with
age less than 40 years old (N = 60). We performed one-
sample t-tests of the ICC maps for the whole brain, long-
range, and short-range ICC values using SPM12. To identify
voxels with the most significant ICC values, we applied a
more stringent p-value threshold equal to 0.05 corrected for
multiple comparisons using a family-wise error (FWE) rate
and cluster size equal to or greater than 25 voxels to the
resulting statistical maps. We note that this analysis is primarily
aimed to establish the spatial profile of the ICC metric across
the whole brain, rather than to make comparisons across
different age groups. To examine age-related changes in ICC
values, which is our primary goal, we used regression analysis
as described next.

We examined the relationship between ICC values and age
and cognitive performance using data from all participants.
Since all participants were cognitively normal, the variability
of several ACE-R sub-scores were very limited (Table 1),
preventing us to investigate associations at specific cognitive
subdomains. We therefore used the ACE-R total score as

the metric representing general cognitive performance. We
used a linear regression model with age and ACE-R total
score as regressors. We also included sex and the mean
FD values estimated from the realignment parameters (Power
et al., 2012) as regressors of no interest to account for
potential sex differences and the residual effects of head motion.
Regression coefficients were estimated using SPM12. Generated
statistical maps were thresholded using a p-value equal to 0.05
corrected for multiple comparisons using FWE at the cluster
level (FWEc) with a cluster defining threshold (CDT) set at
p = 0.001.

Seed-Based Connectivity Analysis and
RSN Overlap Ratio
We also performed additional seed-based connectivity analyses
using regions with ICC values that showed significant
relationship with age to quantify the regions’ connectivity
relative to well-known RSNs. This would be useful in identifying
connector hubs from non-connector hubs as the former
will be significantly connected to not just one but multiple
RSNs. Spherical seed regions-of-interest (ROIs) with centers
located at the MNI coordinates of the significant clusters’
peak locations and radius equal to 4 mm were used. For
each seed ROI, its mean time series was extracted and
correlated to that of all voxels within the brain (whole-
brain connections) to generate its corresponding functional
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connectivity map. Using the generated connectivity maps
from participants in the young adult subgroup, a one-sample
t-test was then performed. The resulting statistical map was
corrected for multiple comparisons using FWEc p < 0.05 with
a CDT set at p = 0.001 to obtain the group-level functional
connectivity map of the given ROI. To quantify the seed
ROI’s connectivity with several RSNs, we estimated the spatial
overlap of the thresholded statistical map with well-known
RSNs. For this, we used the 14 RSN templates from Shirer
et al. (2012) as reference and computed an RSN overlap
ratio R (Bagarinao et al., 2020) using the following equation:

R =
Noverlap

NRSN
,

where Noverlap is the number of voxels in the RSN
template that overlapped with the FWEc-corrected
statistical map of the ROI, and NRSN is the total
number of voxels in the RSN template. An overlap
ratio of 1 means that the RSN template is fully within
the corrected connectivity map of the given seed ROI
(Noverlap = NRSN), whereas a value of 0 means no overlap
at all (Noverlap = 0). We used the RSN overlap ratio to
identify the different RSNs where the seed ROI has significant
functional connection.

RESULTS

ICC Characteristics in Young Adult
Participants
We first characterized the spatial distribution of the ICC maps
in a subgroup of young adult participants. Whole-brain ICC
maps identified hub regions showing significant ICC values
in the bilateral middle frontal gyrus, angular gyrus, middle
temporal gyrus, precuneus, medial superior frontal gyrus, lateral
orbital gyrus, lingual gyrus, and central operculum, among
others (Figure 2A). For the distance-dependent ICC maps,
cortical hubs characterized by significant short-range ICC values
were observed in regions associated with primary processing
networks (visual and sensorimotor) as well as in bilateral
medial superior frontal gyrus, lateral orbital gyrus/orbital part
of the inferior frontal gyrus, lateral parietal, right central
operculum, and cerebellum (Figure 2B). In contrast, cortical
hubs characterized by significant long-range ICC values were
observed in regions associated with the core neurocognitive
networks (default mode, salience, and executive control) such as
the bilateral middle frontal gyrus, angular/supramarginal gyrus,
inferior/middle temporal gyrus, precuneus/posterior cingulate
gyrus, and midcingulate gyrus, among others (Figure 2C). MNI
coordinates of the peak locations and sizes of the significant

FIGURE 2 | Intrinsic connectivity contrast (ICC) maps for (A) whole-brain connections, (B) short-range connections, and (C) long-range connections constructed
using resting state fMRI data from the young adult subgroup (age <40 years old, N = 60). Regions with significant (FWEc p < 0.05, CDT p = 0.001) ICC values are
indicated. Color map encodes t-values mapped on the cortical surface using BrainNet Viewer (Xia et al., 2013). L, left; R, right.
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clusters are given in Supplementary Tables S1–S3 for whole-
brain, short-range, and long-range ICC values, respectively.

Relationship Between ICC Values and
Age
Regions with whole-brain ICC values that showed significant
negative linear relationship with age included the bilateral insula,
bilateral medial segment of the precentral gyrus/midcingulate,
left middle temporal gyrus, left anterior cingulate gyrus, and right
angular gyrus (Figure 3a). Age-related changes in whole-brain
ICC values in the bilateral insula and the medial segment of

the precentral gyrus/midcingulate gyrus were influenced by both
the short-range and long-range ICC values, which also showed
significant negative relationship with age (Figures 4a, 5a). On
the other hand, age-related changes in whole-brain ICC values in
the left anterior cingulate gyrus and middle temporal gyrus were
mostly influenced by the short-range ICC values (Figure 4a),
whereas that in the right angular gyrus by the long-range ICC
values (Figure 5a). A region in the left fusiform gyrus has
only short-range ICC values that showed significant negative
relationship with age (Figure 4a). In contrast, regions in the right
central operculum, bilateral angular gyrus, left middle frontal

FIGURE 3 | Relationship between whole-brain intrinsic connectivity contrast (ICC) values and age. (a) Regions with whole-brain ICC values that showed significant
(FWEc p < 0.05, CDT p = 0.001) negative linear relationship with age. (b) Spider plots of the overlap ratio quantifying the connection between the 14 canonical
resting state networks and the regions shown in (a). dDMN, dorsal default mode network; vDMN, ventral default mode network; Prec, precuneus network; LECN,
left executive control network; RECN, right executive control network; aSal, anterior salience network; pSal, posterior salience network; Lang, language network;
Visu, visuospatial (dorsal attention) network; BG, basal ganglia network; hVis, high visual network; pVis, primary visual network; Aud, auditory network; SMN,
sensorimotor network; R, right; L, left.
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FIGURE 4 | Relationship between short-range intrinsic connectivity contrast (ICC) values and age. (a) Regions with short-range ICC values that showed significant
(FWEc p < 0.05, CDT p = 0.001) negative linear relationship with age. (b) Spider plots of the overlap ratio quantifying the connection between the 14 canonical
resting state networks and the regions shown in (a). dDMN, dorsal default mode network; vDMN, ventral default mode network; Prec, precuneus network; LECN,
left executive control network; RECN, right executive control network; aSal, anterior salience network; pSal, posterior salience network; Lang, language network;
Visu, visuospatial (dorsal attention) network; BG, basal ganglia network; hVis, high visual network; pVis, primary visual network; Aud, auditory network; SMN,
sensorimotor network; R, right; L, left.

gyrus, and posterior cingulate gyrus have only long-range ICC
values that showed significant negative linear relationship with
age (Figure 5a).

Regions in the bilateral caudate and right cerebellum have
whole-brain, short-range, and long-range ICC values that
showed significant positive relationship with age. Other
regions with ICC values exhibiting positive association
with age included the right thalamus and left hippocampus
for whole-brain ICC values, the right lingual gyrus for
both whole-brain and long-range ICC values, and the
right planum polare/temporal pole for both whole-brain
and short-range ICC values. Peak locations in MNI
coordinates and sizes of the significant clusters are given in

Tables 2–4 for whole-brain, short-range, and long-range ICC
values, respectively.

Overlap of Seed-Based Connectivity
Maps With Large-Scale RSNs
To quantify the connectivity between regions with ICC values
showing significant negative relationship with age and large-
scale functional networks, we computed the overlap ratio
between the estimated connectivity map of each region and
14 well-known RSN templates. Spider plots of the overlap
ratio for the different seed ROIs showing age-related changes
in whole-brain, short-range, and long-range ICC values are
shown in Figures 3b, 4b, and 5b, respectively. From these
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FIGURE 5 | Relationship between long-range intrinsic connectivity contrast (ICC) values and age. (a) Regions with long-range ICC values that showed significant
(FWEc p < 0.05, CDT p = 0.001) negative linear relationship with age. (b) Spider plots of the overlap ratio quantifying the connection between the 14 canonical
resting state networks and the regions shown in (a). dDMN, dorsal default mode network; vDMN, ventral default mode network; Prec, precuneus network; LECN,
left executive control network; RECN, right executive control network; aSal, anterior salience network; pSal, posterior salience network; Lang, language network;
Visu, visuospatial (dorsal attention) network; BG, basal ganglia network; hVis, high visual network; pVis, primary visual network; Aud, auditory network; SMN,
sensorimotor network; R, right; L, left.

figures, it is evident that the identified ROIs have connectivity
profiles that overlapped with not just one but several RSNs
indicating that these regions are mostly connector hub regions.
Regions with whole-brain, short-range, and long-range ICC
values that showed significant negative relationship with age
(right posterior insula, right medial precentral gyrus, and

left posterior operculum) had strong overlap with primary
processing networks (sensorimotor, auditory, and visual) and
salience network (Figure 3b). In contrast, regions with long-
range ICC values that showed significant negative relationship
with age (bilateral angular gyrus, left middle frontal gyrus,
and right posterior cingulate gyrus) were strongly connected

Frontiers in Aging Neuroscience | www.frontiersin.org 8 October 2020 | Volume 12 | Article 592469

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-12-592469 October 23, 2020 Time: 18:44 # 9

Bagarinao et al. Aging Impacts Brain Hubs

TABLE 2 | Regions showing significant (FWEc p < 0.05, CDT p = 0.001)
relationship between whole-brain ICC values and age and ACE-R total score.

Contrast X Y Z z-Value Cluster size Area Other within
cluster peaks

Age (+) −10 14 2 6.61 436 L Cau

14 16 6 6.17 267 R Cau

14 −34 20 6.1 149 R ThP

34 −34 −40 5.47 371 R Cer

4 −98 −4 4.86 182 R LiG R OCP, L OCP

44 −10 −10 4.77 179 R PP R TMP

−18 −44 16 4.63 249 L Hip

34 18 −42 4.48 168 R TMP

Age (−) 30 −24 14 5.99 349 R PIns R AIns

10 −32 52 5.48 955 R MPrG R MCgG, L MPrG

−36 −28 18 5.02 446 L PO L AIns, L PIns

−10 16 40 4.62 180 L SMC L ACgG, R ACgG

−54 −48 2 4.4 136 L MTG L STG

44 −54 58 4.34 128 R AnG R SPL

ACE-R (+) −34 −74 −16 4.47 380 L OFuG L Calc

18 −76 6 4.35 744 R Calc R OFuG, R LiG

−18 −86 26 4.29 425 L SOG L OCP

−30 −24 62 4.08 220 L PrG L PoG

−20 −54 0 3.9 121 L LiG

−10 −72 −56 4.21 218 L Cer

Cau, caudate; ThP, thalamus proper; Cer, cerebellum; LiG, lingual gyrus; OCP,
occipital pole; PP, planum polare; TMP, temporal pole; Hip, hippocampus; PIns,
posterior insula; AIns, anterior insula; MPrG, medial precentral gyrus; MCgG,
midcingulate gyrus; PO, posterior operculum; SMC, supplementary motor cortex;
ACgG, anterior cingulate gyrus; MTG, middle temporal gyrus; STG, superior
temporal gyrus; AnG, angular gyrus; SPL, superior parietal lobule; OFuG, occipital
fusiform gyrus; Calc, calcarine; SOG, superior occipital gyrus; PrG, precentral
gyrus; PoG, postcentral gyrus; ACE-R, Addenbrooke’s Cognitive Examination-
Revised; L, left; R, right.

with control (visuospatial, executive control, and salience) and
default mode networks.

Relationship Between ICC Values and
ACE-R Total Score
From Tables 2–4, one can see that some regions in the visual
cortex (occipital fusiform gyrus, calcarine, and superior occipital
gyrus), sensorimotor cortex (left precentral and postcentral
gyri), and cerebellum have whole-brain, short-range, and long-
range ICC values that positively correlated with ACE-R total
score. All of the regions do not overlap with those showing
significant negative relationship with age except the one in
the left lingual gyrus with short-range ICC values that showed
significant positive relationship with ACE-R total score and
negative relationship with age.

DISCUSSION

Using resting state fMRI, we estimated ICC values at the voxel-
level. We first characterized whole-brain as well as distance-
dependent ICC maps in a subgroup of young adult participants,
and then examined how the ICC values change with age over the
adult lifespan. Our results showed that regions with significantly
higher ICC values were generally consistent with previously

identified hubs (Buckner et al., 2009; Sepulcre et al., 2010), thus
validating the use of the ICC metric as an effective measure
to characterize hub regions. Furthermore, we have identified
a limited number of regions with ICC values that showed
significant negative relationship with age. These include regions
in the medial precentral gyrus and insula with whole-brain as
well as distance-dependent ICC values that showed significant
negative relationship with age. Seed-based connectivity analyses
have indicated that these regions have connectivity maps that
strongly overlapped with both primary processing and salience
networks. Regions in the angular gyrus, middle frontal gyrus,
and posterior cingulate gyrus have also ICC values, primarily
with their long-range connections, that exhibited significant
negative relationship with age. These regions’ connectivity maps
strongly overlapped with control (visuospatial, salience, and
executive control) and default mode networks. Taken together,
these findings suggest that even healthy aging could negatively
impact the overall connectivity strength of connector hubs,
regions critical for the exchange of information across different
brain networks. The extent, however, was limited.

Several studies have investigated the effect of normal aging
in the connectivity of large-scale brain networks and the
organization of functional brain networks across the lifespan
(Andrews-Hanna et al., 2007; Jones et al., 2011; Tomasi and
Volkow, 2012; Betzel et al., 2014; Bagarinao et al., 2019). Age-
related connectivity changes were found to be widespread across
many networks. Commonly observed changes included decreases
in connectivity within large-scale functional networks, whereas
connectivity between networks tended to increase (Betzel et al.,
2014; Bagarinao et al., 2019). Using graph-theoretic framework,
other studies have also indicated greater functional network
reorganization in the brain with increasing age reflected in age-
related alterations in network metrics such as modularity, local
efficiency and global efficiency (Achard and Bullmore, 2007;
Chan et al., 2014; Song et al., 2014; Geerligs et al., 2015). Our
own study (Bagarinao et al., 2019) has also shown that the aging
brain is characterized by decreasing path length, increasing global
efficiency and network degree, and decreasing betweenness,
indicating a tendency of the aging brain to re-organize
toward a more integrated functional network with, probably, a
more random topology (Bullmore and Sporns, 2012). Overall,
widespread connectivity alterations and functional network re-
organization have been consistently observed with aging.

In this study, we focused on aging’s effect on a specialized set
of regions called hubs, which still remains largely unexplored.
For this, we used ICC, a voxel-level metric, which enabled us to
account for both the presence of connections among voxels as
well as the strength of these connections (Martuzzi et al., 2011).
Since ICC can be computed at the voxel level, this approach also
avoided parcelation-related biases on the estimation of metrics
characterizing brain networks (Smith et al., 2011). With ICC,
we have also avoided the problem of identifying the appropriate
connectivity threshold to use in order to define the network since
ICC can be estimated without applying any threshold. Moreover,
since aging could affect connectivity strength in a continuous
manner, estimating the overall connectivity strength as quantified
by the ICC values, rather than just the number of connections,
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TABLE 3 | Regions showing significant (FWEc p < 0.05, CDT p = 0.001) relationship between short-range ICC values and age and ACE-R total score.

Contrast X Y Z z-Value Cluster size Area Other within
cluster peaks

Age (+) −10 14 2 6.49 467 L Cau

14 16 6 6.15 382 R Cau

−46 −8 −8 5.42 171 L PP

36 −34 −38 5.24 371 R Cer R FuG

46 −6 −10 4.97 378 R PP R TMP

34 18 −44 4.95 204 R TMP

Age (−) 30 −24 14 5.77 219 R PIns R Pu

10 −32 52 5.41 1046 R MPrG R MCgG, L MCgG

−32 −58 −6 4.96 625 L FuG L IOG, L OFuG

−54 −48 2 4.93 675 L MTG L STG

−32 0 8 4.8 384 L Pu L PO, L PIns

4 36 14 4.26 408 R ACgG L ACgG, L SMC

ACE-R (+) −20 −86 28 4.45 1,426 L SOG R Calc

−18 −86 −16 4 226 L OFuG

−20 −54 0 3.86 217 L LiG L Calc

ACE-R (−) 22 2 60 4.76 174 R SFG

Cau, caudate; PP, planum polare; Cer, cerebellum; FuG, fusiform gyrus; TMP, temporal pole; PIns, posterior insula; Pu, putamen; MPrG, medial precentral gyrus; MCgG,
midcingulate gyrus; IOG, inferior occipital gyrus; OFuG, occipital fusiform gyrus; MTG, middle temporal gyrus; STG, superior temporal gyrus; PO, posterior operculum;
ACgG, anterior cingulate gyrus; SMC, supplementary motor cortex; SOG, superior occipital gyrus; Calc, calcarine; LiG, lingual gyrus; SFG, superior frontal gyrus; ACE-R,
Addenbrooke’s Cognitive Examination-Revised; L, left; R, right.

TABLE 4 | Regions showing significant (FWEc p < 0.05, CDT p = 0.001) relationship between long-range ICC values and age and ACE-R total score.

Contrast X Y Z z-Value Cluster size Area Other within
cluster peaks

Age (+) −10 14 2 6.31 476 L Cau

14 16 6 5.99 230 R Cau

34 −34 −40 5.03 165 R Cer R FuG

4 −98 −4 4.78 309 R LiG R OCP, L LiG

Age (−) 30 −24 14 5.51 339 R PIns R AIns, R PO

52 −6 6 5.04 146 R CO

−36 −2 8 4.77 330 L AIns L PO, L PIns

−34 −68 56 4.77 260 L AnG

−40 8 56 4.75 233 L MFG

6 −34 54 4.7 220 R MPrG L MPrG

44 −58 56 4.63 215 R AnG

16 −42 34 4.59 112 R PCgG

ACE-R (+) −34 −74 −16 4.61 124 L OFuG L IOG

30 −66 −10 4.33 369 R OFuG R LiG

−30 −22 62 4.29 308 L PrG L PoG

ACE-R (−) −10 −56 −64 4.31 351 L Cer

Cau, caudate; Cer, cerebellum; FuG, fusiform gyrus; LiG, lingual gyrus; OCP, occipital pole; PIns, posterior insula; AIns, anterior insula; PO, posterior operculum; CO,
central operculum; AnG, angular gyrus; MFG, middle frontal gyrus; MPrG, medial precentral gyrus; PCgG, posterior cingulate gyrus; OFuG, occipital fusiform gyrus; IOG,
inferior occipital gyrus; PrG, precentral gyrus; PoG, postcentral gyrus; ACE-R, Addenbrooke’s Cognitive Examination-Revised; L, left; R, right.

would be more appropriate. As demonstrated in Figure 2,
regions with significant ICC values were generally consistent with
previously identified hubs (Buckner et al., 2009; Sepulcre et al.,
2010), thus validating the efficacy of this metric to characterize
hub regions and with the mentioned additional advantages.

A related work by Hampson et al. (2012) had investigated age-
related changes in the intrinsic connectivity patterns in young
and middle aged adults using voxel-level degree measure. They
found increases in network degree with age in the paralimbic

cortical and subcortical areas as well as decreases in cortical
areas including that in the visual and default mode networks.
Consistent with their findings, we found similar increases in
whole-brain ICC values with age in the caudate, thalamus,
cerebellum, hippocampus, and temporal pole. Moreover, we also
found similar decreases in ICC values in the lateral parietal
(whole-brain and long-range connections), posterior cingulate
(long-range connections) and medial prefrontal (short-range
connections). Although there were also differences, these could
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be driven by differences in the used metric, the range of
age of the study participants, and the number of participants,
among other factors.

Characterizing changes in hub regions during normal aging
is important since these regions are pivotal in the flow of
information within and between networks (Sporns et al., 2007)
and are generally implicated in the anatomy of many neurological
disorders (Crossley et al., 2014). For instance, Alzheimer’s disease
(AD) has been shown to selectively target highly connected hub
regions in the medial and lateral prefrontal cortices, insula, and
thalamus (Dai et al., 2015). The impairment of hub regions was
also shown to be connectivity distance-dependent with most
disruptions occurring in the long-range connections. Compared
to these findings, our results showed that the extent of hub
regions involved in aging is somewhat limited. Moreover, most
of the regions involved in aging generally differed from that
reported in AD, although there were few similarities (left
insula, anterior cingulate gyrus, and inferior parietal lobule).
Considering also that previous aging studies have reported
widespread age-related connectivity changes affecting large-scale
brain networks (Betzel et al., 2014; Bagarinao et al., 2019), our
findings seemed to suggest that the aging process may mainly
affect peripheral non-hub regions, whereas neurodegenerative
disorders may predominantly involve connectivity alterations of
critical hub regions (Buckner et al., 2009; Dai et al., 2015).

By differentiating the contribution of the different connections
in terms of (Euclidean) distance, we were also able to identify
differences in hub profiles using distance-dependent ICC values
(Figure 2). Similar to a previous study that used network
degree to categorize hubs (Sepulcre et al., 2010), we also found
that some hub regions were predominantly characterized by
their short-range connections (e.g., primary processing systems),
whereas others with their long-range connections (e.g., posterior
cingulate gyrus and inferior/middle temporal gyrus). In addition,
a number of regions such as in the lateral parietal, orbitofrontal
gyrus, middle frontal gyrus, and medial superior frontal gyrus
showed hub characteristics in both their short-range and long-
range connections. Identified hubs with predominant short-
range connections are typically located within or near primary
sensory or motor areas and may therefore be involved in
local information processing. On the other hand, those with
predominant long-range connections are regions that have
been associated with higher cognitive functions, which require
information integration across distributed sources that could
be readily achieved using long-range connections. Hub regions
that exhibited both short-range and long-range connections are
also known association regions, thus the predominant long-
range connections are consistent with their known functions.
The role of the short-range connections in these hubs, however,
remains largely unknown but has been hypothesized as a means
to maintain stable in situ information while simultaneously being
able to associate distributed information with distant connections
(Sepulcre et al., 2010).

Given the above, it is not surprising that hubs with
predominant long-range connections (e.g., anterior insula,
central operculum, and posterior cingulate gyrus) have
long-range ICC values that exhibited negative association with

age, whereas those with predominant short-range connections
(e.g., fusiform gyrus and anterior cingulate gyrus) have short-
range ICC values that were negatively associated with age. Since
whole-brain ICC values simply represent the combination of
short-range and long-range values, changes in whole-brain
ICC values could be a reflection of the changes in connections
in either short-range or long-range or both. For example,
age-related changes in the anterior insula were observed in both
whole-brain and long-range ICC values (Tables 2, 4). From
Figure 2, anterior insula is predominantly a long-range hub so
that the observed changes in whole-brain ICC values mainly
reflected changes in long-range ICC values. In contrast, posterior
insula showed changes in both short-range and long-range
ICC values and these changes are also being reflected in the
whole-brain ICC values (Figures 3a–5a). This could mean that
posterior insula’s connection to both primary processing systems
(sensorimotor/auditory) and salience/BG, networks that this
region has prominent connections (Figure 3b), could be both
affected with age.

Additional seed-based connectivity analyses on regions with
ICC values showing significant negative association with age
showed that most of the identified regions have connectivity
maps that strongly overlapped with not just one but multiple
large-scale RSNs. The values of the estimated overlap ratio,
computed using whole-brain connections, confirmed that the
identified regions are mainly connector hubs, considered
important in facilitating information transfer among different
brain networks. For instance, the connectivity map of the right
medial precentral gyrus overlapped with auditory, sensorimotor,
ventral default mode, precuneus, as well as salience networks.
Regions in the posterior/anterior insula and posterior/central
operculum also overlapped with primary processing networks
(sensorimotor, auditory, and primary visual) as well as salience
network. These regions are referred to as “control-processing”
connector hubs since they linked sensory and motor systems
to control networks. Among other functions, control-processing
hubs may enable goal-directed control of motor function
(Gordon et al., 2018). In contrast, regions in the middle
frontal gyrus, angular gyrus, and posterior cingulate gyrus with
primarily long-range ICC values that showed significant negative
association with age have connectivity maps that strongly
overlap with the control (salience, executive, and visuospatial)
and default mode networks. These regions are classified as
“control-default” connector hubs, which may be responsible for
regulating internally generated processes associated with the
default mode network such as memories, emotional responses,
or planning (Gordon et al., 2018). Age-related alterations of
the overall connectivity of these regions could impact its
efficiency and thereby affect its functions. Moreover, the effect
of aging appeared to vary for different types of connector
hubs. Specifically, control-processing connector hubs tend to be
affected in both its short-range and long-range (and thus whole-
brain) ICC values, whereas control-default connector hubs have
primarily long-range ICC values that were negatively associated
with age.

In terms of the hubs’ association with general cognitive
performance, we have identified regions in the visual
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and sensorimotor networks with whole-brain and
distance-dependent ICC values that showed positive relationship
with ACE-R total score. Intriguingly, none of the identified
regions overlapped with those having ICC values that negatively
associated with age except for a region in the left lingual gyrus,
which showed positive relationship with ACE-R total score
and negative relationship with age. This finding is consistent
with our previous results, which indicated that the integrity
of the visual and sensorimotor networks is associated with the
participants’ general cognitive performance during healthy aging
(Bagarinao et al., 2019). In a prospective study of older women,
Ward et al. (2018) have also demonstrated that participants
with reduced visual function were associated with greater risk of
dementia. Physical exercise has also been shown to help improved
cognitive function through increased involvement of motor-
related networks (Ji et al., 2018). Thus, our finding relating the
overall connectivity strength, as quantified by the ICC values, of
the primary processing systems to general cognitive performance
is consistent with existing literature and provides additional
evidence of the importance of the integrity of the primary
processing systems during healthy aging for the maintenance
of general cognition.

CONCLUSION

Healthy aging is associated with whole-brain intrinsic functional
connectivity changes even in the absence of neurodegenerative
diseases. Using ICC, we have identified a limited number of
regions with overall connectivity strength that showed significant
negative relationship with age. More importantly, these regions
have functional connectivity profiles that significantly overlapped
with not just one but multiple large-scale RSNs indicating that
these regions are connector hubs. Connector hubs associated
with primary processing (sensorimotor, visual, and auditory)
and control networks tended to have whole-brain ICC values
that exhibited significant negative relationship with age, whereas
control-default connector hubs have predominantly long-range
ICC values that exhibited significant negative relationship with
age. These findings suggest that even healthy aging could
negatively impact, albeit in a limited way, the overall connectivity
strength of regions critical in facilitating information transfer
among different networks.
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