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a b s t r a c t

Klebsiella pneumoniae is a Gram-negative pathogen of clinical relevance, which can provoke serious uri-
nary and blood infections and pneumonia. This bacterium is a major public health threat due to its resis-
tance to several antibiotic classes. Using a reverse vaccinology approach, 7 potential antigens were
identified, of which 4 were present in most of the sequences of Italian carbapenem-resistant K. pneumo-
niae clinical isolates. Bioinformatics tools demonstrated the antigenic potential of these bacterial proteins
and allowed for the identification of T and B cell epitopes. This led to a rational design and in silico char-
acterization of a multiepitope vaccine against carbapenem-resistant K. pneumoniae strains. As adjuvant,
the mycobacterial heparin-binding hemagglutinin adhesin (HBHA), which is a Toll-like receptor 4 (TLR-4)
agonist, was included, to increase the immunogenicity of the construct. The multiepitope vaccine candi-
date was analyzed by bioinformatics tools to assess its antigenicity, solubility, allergenicity, toxicity,
physical and chemical parameters, and secondary and tertiary structures. Molecular docking binding
energies to TLR-2 and TLR-4, two important innate immunity receptors involved in the immune response
against K. pneumoniae infections, and molecular dynamics simulations of such complexes supported
active interactions. A codon optimized multiepitope sequence cloning strategy is proposed, for produc-
tion of recombinant vaccine in classical bacterial vectors. Finally, a 3 dose-immunization simulation with
the multiepitope construct induced both cellular and humoral immune responses. These results suggest
that this multiepitope construct has potential as a vaccination strategy against carbapenem-resistant K.
pneumoniae and deserves further validation.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Antimicrobial resistance is a current public health major threat
and World Health Organization (WHO) foresees that, by 2050, 10
million deaths will occur, due to the constant rise of multidrug
resistant pathogens, especially in clinical settings [1]. Among them,
Klebsiella pneumoniae possesses an extremely developed plastic
capability of acquiring resistance to many antibiotics, even to those
considered last resort, such as carbapenems [2]. Carbapenem-
resistant K. pneumoniae strains have been reported worldwide
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and, in 2014, they were responsible for>2 million critical infec-
tions, mostly in clinical settings [3].

While a vaccination strategy against this bacterial pathogen and
its multidrug resistant strains is highly desired, in particular for
patients that require medium to long hospitalization stays, there
is no vaccine available against K. pneumoniae to date [4]. Currently,
the only vaccine against K. pneumoniae in clinical trials is a tetrava-
lent strategy based on LPS O-antigens and adjuvanted with the
squalene-based AS03, named Kleb4V, which entered Phase I/II in
2021 [5]. In the past, formulations using inactivated K. pneumoniae
have shown some efficacy, but required daily administration dur-
ing several months, rendering these immunization strategies
impractical from a logistical point of view [elegantly reviewed in
4]. Additionally, these preparations may lead to undesired side
effects, due to the presence of toxins such as lipopolysaccharides
(LPS), capsular polysaccharides (CPS), among other proteins, which
may cause exacerbated inflammation [2]. Furthermore, multidrug
resistant K. pneumoniae clinical isolates belong to many, diverse
sequence types (ST), especially ST258 and ST512, among others
[2,6,7], and it is unlikely that whole, inactivated bacterial prepara-
tions based on a single strain induce a potent immunological
response against the many relevant clinical ST isolates currently
circulating in endemic areas. Other immunization strategies
reported were based in purified CPS and LPS O-antigens, in some
cases conjugated to proteins to increase their immunogenicity, in
outer membrane vesicles (OMV) and protein-based approaches
[4]. However, an efficient immunization approach which can pro-
tect against multidrug resistant K. pneumoniae strains, particularly
carbapenem-resistant clinical isolates is still lacking and is
urgently needed, especially for inpatients who require hospital
stays and are under immunosuppression drugs regimen, such as
transplantation recipients.

In the last decades, technological developments, following the
availability of sequenced bacterial genomes, led to an innovative
approach to identify novel, potential antigens, called reverse vacci-
nology. This approach is based on in silico analysis to screen which
proteins within a pathogen’s translated genome have the potential
of possessing antigenic properties and be included in vaccination
strategies. Reverse vaccinology was a crucial technique employed
in the development of the Neisseria meningitidis serogroup B vac-
cine Bexsero [8], and is being currently applied to several other
pathogens [9–15]. Consequently, many tools were developed to
help characterize antigens identified by reverse vaccinology, either
in terms of properties or at structural level [8,9,14,16]. Although
these bioinformatics techniques allow screening of thousands of
potential antigens and selection of the few most promising for fur-
ther costly animal studies, reverse vaccinology and associated tools
also have limitations. Bacterial protective antigens containing
polysaccharides, which often constitute protective antigens, are
often not predicted [17]. When considering pathogens that require
a T cell response, such as malaria, tuberculosis and hand, foot and
mouth disease (HFMD), epitopes prediction software can be com-
bined with reverse vaccinology tools, but will require expensive
wet lab validation and are time-consuming [13,15,17]. In addition,
there are many layers of antigenic complexity that need to be
addressed such as accessibility of surface antigens, antigen mask-
ing, protein degradation, posttranslational modifications, exon–in-
tron structures, alternative splicing, especially for eukaryotic
antigens [8]. In the case of viral antigens, reverse vaccinology still
needs to address how to predict accurately protein complexes and
expression levels [8].

In this work, novel, potential K. pneumoniae antigens with a
high predominance in carbapenem-resistant clinical isolates were
identified and characterized in silico, using a reverse vaccinology
approach. Using several available bioinformatics tools (Table S1)
[8–17], a multiepitope vaccine containing T and B cell epitopes of
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the antigens was designed and characterized for its antigenic
potential. We also assessed the molecular docking between our
multiepitope vaccine and TLR-2 and TLR-4, due to their importance
in K. pneumoniae infection [2,10,14,18,19]. A cloning strategy to
produce the suggested multiepitope approach is suggested, and
an immunization simulation was also performed and analyzed.
2. Material and methods

2.1. Reverse vaccinology

To identify potential K. pneumoniae antigens, 8 complete chro-
mosomal genomes of strains of this bacterial pathogen available
on the National Center for Biotechnology Center (NCBI) Genome
website were downloaded. Genome HS11286 was chosen as refer-
ence, and genomes were selected from strains belonging to clusters
not in the immediate vicinity of each other (Fig. S1 and Table S2).
In parallel, bacterial proteins predicted subcellular localizations for
the same strains were downloaded from PSORTdb 4.0 (https://db.
psort.org/) [20], and the genomes were annotated using RAST 2.0
online software [21], using as reference the genome of the strain
HS11286. Potential antigens were chosen based on their protein
identity among the 8 K. pneumoniae genome strains selected
(higher than 80 %), peptide chain length (higher than 250 amino
acids), low protein identity with E. coli K-12 (lower than 50 %), bac-
teriophages’ sequences excluded, subcellular location (outer mem-
brane or secreted proteins) and 2 or less internal helices (to less
affect negatively proteins’ solubility). Short-listed antigens were
blasted against all genomes available at NCBI [22] (https://blast.
ncbi.nlm.nih.gov/Blast.cgi?PROGRAM = blastp&PAGE_TYPE = Blas
tSearch&LINK_LOC = blasthome), excluding klebsiellal genomes,
to ensure no homologous sequences with human proteins or other
species were present, to avoid generation of self-immune or cross-
species, unspecific epitopes. The presence of potential antigens
that met the referred criteria was assessed in 467 sequenced gen-
omes of carbapenem-resistant K. pneumoniae clinical isolates from
2 health structures, IRCCS-ISMETT (Istituto Mediterraneo per i
Trapianti e Terapie ad Alta Specializzazione, Palermo, Italy) and
Azienda Ospedaliera Universitaria Careggi (Florence, Italy). All
467 strains genomes displayed the genetic sequence of the car-
bapenemase KPC-2 (accession number QBQ66786), and were fully
described and characterized elsewhere [6,7,23–28]. The antigens
present in>95 % of clinical isolates were considered for further
analysis. This procedure is schematized in Fig. S2 (Part I).
2.2. Prediction of physicochemical properties, antigenicity,
allergenicity, toxicity and solubility of potential antigens

Following identification of potential K. pneumoniae antigens,
their physicochemical characteristics were predicted by Expasy
Protparam (https://web.expasy.org/protparam/), such as amino
acid composition, theoretical isoelectric point, half-life (both
in vitro and in vivo), instability and aliphatic indexes, molecular
weight (in kDa) and grand average of hydropathicity index
(GRAVY) [29,30].

Before assessing the antigenic potential of the predicted pro-
teins, their sequences were submitted to AntigenDB (http://crdd.
osdd.net/raghava/antigendb/), an antigen database [31], to confirm
if the predicted klebsiellal antigens were identified previously and
submitted to this database. AntigenDB is linked to several impor-
tant protein databases, and allows for the extraction, analysis,
and validation of antigens. Following confirmation that these
potential antigens were not included in AntigenDB, their antigenic
potential was then evaluated using 2 available software online,
ANTIGENpro (https://scratch.proteomics.ics.uci.edu/) [32] and
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VaxiJen 2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/Vaxi-
Jen.html) [33]. Allergenic potential of the predicted antigens was
determined using the online available tools AllerTOP 2.0 (https://
www.ddg-pharmfac.net/AllerTOP/) [34] and AllergenFP 1.0
(https://ddg-pharmfac.net/AllergenFP/index.html) [35].

The hypothetical solubility of the predicted klebsiellal antigens
was determined using Protein–Sol server (https://protein-sol.man-
chester.ac.uk) [36], and the virulence potential of the antigens was
assessed through VirulentPred [37] (http://bioinfo.icgeb.res.in/vir-
ulent/index.html).

Following the design of a multiepitope strategy against
carbapenem-resistant K. pneumoniae strains based on the antigens
identified in this work, the above tools were also used to character-
ize the proposed multiepitope construct.

A flow diagram illustrating the process used in the antigen char-
acterization can be found online on Fig. S2 (Part II).

2.3. Cloning and expression of the predicted klebsiellal antigens

The selected antigens were cloned in the expression vector pET-
9d (Merck Life Science S.r.l., Milano (MI), Italy). Their sequences
(Accession numbers in Table 1) were codon optimized for expres-
sion in E. coli K-12, using the online software Java Codon Adapta-
tion Tool (JCat) server (https://www.jcat.de/) (Fig. S2, Part III)
[38]. All codon optimizations showed a codon optimization index
(CAI) superior to 0.85 and a GC content between 50 % and 55 %,
which is considered favorable for foreign protein expression [38].
To allow for the purification and to improve the solubility of the
selected antigens, a double tag, 6xhistidin and maltose-binding
protein (6His-MBP), was introduced at the N-terminal, as described
elsewhere [39]. The optimized sequences were synthetized by an
external supplier (Eurofins Genomics Italy, Vimodrone (MI), Italy),
using the restriction sites NcoI and BamHI for insertion in pET-9d.
Cloning and expression of the recombinant proteins was done as
previously detailed [40,41]. All cloning and expression reagents
were purchased from New England Biolabs Inc. (Ipswich, MA,
USA) and Fisher Italia (Rodano (MI), Italy), respectively.

2.4. Epitope prediction

Human helper T lymphocytes (CD4+) 15-mer epitopes were pre-
dicted using the online available software NetMHCIIpan-3.2
(https://www.cbs.dtu.dk/services/NetMHCIIpan-3.2/), and chosen
from the classical 7-allele reference set [42,43]. The T cell helper
epitopes present in the klebsiellal antigens identified by reverse
vaccinology were also analyzed for their ability to induce IL-4
secretion, which skews the immune response to a Th2-like
response, desired for antibody production against extracellular
pathogens such as K. pneumoniae, through the online tool IL4pred
(https://webs.iiitd.edu.in/raghava/il4pred/index.php) [44]. IL-17
inducing epitopes were also predicted using the online tool IL17eS-
can (https://metabiosys.iiserb.ac.in/IL17eScan/) [45].

B cell epitopes 16-mers were predicted with the online software
ABCpred (https://webs.iiitd.edu.in/raghava/abcpred/index.html)
[46]. Only epitopes with a score higher than 0.9 were considered
for further evaluation.

The schematics of epitope prediction software used, based on
the ME_Klebs amino acido sequence, can be observed on Fig. S2
(Part IV).

2.5. Multiepitope vaccine construct design and characterization

A multiepitope vaccine construct was designed, using the pre-
dicted CD4+ and B cell epitopes with higher scores, and named
ME_Klebs. To increase the immunogenicity of the construct, the
mycobacterial heparin-binding hemagglutinin protein (HBHA,
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accession number AAC26052), a known TLR-4 agonist [47], was
added at the N terminal of the construct. Epitopes’ sequences were
connected using the linker GPGPG among them and the linker
EAAAK between HBHA and the first epitope, as suggested by previ-
ous works [10,13,14]. The resulting ME_Klebs was characterized as
described above for the predicted antigens (Fig. S2, part II). Toxicity
of the predicted epitopes was evaluated using the ToxinPred online
tool (https://webs.iiitd.edu.in/raghava/toxinpred/multi_submit.
php) [48].
2.6. ME_Klebs secondary structure prediction

To predict and characterize the secondary structure of ME_K-
lebs, 2 online tools were used, PSIPRED (https://bioinf.cs.ucl.ac.
uk/psipred/) [49] and RaptorX Property (https://raptorx.uchicago.
edu/StructurePropertyPred/predict/) [50] (Fig. S2, part V). PSIPRED
allows the analysis of the secondary structure and provides infor-
mation on the protein folding, transmembrane helix packing and
topology, domain and function [49]. RaptorX, on the other hand,
provides predicted secondary structure a-helices, b-sheets and
coils, disorder regions and solvent accessibility [50].
2.7. ME_Klebs three-dimensional structure prediction, refinement, and
validation

To determine the three-dimensional (3D) structure of ME_K-
lebs, the online software I-TASSER (Iterative Threading ASSEmbly
Refinement) tool was used (https://zhanggroup.org/I-TASSER/).
This tool is defined as an in silico hierarchical procedure which pre-
dicts 3D protein structures and, based in the latter, their function.
Such assemblies are compared with similar structures previously
deposited in the Protein Data Bank (PDB; https://www.rcsb.org/)
and ranked in terms of template modeling score (TM-score), in
which values higher than 0.5 are predicted as topologically accu-
rate [51]. In parallel, ME_Klebs tertiary structure was also esti-
mated with AlphaFold Colab, a simplified version of AlphaFold
v2.1.0 (https://colab.research.google.com/github/deepmind/al-
phafold/blob/main/notebooks/AlphaFold.ipynb#scrollTo=
2tTeTTsLKPjB) [52], an artificial intelligence tool that predicts with
high accuracy the structure of proteins based on their genetic
sequence and through comparison to similar proteins.

The obtained ME_Klebs 3D structures were subsequently
refined, i.e., further analyzed with online tools to obtain a structure
which would resemble more the native, real conformation of the
protein, by predicting, identifying and correcting errors derived
from 3D structure predictions bioinformatics tools [53]. Refine-
ment was done using the GalaxyRefine online tool (https://ga-
laxy.seoklab.org/cgi-bin/submit.cgi?type=REFINE), which initially
restructures and rearranges amino acid side chains, leading to a
general structure relaxation. GalaxyRefine uses molecular dynam-
ics (MD) simulations which originate improved structure quality,
at both local and global levels [54].

Following refinement, it is advised that 3D protein structures be
submitted to further validation, allowing identification and correc-
tion of errors not detected in the earlier simulations [10,13]. Vali-
dation of ME_Klebs 3D structure was done through ProSA (Protein
Structural Analysis, https://prosa.services.came.sbg.ac.at/prosa.
php) [55,56] and trough ERRAT (https://saves.mbi.ucla.edu/) [57].
In addition, a Ramachandran plot for ME_Klebs was obtained
through the VADAR (Volume, Area, Dihedral Angle Reporter) online
tool (http://vadar.wishartlab.com/). This type of plot allows a
visual depiction of how the amino acids conformations behave in
the principal peptide core chain and whether they fit with the pre-
ferred, more stable conformations region or not [58,59].
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Table 1
Carbapenem-resistant K. pneumoniae antigens identified by reverse vaccinology.

Antigen ID Location Accession number Protein name Presence in clinical isolates (%)

Klebs#1 Outer membrane YP_005225656 putative TonB-dependent siderophore receptor 96.44
Klebs#2 Extracellular/ secreted YP_005228444 b-1,4-mannanase 99.55
Klebs#3 Extracellular WP_002916123 type 3 fimbria adhesin subunit MrkD 99.78
Klebs#4 Outer membrane YP_005229348 putative cellulose synthase/ BcsC protein 95.55
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The bioinformatics tools used in the prediction, refinement and
validation of the tertiary structure and respective scheme can be
observed in Fig. S2 (Part V).
2.8. Conformational B cell epitopes prediction

Continuous B cell epitopes, as described above, are predicted
based solely in the amino acid sequence of a protein. However,
some epitopes can also be conformational, or discontinuous, mean-
ing they depend on the 3D structure of the antigenic protein and
not on its linear sequence [60]. Once ME_Klebs 3D structure was
obtained, refined and validated, its conformational B cell epitopes
were determined using the online tool ElliPro (based on the words
Ellipsoid and Protrusion; http://tools.iedb.org/ellipro/) (Fig. S2,
part V).
2.9. Molecular docking of ME_Klebs with TLR-2 and with TLR-4

As mentioned earlier, TLR-2 and TLR-4 are innate immunity
receptors which play an important role in host protection during
K. pneumoniae infection [2,10,14,18,19]. Thus, the potential inter-
action between ME_Klebs and these two receptors was also simu-
lated using online tools. Both TLR-2 and TLR-4 structures were
obtained from PDB (ID 2Z7X and ID 3FXI, respectively). First,
ME_Klebs, TLR-2 and TLR-4 were submitted to CPORT (Consensus
Prediction Of interface Residues in Transient complexes), to iden-
tify active residues in their structures (https://alcazar.science.uu.
nl/services/CPORT/). This initial step precedes molecular docking
experiments and it is advised in conditions where experimental
information is not available [61], as in the specific case of ME_K-
lebs. The obtained structures were then submitted to the web tool
HADDOCK 2.4 (High Ambiguity Driven protein–protein DOCKing),
which predicts the docking between 2 biomolecular entities, based
on previously available data from either predicted or identified
protein interactions in ambiguous interaction restraints (AIRs)
(https://bianca.science.uu.nl/haddock2.4/) [62]. In parallel, both
dockings were also predicted with ClusPro (https://cluspro.bu.
edu/home.php) [63] and with PatchDock (https://bioinfo3d.cs.tau.
ac.il/PatchDock/php.php) [64,65].

Dockings of ME_Klebs with either TLR-2 or TLR-4 predicted
with either HADDOCK 2.4 or ClusPro were subsequently refined
with the online tool FireDock (https://bioinfo3d.cs.tau.ac.il/Fire-
Dock/) [66,67] and PRODIGY (PROtein binDIng enerGY prediction;
https://we nmr.science.uu.nl/prodigy/) [68].

Finally, both refined ME_Klebs-TLR-2 and ME_Klebs-TLR-4
dockings were further improved by submitting them to HawkDock
web tool (http://cadd.zju.edu.cn/hawkdock/), a multifunctional
platform which unifies several software, including the molecular
mechanics/generalized born surface area (MM/GBSA) free energy
decomposition score, for prediction of protein–protein interactions
[69]. The docking prediction with the lowest MM/GBSA score is
considered the one which resembles most the native protein–pro-
tein interaction [69].

The process used for the molecular docking of ME_Klebs with
TLR-2 and TLR-4 is schematized in Fig. S2 (part VI).
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2.10. Molecular dynamics prediction of ME_Klebs dockings with either
TLR-2 or TLR-4

All MD simulations of the TLR-2-ME_Klebs and TLR-4-ME_Klebs
complexes were performed using GROMACS 2021.5 [70,71], on an
NVIDIA TESLA Volta 100 graphical processor unit (GPU) installed
on the high performance computing (HPC) server at Bezmialem
Vakif University (Istanbul, Turkey). Simulations were done as
described elsewhere [72–78]. Three independent MD runs were
performed for 50 ns, and the coordinates were recorded every
10.0 ps. The trajectories of the 2 simulated complexes were ana-
lyzed for both root mean square deviation (RMSD) of the structure
over the course of the simulation and root mean squared fluctua-
tion (RMSF) of residues over time, using embedded GROMACS
packages [79]. The average RMSD and RMSF of the 3 independent
runs and respective graphs’ plotting were done using Microsoft
365 Excel (Redmond, WA, USA). The Proteins Interaction Calculator
webserver was used to generate the interaction report between
ME_Klebs and the 2 innate immune receptors, TLR-2 and TLR-4
[80]. The free binding energy of the complexes, molecular
mechanics/Poisson–Boltzmann surface area (MM/PBSA), was cal-
culated by use of the g_mmpbsa GROMACS package, as described
elsewhere [81], and the reported values are the average of 3 inde-
pendent runs.

The molecular dynamics processes follow the results obtained
previously for the molecular docking predictions and can be
observed in Fig. S2 (Part VI).
2.11. In silico codon optimization and cloning of ME_Klebs

ME_Klebs genetic sequence was codon optimized with JCat, for
expression in E. coli K12 and without the restriction sites NcoI and
BamHI, as described above. In silico cloning was done by inserting
the ME_Klebs codon optimized sequence in the expression vector
pET-9d (Merck) sequence, using the aforementioned restriction
sites sequences in the 50 and 30 ends of the multiepitope sequence,
respectively, using the SnapGene� software (from Insightful
Science; available at https://www.snapgene.com). The codon opti-
mization and cloning schemes can be observed on Fig. S2 (Part VII).
2.12. In silico immunization simulation with ME_Klebs

To simulate an immune response induced by ME_Klebs, the C-
ImmSim web tool was used (https://kraken.iac.rm.cnr.it/C-
IMMSIM/). It allows the prediction of both cellular and humoral
immune responses against an antigen, simulating dynamics in
agreement with experimental observed basic immunological phe-
nomena in mammalian hosts [82]. Simulated vaccination with
ME_Klebs consisted in three doses given one month apart each
(days 0, 28 and 56), and volume, steps of simulation and number
of antigens to inject were 50, 1,000 and 1,000, respectively, with
no adjuvant (lipopolysaccharides, LPS). Host HLA types used were
A0101 and B0702 (MHC I) and DRB1_0101 (MHC II). The in silico
immunization scheme is included in the overall flow diagram
together with the cloning process, in Fig. S2 (Part VII).

http://tools.iedb.org/ellipro/
https://alcazar.science.uu.nl/services/CPORT/
https://alcazar.science.uu.nl/services/CPORT/
https://bianca.science.uu.nl/haddock2.4/
https://cluspro.bu.edu/home.php
https://cluspro.bu.edu/home.php
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
https://bioinfo3d.cs.tau.ac.il/PatchDock/php.php
https://bioinfo3d.cs.tau.ac.il/FireDock/
https://bioinfo3d.cs.tau.ac.il/FireDock/
https://we+nmr.science.uu.nl/prodigy/
http://cadd.zju.edu.cn/hawkdock/
https://www.snapgene.com
https://kraken.iac.rm.cnr.it/C-IMMSIM/
https://kraken.iac.rm.cnr.it/C-IMMSIM/


N. Cuscino, A. Fatima, V. Di Pilato et al. Computational and Structural Biotechnology Journal 20 (2022) 4446–4463
3. Results and discussion

3.1. Identification of carbapenem-resistant K. Pneumoniae antigens by
reverse vaccinology and subsequent characterization

Through reverse vaccinology, 7 potential K. pneumoniae anti-
gens were identified, of which 4 were present in the vast majority
of sequenced genomes of carbapenem-resistant K. pneumoniae Ital-
ian clinical isolates (Table 1). Putative TonB-dependent sidero-
phore receptor, henceforth called Klebs#1, is an outer membrane
protein which has an auxiliary role in iron sequestration, a process
required for K. pneumoniae survival in the mammal host [2], and
has been identified as a potential antigen by previous in silico anal-
yses studies [14,83,84]. b-1,4-mannanase, hereafter referred as
Klebs#2, is a glycoside hydrolase which catalyzes hydrolysis of
mannan (linear, galacto-, gluco- and galactogluco-), in the extracel-
lular milieu of several microorganisms’ cell wall [85]. Type 3 fim-
bria adhesin subunit MrkD has been widely studied by its
virulence potential, due to its role in biofilm formation in
antibiotic-resistant K. pneumoniae strains [7,23,86,87] and it is
widely disseminated in K. pneumoniae clinical isolates [7,88–90].
Not surprisingly, this virulence factor, from now on designated as
Klebs#3, has been used in immunization strategies in mouse mod-
els and showed partial protection both in active and passive immu-
nizations against intranasal challenge with a pathogenic K.
pneumoniae strain [91]. Several immunoinformatic works have
analyzed and characterized Klebs#3 as a potential antigen
[84,92,93]. Cellulose biosynthesis protein BcsC, henceforward
described as Klebs#4, is a protein crucial to maximize bacterial cel-
lulose synthesis, and downregulation of the bcsC gene severely
impacted the ability of K. pneumoniae to form viable biofilms
[94]. To the best of our knowledge, neither Klebs#2 nor Klebs#4
have been identified by in silico approaches or considered poten-
tial antigens by previous works.

Physicochemical properties of the four selected antigens can be
observed in Table 2, such as molecular weight (MW, in kDa), theo-
retical isoelectric point (pI) and half-live in mammalian, yeast and
bacterial cells. All proteins, except for Klebs#4, show an instability
index lower than 40, suggesting they are stable [29]. The aliphatic
index was higher than 64 for all antigens, indicating they are ther-
mostable between 20 �C and 45 �C [29,30]. Hydrophilicity of the
identified antigens was determined by their GRAVY index, which
were all negative, showing that all antigens are, in theory, hydro-
philic [29].

The Klebs#1–4 antigens were also submitted to prediction soft-
ware, to understand their virulence and antigenicity potential, sol-
ubility and allergenicity (Table 3). Although none of these antigens
were present in the bacterial antigens database AntigenDB (data
not shown), they were all considered potential antigens by both
ANTIGENpro and VaxiJen 2.0 online tools. All selected klebsiellal
proteins have an antigenicity score higher than 0.4, indicating they
are indeed potentially antigens. In terms of solubility, only Klebs#3
possesses a solubility index superior to 0.45, which makes it the
only identified antigen with a higher solubility possibility. On the
other hand, Klebs#3 is also the only of these antigens to be classi-
fied as an allergen, hindering its potential immunogenicity. In
terms of virulence, all tested antigens but Klebs#2 are considered
virulent.

Preliminary wet-lab expression experiments were performed
with the Klebs#1–4 potential antigens (Fig. S2, part III). It was
observed that, even with the MBP tag, all 4 proteins were found
mostly in the insoluble fraction, including Klebs#3. Interestingly,
although this protein has been predicted as soluble (Table 3), other
works fused it with glutathione S-transferase (GST) [91,95], which
is used, as MBP, to improve protein solubility [96], suggesting the
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referred authors dealt with the same issue of Klebs#3 solubility
and that the in silico prediction for this particular antigen differs
from the empiric evidence obtained.

Although the 4 predicted klebsiellal antigens show a high anti-
genicity potential index as estimated by both ANTIGENpro and Vax-
iJen 2.0, other factors render them less appealing to be used in a
vaccine against carbapenem-resistant K. pneumoniae strains. In
terms of virulence, it is known that many antigens are pathogenic
virulence factors, due to their external localization and to the fact
that a vaccine against these factors can prevent their virulent phe-
notype and, consequently, the pathological manifestations of the
disease caused by the pathogens [37]. In agreement, all studied anti-
gens in this work showed virulence potential, except for Klebs#2.
Ideally, recombinant proteinswith biotherapeutical potential appli-
cations are soluble, to avoid colloidal instability and complex and
costly purification protocols with aggressive agents, such as urea,
and protein correct refolding [36,97]. Our experimental approach
confirmed the predicted insolubility formost of the antigens identi-
fied by reverse vaccinology and further confirmed previous results
indicating the lack of solubility of Klebs#3 [91,95]. Moreover,
Klebs#3 was predicted to be an allergen, which should not be
included in vaccine preparations for safety issues. Overall, none of
the 4 antigens under study possesses all characteristics which
would classify them at theoretical level as ideal antigens.

3.2. Design and characterization of a multiepitope vaccine against
carbapenem-resistant K. Pneumoniae strains

3.2.1. Prediction of human helper CD4+ T cell, B cell, IL-4 inducing and
IL-17 inducing epitopes

Since none of the klebsiellal proteins identified by reverse vac-
cinology fulfilled all theoretical, predicted attributes to be fully
considered a potential antigen, a multiepitope approach was sub-
sequently pursued, using epitopes present in the proteins from
Table 1. Similar approaches have been done for K. pneumoniae
and other pathogens, such as Mycobacterium tuberculosis and
HFMD virus [10–15]. K. pneumoniae is an extracellular pathogen,
for which a humoral response and Th-17 cells, but not a cytotoxic
T cell action, are required to prevent further dissemination of this
bacterium within the host [2]. For this rational multiepitope vac-
cine design, CD8+ T cell epitopes were not considered since these
immune cells have no major action against this bacterium. K. pneu-
moniae is an extracellular pathogen, and an immunological
response against this type of pathogens relies more on a humoral
response and not on cytotoxic T cells, a subset of CD8+ T cells which
kill infected cells [98]. Instead, immunity against K. pneumoniae
requires B cells and helper CD4+ T cells. Also, it has been seen that
both interferon-c (INF-c) and cytotoxic T cells only have a limited
action on K. pneumoniae initial invasion, but not during subsequent
infection [2]. Moreover, volunteers immunized with Dentavax, a
therapeutical and immunoprophylactic preparation consisting of
several killed bacterial species, including K. pneumoniae, increased
the levels of CD57+CD8+ T cells [99], a cellular subpopulation asso-
ciated with short-term cardiovascular mortality in acute myocar-
dial infarction patients due to their pro-inflammatory phenotype
and high cytotoxicity potential [100]. Thus, not only CD8+ T cells
seem to contribute scarcely against K. pneumoniae infection, but
they could also, in certain conditions, induce inflammation-
related pathologies, which render them undesirable as a compo-
nent of an immune response induced by a vaccination strategy
against this bacterial pathogen. For these reasons, no CD8+ T cell
or INF-c epitopes were selected as components of ME_Klebs. It is
assumed that the selected T cell and B cell epitopes, if applied
together in a synergistic way, can mount a Th-2 response, which
will induce the production of opsonophagocytic antibodies against



Table 2
Physicochemical properties of reverse vaccinology selected klebsiellal antigens and multiepitope vaccine construct.

theoretical
isoelectric
point (pI)

in vitro half-life in vivo half-life Instability
index

aliphatic
index

molecular
weight (MW)

grand average of
hydropathicity
(GRAVY)

Klebs#1 5.54 >20 h (yeast, in vivo)
>10 h (E. coli, in vivo)

30 h (mammalian reticulocytes,
in vitro)

26.38 73.61 79.25 �0.403

Klebs#2 5.71 >20 h (yeast, in vivo)
>10 h (E. coli, in vivo)

30 h (mammalian reticulocytes,
in vitro)

29.47 71.14 81.19 �0.450

Klebs#3 9.28 >20 h (yeast, in vivo)
>10 h (E. coli, in vivo)

30 h (mammalian reticulocytes,
in vitro)

32.58 81.87 35.06 �0.009

Klebs#4 6.16 >20 h (yeast, in vivo)
>10 h (E. coli, in vivo)

30 h (mammalian reticulocytes,
in vitro)

41.82 73.19 145.10 �0.477

ME_Klebs 8.77 >20 h (yeast, in vivo)
>10 h (E. coli, in vivo)

30 h (mammalian reticulocytes,
in vitro)

31.02 65.46 55.49 �0.636

Table 3
Prediction of vaccinology desired properties for the four antigens identified by reverse vaccinology and the multiepitope construct.

Virulence Antigenicity Solubility Allergenicity Toxicitya

ANTIGENpro VaxiJen

Klebs#1 Yes 0.85 0.67 0.35 Non-allergen ND
Klebs#2 No 0.97 0.42 0.32 Non-allergen ND
Klebs#3 Yes 0.90 0.83 0.50 Allergen ND
Klebs#4 Yes 0.97 0.56 0.35 Non-allergen ND
ME_Klebs Yes 0.88 0.76 0.49 Non-allergen Non-toxin

a , Toxicity only assessed for the epitopes present in ME_Klebs; ND, not determined.
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carbapenem-resistant K. pneumoniae strains and clear its infection
and dissemination or, at least, prevent the pathologies associated
with this bacterium. Thus, CD4+ T cell, IL-4 inducing, IL-17 induc-
ing, and B cell epitopes present in the sequences of the 4 K. pneu-
moniae antigens derived from reverse vaccinology were predicted
(Tables 4 and 5). For each protein, the 2 helper 15mer T cell epi-
topes which showed both low percentile scores (which means
the highest binding affinity probability) [101], and support vector
machine (SVM) score for predicted IL-4 inducers, were chosen, cov-
ering 5 different HLA-DR loci: HLA-DRB1*03:01, HLA-DRB3*01:01,
HLA-DRB3*02:02, HLA-DRB4*01:01 andHLA-DRB5*01:01 (Table 4).
Interestingly, no IL-17 inducing epitopes were predicted in any of
the Klebs#1–4 antigens’ sequences. Similarly, 2 16mer B cell epi-
topes from each klebsiellal antigen were selected, with a binding
score higher than 0.9 (Table 5), corresponding to high binding
affinity [102].
3.2.2. Design and characterization of a multiepitope vaccine against
carbapenem-resistant K. Pneumoniae isolates

Once the T cell and B cell epitopes were chosen, the multiepi-
tope vaccine, ME_Klebs, was designed. As a molecular adjuvant,
theM. tuberculosis HBHA protein was included in the chimeric con-
struct, at its N-terminal. This protein is a known TLR-4 agonist and
has been used as adjuvant in cancer vaccines [47]. Moreover, HBHA
was also chosen considering that TLR-4 can prevent mortality and
K. pneumoniae growth in a mouse model [2]. To link the epitopes,
the linker GPGPG was used. This linker has been widely used for
induction of helper T cells both in multiepitope and DNA vaccines
[103] and in several other works to connect B cell epitopes
[10,13,14]. The linker EAAAK was used to join HBHA and the first
epitope. EAAAK is a rigid linker which promotes protein expression
and pH and thermal stability [104], thus being chosen in other
multiepitope vaccine design works as well [10,13,14]. A 6His tag
was added at the end, to facilitate purification of the recombinant
chimeric construct [39]. The schematic representation of the pro-
posed construct ME_Klebs and its sequence can be observed in
Fig. 1 and S3, respectively.
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Once ME_Klebs sequence was defined, it was analyzed like the
original Klebs#1–4 antigens in terms of physicochemical proper-
ties, virulence, antigenicity, solubility and allergenicity (Tables 2
and 3). Also, the epitopes that were incorporated into ME_Klebs
were also analyzed in terms of toxicity prediction (Table 3). This
multiepitope construct has a MW of 55.49 kDa and a theoretical
pI of 8.77 and has comparable half-lives in vitro and in vivo to
the Klebs#1–4 antigens. Its instability index is lower than 40 and
the aliphatic index higher than 64, thus being predicted as a stable
protein within a temperature range of 20 �C and 45 �C, which indi-
cates that, within the human host following immunization, ME_K-
lebs would be thermostable. Its GRAVY was negative, suggesting
this protein is indeed hydrophilic (Table 2). As expected, due to
its chimeric nature, ME_Klebs was also not present in AntigenDB
(data not shown). Both antigenicity prediction software show a
high antigenic potential for ME_Klebs. Furthermore, it displays a
solubility index of 0.49, strengthening that, following expression,
ME_Klebs is a soluble protein. Finally, ME_Klebs is not predicted
to be neither an allergen nor possessing toxic-prone epitopes in
its sequence (Table 3). Overall, all prediction tools results indicate
that ME_Klebs fulfils all requirements to be an ideal antigen and,
consequently, a good immunization strategy for carbapenem-
resistant K. pneumoniae isolates.

3.2.3. Secondary ME_Klebs structure prediction
In terms of predicted secondary structure, ME_Klebs possesses

30 % a-helix, 11 % b-strand and 58 % coil (Fig. 2). In terms of expo-
sition of amino acids to solvent, 61 % were predicted to be fully
exposed, 19 % partially exposed and 19 % fully hidden from solvent.
This prediction suggests that ME_Klebs shows potential as a struc-
tural antigen, due to its high number of a-helices and coil-coiled
domains. In fact, the presence of a-helical coil-coiled domains in
epitope vaccines is important, since it allows correct protein fold-
ing, mimicking the native proteins structures, and thus confer an
adequate and functional humoral immunity against the target
pathogen. Also, those antibodies would not only target epitopes
present in solvent-exposed surfaces of single a-helices, but also
epitopes in other a-helices in the vicinity [105].



Table 4
Human helper T-cell epitopes selected for multiepitope construct.

Antigen ID Epitope sequence Allele Percentile score IL4 inducer SVMscore

Klebs#1 HQKVVVRNYSNATGL HLA-DRB3*02:02 0.19 Yes 0.34
TVGRLDTNRIIDAIS HLA-DRB3*01:01 1.40 Yes 0.30

Klebs#2 DGTYKKINPFALTDP HLA-DRB5*01:01 1.30 Yes 0.11
PWSGQFLLNVTFNGK HLA-DRB3*02:02 0.38 Yes 0.14

Klebs#3 SPTVMLDMVVGRVVV HLA-DRB1*03:01 0.44 Yes 0.29
ETYLSANAITVVSPS HLA-DRB3*02:02 0.41 Yes 0.66

Klebs#4 SAKLFRADVLRHNKD HLA-DRB3*01:01 0.62 Yes 0.11
KLIRAMQSDPQNTDL HLA-DRB4*01:01 0.58 Yes 0.15

Table 5
B-cell epitopes selected for multiepitope construct.

Antigen ID Epitope Sequence Allele Percentile Score

Klebs#1 WSGIDDTGTYLFEGDP HLA-DRB3*02:02 0.19
HREGEGAIDNDKRRTT HLA-DRB3*02:02 0.32

Klebs#2 TVVGRDISDGVNEWNP HLA-DRB5*01:01 1.30
LHRIEDDARGPCRADP HLA-DRB3*02:02 0.38

Klebs#3 TVNIVYPDVFSSRVYN HLA-DRB1*03:01 0.44
DWTMSAPGGASYRCTS HLA-DRB3*02:02 0.41

Klebs#4 AGTASGDAWRRYGANP HLA-DRB3*01:01 0.62
RRSGQARGQGYANLNS HLA-DRB4*01:01 0.58

Fig. 1. Schematic representation of ME_Klebs. Epitopes (ep) order follow the cardinal o
represents a particular antigen (Klebs#1, blue; Klebs#2, purple; Klebs#3, green; and Kle
tag are placed as described in the main text and indicated in the figure. (For interpretati
version of this article.)
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3.2.4. 3D ME_Klebs structure prediction, refinement and validation
Five potential 3D ME_Klebs structures were predicted by I-

TASSER online tool. The second option was chosen, since it had
the highest Confidence score (C-score), equal to �2.34 (Fig. 3A).
Usually, C-scores fall with the range (�5, 2) and the highest value
is correlated with prediction confidence. Template modelling score
(TM-score) and RMSD were 0.44 ± 0.14 and 13.2 ± 4.1 Å, respec-
tively. In bioinformatics, TM-score measures how similar 2 protein
structures are, and values around 0.5 or higher are indicators of
correct protein topology, while the backbone RMSD measures the
average distance between the corresponding backbone atoms of
rder of the Klebs#1–4 antigens by their position in Tables 4 and 5, and each color
bs#4, red). B cell epitopes were placed before CD4+ T cell epitopes. Linkers and 6His
on of the references to color in this figure legend, the reader is referred to the web



Fig. 2. ME_Klebs secondary structure PSIPRED prediction, indicating it possesses 30% a-helix, 11% b-strand and 58% coil-coiled regions.
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Fig. 3. ME_Klebs 3D structure prediction, refinement and validation. A) ME_Klebs 3D structure obtained by I-TASSER and B) refined with GalaxyRefine. Superimposed refined
structure (in colors) over the pre-refined structure (in gray). C) Ramachandran plot, in which red areas correspond to protein core, yellow to favorable areas and green to
acceptable zones, while grey areas are disallowed areas. Squares represent residues in core and allowed regions, crosses amino acids in disallowed regions and triangles are
glycine residues. Of the ME_Klebs residues, 79% are in the protein core, 14% in the allowed areas and 4% in the disallowed regions. D) Location of ME_Klebs (black circle) in a
ProSA analysis graphic, indicating that the Z-score of this multiepitope construct is �2.33. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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superimposed proteins [51]. The chosen ME_Klebs structure TM-
score value suggests a prediction with topology of high accuracy.

Interestingly, prediction of the ME_Klebs tertiary structure with
AlphaFold Colab gave different results (Fig. S4A). The structure
obtained is different from the one obtained with I-TASSER
(Fig. 3A), and the predicted local-distance difference test (pLDDT)
values are mostly under 70 (Fig. S4B), especially for the multiepi-
tope sequence region, which classifies this structure model as hav-
ing low confidence [52]. On the other hand, the predicted aligned
error (PAE), as indicated by the residues’ pair (x, y) in the output
graph produced by AlphaFold (Fig. S4C), is low for the ME_Klebs
tertiary structure, which indicates the residues positions are well
defined within the structure [52].

The ME_Klebs structures were subsequently refined by the
GalaxyRefine online tool (Fig. 3B and Fig. S4D). Since both tertiary
structure prediction tools (I-TASSER and AlphaFold Colab) refined
structures showed similar values regarding the refined parameters
(data not shown), only the structures derived from I-TASSER were
further considered. Overall, I-TASSER predicted tertiary structures
seem to be more reliable than those inferred by AlphaFold Colab,
despite the high potential of the deep learning algorithms and high
performance of the latter. However, the AlphaFold method has pro-
ven to have limitations in predicting 3D structures for proteins for
which experimental data of related proteins is not available
[106,107]. In agreement, AlphaFold Colab multiple sequence align-
ment (MSA) did not predict many unique sequences for the epitope
polypeptide chain of ME_Klebs (Fig. S4E), which is also the protein
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sequence with low confidence model prediction (Fig. S4B). Thus,
this prediction tool does not seem to be ideal to characterize mul-
tiepitope vaccine constructs, due to their chimeric nature, unless
precedent structure data about them or related constructs is avail-
able in online databases.

From the initial I-TASSER model 2 prediction, 5 different refined
model structures were provided by GalaxyRefine, and model num-
ber 4 was chosen for further studies. This model displayed the best
characteristics among all 5 models, with a global distance test -
high accuracy (GDT-HA) of 0.8861, an RMSD of 0.668, MolProbity
of 2.599 Å, a clashscore of 24.5, poor rotamers of 1.0 and
Ramachandran favored value of 81.5. A GDT-HA score varies
between 0 and 1, respectively the least and the most accurate pos-
sible. As default, the original structure GDT-HA value is 1, meaning
the refined ME_Klebs structure does not deviate greatly from the
initial model. MolProbity and associated criteria (clashscore, rota-
mers and Ramachandran) perform an contact analysis of all atoms,
adding and optimizing all hydrogen atoms and then estimate their
H-bond, steric clash, and favorable van der Waals forces [108].
Ramachandran value of 81.5 was an improvement from the origi-
nal structure, which was of 62.6, meaning that at least 81.5 of
the residues are in the most conformational stables zones. In
agreement, the Ramachandran plot for ME_Klebs showed 79 % of
the residues in the preferred zones, 14 % in the allowed areas
and 4 % of the amino acids were outliers (Fig. 3C). ProSA analyses
showed a Z-score of �2.33, visibly distant of the average Z-score
range for proteins containing the same residues number



Table 6
Predicted ElliPro conformational B cell epitopes residues of ME_Klebs.

Residues Number of
Residues

Score

A A:M1, A:A2, A:E3, A:N4, A:S5, A:N6, A:I7, A:D8, A:D9, A:I10, A:K11, A:A12, A:P13, A:L14, A:L15, A:A16, A:A17, A:L18, A:G19, A:A20, A:
A21, A:D22, A:L23, A:A24, A:L25, A:A26, A:T27, A:V28, A:N29, A:E30, A:L31, A:I32, A:T33, A:N34, A:L35, A:R36, A:R38, A:A39, A:E40, A:
E41, A:T42, A:R43, A:T44, A:D45, A:T46, A:R47, A:S48, A:R49, A:V50, A:E51, A:E52, A:S53, A:R54, A:A55, A:R56, A:L57, A:T58, A:K59, A:
L60, A:Q61, A:E62, A:D63, A:L64, A:P65, A:E66, A:Q67, A:L68, A:T69, A:E70, A:L71, A:K74, A:A77, A:E78, A:E79, A:K82

75 0.848

B A:L397, A:L439, A:L440, A:N441, A:V442, A:T443, A:F444, A:N445, A:G446, A:K447, A:G448, A:P449, A:G450, A:P451, A:G452, A:S453, A:
P454, A:T455, A:V456, A:M457, A:L458, A:D459, A:M460, A:V461, A:V462, A:G463, A:R464, A:V465, A:V466, A:V467, A:G468, A:P469, A:
G470, A:P471, A:G472, A:E473, A:T474, A:Y475, A:L476, A:S477, A:A478, A:N479, A:A480, A:I481, A:T482, A:V483, A:V484, A:S485, A:
P486, A:S487, A:G488, A:P489, A:G490, A:P491, A:G492, A:S493, A:A494, A:K495, A:L496, A:F497, A:R498, A:A499, A:D500, A:V501, A:
L502, A:R503, A:H504, A:N505, A:K506, A:D507, A:G508, A:P509, A:G510, A:P511, A:G512, A:K513, A:L514, A:I515, A:R516, A:A517, A:
M518, A:Q519, A:S520, A:D521, A:P522, A:N524, A:H528, A:H529, A:H530, A:H531, A:H532, A:H533

92 0.761

C A:E89, A:A90, A:T92, A:S93, A:R94, A:Y95, A:N96, A:E97, A:L98, A:V99, A:E100, A:R101, A:G102, A:E103, A:A104, A:A105, A:L106, A:
E107, A:L109, A:R110, A:A152, A:K153, A:L154, A:V155, A:G156, A:I157, A:E158, A:L159, A:P160, A:A166, A:K167, A:K168, A:A169, A:
A170, A:P171, A:A172, A:K173, A:K174, A:A175, A:A176, A:P177, A:A178, A:K179, A:K180, A:A181, A:A182, A:A183, A:K184, A:A186, A:
P187, A:A188, A:K189

52 0.67

D A:R72, A:E73, A:F75, A:P121 4 0.559
E A:A331, A:G332, A:T333, A:A334, A:S335, A:G336, A:D337, A:A338, A:W339, A:R340, A:Y342, A:A344, A:D398, A:T399, A:P431, A:G432,

A:P433, A:S435, A:G436, A:Q437, A:F438
21 0.525

F A:V302, A:G305, A:P306, A:G307, A:P308, A:D310, A:M313, A:S314, A:A315 9 0.523
G A:A122, A:E123, A:G124, A:Y125 4 0.508

Fig. 4. Conformational B cell epitopes predicted in the ME_Klebs 3D structure. Each field corresponds to one discontinuous B cell epitope (A-G), in agreement with the results
presented in Table 6.
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(Fig. 3D). This could indicate that the ME_Klebs structure contains
errors [55,56]. However, when submitted to ERRAT, which com-
pares the target structure to other protein structures derived from
experimental crystallographic studies [57], ME_Klebs displayed an
overall quality factor of 72.51. Above 50, the model is considered of
high quality [57]. These results confirmed the high quality of the
refined ME_Klebs 3D structure.

3.2.5. Conformational B cell epitopes present in ME_Klebs structure
prediction

In terms of predicted conformational B cell epitopes, when sub-
mitting the validated ME_Klebs 3D structure to ElliPro, a total of 7
discontinuous epitopes were estimated, with a score higher than
0.5 (score range between 0.508 and 0.848) (Table 6). The predicted
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conformational B cell epitopes A-G varied in length (75, 92, 52, 4,
21, 9 and 4 residues) and in residues’ composition (Fig. 4 and
Table 6). Individual scores for each predicted discontinuous B cell
epitope, from A-G, can be observed in Fig. 5. These results corrob-
orate the presence of 7 conformational B cell epitopes in the ME_K-
lebs structure with a high prediction score.

3.2.6. Molecular docking of ME_Klebs to TLR-2 and TLR-4
In a pneumonia mouse model, both TLR-2 and TLR-4 are related

to reduction of mortality and K. pneumoniae dissemination within
the host [2,19]. At an initial stage of infection, TLR-4 controls and
impairs bacterial spreading while TLR-2 reduces the levels of
inflammation caused by the infection but, at a later stage, only
TLR-2 has also a role in preventing bacterial expansion [19]. Thus,



Fig. 5. 2-dimensional, individual ElliPro score chart, residue-by-residue, for each conformational B-cell epitope present in the ME_Klebs 3D structure.

Fig. 6. Docking complexes of ME_Klebs with TLR-2 (A,B) and TLR-4 (C,D), as predicted by FireDock. On green, ME_Klebs, on light blue TLR-2 and TLR-4. The residues that
mediate interaction between the two proteins are highlighted on red. A general view of the docking is seen for ME_Klebs-TLR-2 (A) and ME_Klebs-TLR-4 (C). An enlarged view
of the interaction site between the two proteins can also be observed both for ME_Klebs-TLR-2 (B) and ME_Klebs-TLR-4 (D). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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as referred above, a vaccine against this pathogenic bacterium
should activate both TLR-2 and TLR-4. Docking of ME_Klebs with
either TLR-2 or TLR-4 was performed with different online tools,
such as ClusPro, PatchDock and HawkDock, to ensure the most pre-
cise prediction was selected for further studies, as suggested else-
where [13]. Docking complexes 3D structures calculated by
ClusPro were submitted to PRODIGY, to estimate their binding
affinity score. Similarly, the global energy of the docked ME_Klebs
complexes with either TLR-2 or TLR-4 predicted by PatchDock was
assessed by FireDock (Fig. 6). HawkDock ranks its docking com-
plexes prediction also based in binding free energy, concomitantly
with the lowest MM/GBSA scores obtained. Following ClusPro and
PRODIGY analyses, the best ME_Klebs-TLR-2 and ME_Klebs-TLR-4
Fig. 7. Molecular dynamics of the complexes of ME_Klebs with TLR-2 and TLR-4. Struc
complexes (red), at 50 ns, of ME_Klebs with TLR-2 (A) and TLR-4 (B). The average RMSD o
and ME_Klebs-TLR-4 (D). The comparison of average residue flexibility, RSMF, during t
references to color in this figure legend, the reader is referred to the web version of thi

Fig. 8. Prominent hydrogen bonds and hydrophobic interactions between the vaccine c
interpretation of the references to color in this figure legend, the reader is referred to th
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predicted 3D complex structures had a binding affinity energy of
�44.23 and �32.85 kcal/mol, respectively. The global binding
energy, provided by the PatchDock/FireDock best predictions,
was of �41.14 and �37.54 kcal/mol, for ME_Klebs-TLR-2 and
ME_Klebs-TLR-4, respectively. Finally, the relative binding free
energy, as estimated by HawkDock, for the ME_Klebs-TLR-2 and
ME_Klebs-TLR-4 complexes, was of �52.40 and �44.83 kcal/mol,
respectively, suggesting these structures are the most thermody-
namical favorable at the conditions used during prediction, usually
25 �C and 1 atm. These predictions indicate that ME_Klebs could
activate both innate and adaptive immunological responses
through stimulation of both TLR-2 and TLR-4, although only empir-
ical data would confirm these assumptions.
tural changes observed between the molecular docked (green) and the simulated
f complexes and ligands after 3 independent runs is shown, for ME_Klebs-TLR-2 (C)
he simulations, for both complexes, is also indicated (E). (For interpretation of the
s article.)

andidate ME_Klebs (blue) and the receptors (green) TLR-2 (A) and TLR-4 (B). (For
e web version of this article.)



Table 7
ME_Klebs-receptor interactions over the course of the molecular dynamics simulation.

Hydrophobic interactions All Hydrogen bonds

TLR-2 Residues ME_Klebs Residues Donor Residues TLR-2 Acceptor Residues ME_Klebs Distance (Å)

L11 Y475 R321 D274 1.78–2.83
Y111 L440

P491
Donor Residues ME_Klebs Acceptor

Residues
TLR-2

Distance (Å)

R352* D263
E264

1.7–1.9
1.8–2.4

R353* D233
D235

1.80–2.4
1.7–1.9

TLR-4 Residues ME_Klebs Residues Donor Residues TLR-4 Acceptor Residues ME_Klebs Distance (Å)
F408 W205 Q616 S111 2.9–4.4
V411 F75

W205
F216

K362* E78
E79

2.73
2.71–3.42

Q505 T197 2.18–3.31
Donor Residue (ME_Klebs) Acceptor (TLR4)
S142 C20 2.2
W205 R382 2.75–3.1
Q198 Q505 2.68–3.77
R110* D580

E608
1.59–3.05
1.68–4.0

Q113 D580 2.88–3.11

* Multiple occupancy observed over the course of simulation with range of distance shown for the same residue where applicable.

Table 8
MM/PBSA binding energy terms for ME_Klebs-TLR-2 and ME_Klebs-TLR-4 complexes.

Energy Termsa ME_Klebs-TLR-2 ME_Klebs-TLR-4

van der Waals �1,092.6 ± 536.4 �1,142.2 ± 318.9
Electrostatic energy �2,354.9 ± 853.5 �7,114.1 ± 1,953.3
Polar energy 2,163.5 ± 737.8 3,503.0 ± 1,427.2
Solvent-accessible surface area

(SASA)
�35.2 ± 345.3 �167.9 ± 37.3

Binding Energy �1,390.5 ± 858.1 �3,786.2 ± 1,501.5

a Values are average of 3 independent runs.

Fig. 9. Schematic pET-9d plasmid map containing the codon optimized ME_Klebs
for expression in E. coli strains.

N. Cuscino, A. Fatima, V. Di Pilato et al. Computational and Structural Biotechnology Journal 20 (2022) 4446–4463
3.2.7. Molecular dynamics simulation of ME_Klebs-TLR-2 and
ME_Klebs-TLR-4 complexes

The structural changes between the docked and the simulated
complexes at 50 ns can be observed in Fig. 7A, B. The ME_Klebs-
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TLR-4 complex exhibited a stable structure starting at 11 ns, while
ME_Klebs-TLR-2 achieved stability after 33 ns. The RMSD of the
simulation is usually indicative of the stability of the systems over
the course of the simulation. Variations of less than 1 nm are highly
stable, while variation values between 1 and 2 nm are considered
stable. The RMSD of ME_Klebs-TLR-2 reached its initial conver-
gence at 33 ns, with an RMSD of approximately 2.57 nm
(Fig. 7C). In contrast, the ME_Klebs-TLR-4 complex reached a con-
vergence towards a stable structure much earlier, at 11 ns, with an
RMSD smaller than 1.3 nm (Fig. 7D).

Amino acid residues 1–200 of the ME_Klebs were not directly
interacting with the TLR2 receptor, and displayed more fluctuation,
as they were not restricted by any interactions (Fig. 7A, B, E). The
residues D255, G256, W260, I271, E272, D273, R353, W434,
S435, V465, V467, G468, T474, A478, and V483 that interacted
with the TLR2 receptor exhibited restricted flexibility as compared
to the first 200 amino acids of the ME_Klebs sequence. In contrast,
several of the first 1 – 200 amino acids of the ME_Klebs sequence,
such as R36, E70, K74, F75, E78, E79, E103, E107, R108, L109, R110,
S111, Q134, T139, V140, A141, S142, T144, K194, K195, T197,
Q198, K204, W205 and T211, interacted directly with TLR4 recep-
tor and, consequently, exhibited limited flexibility (Fig. 7E). Nota-
bly, the ME_Klebs residues interacting with TLR-2 were more
flexible than those of TLR-4 (Fig. 7E), most probably due to the high
affinity of the chosen molecular mycobacterial adjuvant, HBHA, to
TLR-4 [47]. The high flexibility of the residues would also explain
the later convergence of the ME_Klebs-TLR-2 complex (Fig. 7C).

Analysis of the interactions between the vaccine candidate and
the receptors showed notable hydrogen bonds and hydrophobic
interactions between the corresponding side and main chains of
each complex pair. Interactions between receptors and ligands
are typically the most important indicator of the stability of a com-
plex. The residues involved in hydrophobic and hydrogen bonding
between the ME_Klebs and the innate immune receptors can be
observed in Fig. 8 and are extensively listed in Table 7. Several of
the residues of both the receptors and ME_Klebs exhibited hydro-
gen bond interactions to more than one residue, and the same was
estimated for the hydrophobic interactions observed between TLR-
2 and ME_Klebs residues.

The MM/PBSA free binding energy calculations were done as
described elsewhere for the 2 complexes [109,110], and indicate
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a relatively strongly bound ME_Klebs-TLR-4 complex (DG = �
3,786.2 ± 1,501.5 kJ/mol) complex as compared to TLR2-
ME_Klebs (DG = � 1,390.5 ± 858.1 kJ/mol) (Table 8). The energy
changes over the course of the simulation, indicating that the
ME_Klebs-TLR-4 complex achieved a stable complex with lower
higher binding energy earlier in the simulation, while the
ME_Klebs-TLR-2 required comparatively higher binding energy to
reach stability. This is in agreement with the RMSD simulation’
results (Fig. 7C, D). Among the several individual MM/PBSA binding
energy values (Table 8), the main contributor was the electrostatic
energy between the receptors TLR-4 and TLR-2 and the vaccine
candidate ME_Klebs, with �7,114.1 ± 1,953.3 kJ/mol and �2,354.
9 ± 853.5 kJ/mol, respectively. These results are in agreement with
the multiple hydrogen bond interactions predicted (Table 7),
which are part of the electrostatic interactions between the recep-
tors and the ligand observed during the simulations. Conversely,
this is in disagreement with the docking results, which predicted
that the ME_Klebs-TLR2 complex is less stable than the
ME_Klebs-TLR-4 complex. However, the difference in the relative
binding free energies between the docked complexes is small
(�7.57 kcal/mol), and a possible explanation could be because of
the rigidity employed by the docking approach for the receptor,
which means only the binding pocket is flexible, in contrast to an
MD approach, where the entire complex is flexible.

The MD simulations’ data for both complexes further support
the molecular docking results described above, strengthening the
interaction potential of ME_Klebs with the 2 innate immune
receptors.
Fig. 10. Simulated human immune response induced by three immunizations with ME_K
cell (B) immunological responses were evaluated up to 350 days after first immuniza
relationship with the ME_Klebs antigen levels, after each immunization, were also asses
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3.2.8. Virtual ME_Klebs cloning and immunization
The precedent simulations strengthened the potential of ME_K-

lebs as a potent, stable antigen able to generate both innate and
adaptive immunological responses. This antigen would need to
be produced in adequate expression vectors. As described above
for the Klebs#1–4 antigens, the expression vector pET-9d showed
qualitative high levels of expression in the E. coli BL21-Gold
(DE3) strain (Fig. S2). Consequently, ME_Klebs sequence was codon
optimized for better expression in E. coli, showing a CAI of 0.87 and
a GC content of 57 %, indicative of good expression in this bacterial
host [38]. ME_Klebs optimized sequence was then inserted into
pET-9d sequence at the NcoI and BamHI restriction sites (Fig. 9),
and the resulting cloning product could be used to transform the
referred E. coli strain to produce the antigen that, following purifi-
cation as described elsewhere [40,41], would be used in immuniza-
tion protocols.

ME_Klebs was used as an immunogen in a simulated human
immunization protocol, 3-doses one month apart each, without
adjuvant, using the C-ImmSim online tool. As expected, after each
immunization, an increase in B cells (Fig. 10A) and T helper cells
(Fig. 10B) was observed, both effector and memory, and the former
tend to decrease 4 months after initial immunization. Also, IgM+ B
cells peaked before IgG+ B cells and T helper cells, immediately
after each immunization and a few days before the latter cells
(Fig. 10A, B). Regarding the humoral response, immunoglobulin
levels (both IgG and IgM) tend to peak around 10 days after each
immunization, until all antigen (ME_Klebs) was gone (Fig. 10C),
due to cellular uptake and subsequent degradation, mounting an
lebs at days 0, 28 and 56, with the online tool C-ImmSim. Both B cell (A) and T helper
tion. Levels of different immunoglobulin classes (IgM, IgG1 and IgG2) and their
sed (C).
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immune response against it. This is in agreement with experimen-
tal immunization studies against bacterial pathogens done in mice
using either a recombinant protein or a multiepitope chimeric
antigen, in which an initial IgM, T cell independent response is
observed, followed by production of IgG, in a T cell dependent
manner [111,112]. Also, both memory B cells and memory T helper
cells lasted several months in this simulated immunization
(Fig. 10A, B), indicating that ME_Klebs is able to induce a sustained
and long-lasting humoral response.
4. Conclusions

Identification of potential vaccine antigens is based on a long,
laborious, and costly experimental procedures, such as identifica-
tion of potential immunogens, their production and purification
and immunogenicity studies in adequate animal models. In the last
decades, several in silico approaches and tools became available,
allowing a computational analysis of potential antigens and their
characteristics, screening and filtering thousands of proteins and
only pursuing at experimental level the most promising immuno-
gens, reducing greatly the costs and time associated with their val-
idation. In this work, potential antigens against carbapenem-
resistant K. pneumoniae strains were identified by reverse vaccinol-
ogy and genome mining. However, both in silico characterization
and experimental procedures suggested that these antigens were
not ideal, due to their insolubility and, in the case of Klebs#3/
MrkD, potential allergenicity. Thus, a multiepitope approach was
pursued instead and a vaccine construct was designed, ME_Klebs,
containing B cell and helper T cell epitopes of the 4 identified anti-
gens. Due to the importance of TLR-4 in protection against K. pneu-
moniae infection, a molecular adjuvant, which activates this innate
immunity receptor, was added. In silico online tools prediction
results indicated that ME_Klebs was indeed antigenic, soluble,
non-allergen and non-toxic. Predictions of secondary and 3D struc-
tures produced models of high quality, and, using the latter model,
several putative conformational B cell epitopes were identified.
Predicted docking complexes structures and subsequent molecular
dynamics allowed estimation of energies of ME_Klebs complexed
with the relevant innate immunity receptors TLR-2 and TLR-4,
which control K. pneumoniae infection and bacterial dissemination,
indicated that this multiepitope construct stably binds and acti-
vates both receptors and, consequently, potentially triggers the
innate and adaptive immunological responses initiated by both
TLRs. Cloning of ME_Klebs through conventional cloning tech-
niques appeared feasible, and the resulting purified protein is
expected to be able to induce a Th-2-type immune response, elic-
iting a strong humoral response. In conclusion, the ME_Klebs
extensive characterization in silico strongly suggests this multiepi-
tope vaccine could be an efficient immunization approach against
carbapenem-resistant K. pneumoniae clinical isolates.
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