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Although remarkable advances have been reported in high-throughput sequencing, the ability to aptly
analyze a substantial amount of rapidly generated biological (DNA/RNA/protein) sequencing data
remains a critical hurdle. To tackle this issue, the application of natural language processing (NLP) to bio-
logical sequence analysis has received increased attention. In this method, biological sequences are
regarded as sentences while the single nucleic acids/amino acids or k-mers in these sequences represent
the words. Embedding is an essential step in NLP, which performs the conversion of these words into vec-
tors. Specifically, representation learning is an approach used for this transformation process, which can
be applied to biological sequences. Vectorized biological sequences can then be applied for function and
structure estimation, or as input for other probabilistic models. Considering the importance and growing
trend for the application of representation learning to biological research, in the present study, we have
reviewed the existing knowledge in representation learning for biological sequence analysis.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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Fig. 2. Change in the number of hits for the search term ‘‘representation learning”
(with double quotation) in PubMed ( https://pubmed.ncbi.nlm.nih.gov/).
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1. Introduction

Considerable advances in high-throughput sequencing have
resulted in rapid data accumulation [1]. Although these modern
technologies produce a considerable amount of data, they do not
provide interpretation or biological information. Thus, the analysis
of biological sequences, such as DNA/RNA/protein sequences, to
realize biological discoveries has become more critical and chal-
lenging. To tackle this issue, the application of natural language
processing (NLP) to sequence analysis has attracted considerable
attention in terms of treating biological sequences as sentences
and k-mers in these sequences as words [2,3].

NLP aims to allow computers to understand the content of nat-
ural language, including the context, to accurately extract informa-
tion, and to provide valuable insights [4]. Natural language is
composed of characters, such as the alphabet, and the meaning is
deduced and constructed using grammar and semantics. In the
same manner, biological sequences can be regarded as sentences
with different letters, and biophysical and biochemical rules can
be used to define properties, such as the function and structure
[5]. Biological sequences are consistent with natural language
where characters are used to define their meaning, and the mean-
ing depends on the neighboring sequence. For example, whether
the word ‘‘bank” in a sentence refers to a financial institution or
raised portion of seabed depends on the context. Similarly,
whether a part of an RNA sequence forms a secondary structure
depends on its neighboring sequences. Thus, considering the simi-
larities between natural language and biological sequences, the
application of NLP has the ability to provide a comprehensive
understanding of the function and structure encoded in the biolog-
ical sequence.

Representation learning is an essential step in NLP and indicates
automatic systems to explore the representation of raw data, such
as words or characters [6]. In general, the representation is pro-
vided as a real-valued vector known as distributed representation.
Successful representation learning may convert words into vectors
while preserving their semantic similarity. For example, the names
of foods, like ‘‘sushi” and ‘‘pizza,” should be converted into similar
vectors and the names of organisms, such as ‘‘frog,” should be
assigned entirely different vectors (Fig. 1). In biological sequences,
N-methyl-D-aspartate receptor and a-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid receptor, which are both ionotropic glu-
tamate receptors, may be converted into similar vectors, whereas
green fluorescent protein may be converted into a completely dif-
ferent vector. Thus, representation learning indicates the transfor-
Fig. 1. Ideal representation learning should perform the conversion of the names of
foods, such as ‘‘sushi” and ‘‘pizza,” into similar vectors and assign different vectors
to the names of organisms, such as ‘‘cow” and ‘‘frog.”.
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mation from words to vectors while preserving the similarities and
differences between words.

Biological sequences vectorized by representation learning can
be directly used for biological tasks, such as function and structure
prediction [7,8]. If the vector similarity between proteins is high, it
can be inferred that they possess similar functions and structures.
Note that vector similarity/distance can be calculated using linear
algebra operations, such as dot product, Euclidian distance, and
cosine similarity. Particularly, the successful encoding of words
via representation learning has been recognized as an essential
research area because the performance of NLP and deep learning
depends on the quality of the representation [6]. Thus, a good rep-
resentation of a biological sequence is critical for clustering, func-
tion, structure, and disorder prediction [2].

Considering the significance and growing trend in the applica-
tion of representation learning in biology (Fig. 2), in the present
study, we have described a review of representation learning for
biological sequence analysis. It should be noted that this review
covers concepts on the application of representation learning to
biological sequence analysis, while its use in biological literature
and medical records is beyond the scope of this review. This review
is organized as follows: Section 2 introduces the basic representa-
tion techniques for NLP. Section 3 provides a comprehensive sur-
vey of representation learning approaches for sequence analysis.
Section 4 presents a summary and an outlook of representation
learning applications in biological sequence analysis.
2. Representation learning techniques

Currently, the acquisition of distributed representations of bio-
logical sequences is mainly achieved using neural networks devel-
oped in NLP. In representation learning for NLP, it is assumed that
the words that appear in the same context have similar meanings
according to the distribution hypothesis [9]. Representation learning
methods based on the distribution hypothesis are used with an aim
to vectorize words or phrases by training the neural networks with
architectures specialized for understanding the relationships
among words from a corpus (a set of documents. Various represen-
tation learning methods presented in this review are based on
neural-network-based language models specialized for biological
sequences; thus, it is essential to understand the underlying archi-
tecture of the neural networks developed for NLP. In this section,
we have briefly summarized the development of basic representa-
tion learning techniques.

word2vec was the first successful method used to obtain dis-
tributed representations using a neural network [10,11]. There
are two types of neural networks used in word2vec and they are

https://pubmed.ncbi.nlm.nih.gov/


Fig. 4. Graphical representation of a forward LSTM. Input It shows the embedding
of the t-th word wt , and the output Ot is transformed to a probability using a
softmax function. For example, if wt is ‘‘majoring”, the model is trained to increase
the possibility that ‘‘majoring” is output from Ot , which is calculated from words up
to wt�1, ‘‘am”.
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as follows: a skip-gram model, that predicts the words around the
input word, and a continuous bag-of-words model, that predicts
the target word from the surrounding words. Until the advent of
word2vec, researchers used neural networks to describe the syn-
tactic structure [12,13]. The skip-grammodel proposed by Mikolov
attracted attention owing to its ability to capture not only gram-
matical correctness but also semantic features, as described in
the introduction. word2vec with the skip-gram model acquires a
distributed representation for each word by training the three-
layer neural network, as shown in Fig. 3. Considering a sentence
with T words and the t-th word wt , the model predicts the words
present in the vicinity of wt in that sentence. Pre-defined vicinity
is a hyper-parameter that is denoted as a constant, c. It shows
the number of words that should be included in the prediction
around wt .The parameters to be estimated in the skip-gram model
include the weight matrix X to predict the d-dimensional hidden
layer h 2 Rd from the one-hot encoded input layer and weight
matrix Y to predict the output from h. They are predicted using
the formula described below:

bX ; bYD E
¼ arg max

X;Yh i
1
T

XT
t¼1

Xt�1

t0¼t�c

log p wt0 jwt ; X;Yh ið Þ
(

þ
Xtþc

t0¼tþ1

log p wt0 jwt ; X;Yh ið Þ
)
: ð1Þ

The model performs the same operation for all sentences and
repeats multiple epochs to complete training. In this case, the
weight matrix X is a V � d matrix, where V represents the number
of words in the vocabulary. If wt is the v-th word in the vocabulary,
we can obtain the distributed representation of the word wt as the

v-th vector of the predicted X (i.e., bXv 2 Rd). The word2vec
representation has additive compositionality and has garnered
fame for allowing intuitive operations, such asbXVietnam þ bX capital � bXHanoi, as shown previously [11]. Hence, the
use of word2vec succeeded in obtaining highly interpretable
distributed representations for the first time and helped to direct
subsequent development in representation learning.

The fact that word2vec captures semantic features is a remark-
able breakthrough in representation learning, which has prompted
the proposal of various extended models based on word2vec. GloVe
uses word co-occurrence matrices, which have been used in classi-
cal latent semantic analysis, such as singular value decomposition
[14]. It shows higher semantic accuracy than word2vec. FastText is
an embedding method based on the skip-gram model [15]. It con-
siders sub-word information that allows for the prediction of
words that do not appear in the training data. Additionally, several
methods have been developed to obtain a distributed representa-
tion for each sentence (not word) based on the word2vec concept.
Fig. 3. Skip-gram model used in word2vec. This neural network model includes the
following three fully connected layers: the input, hidden, and output layers. In this
case, it attempts to learn the features from the sentence, ‘‘I am majoring in biology,”
and to predict the words surrounding wt , ‘‘majoring. ”.
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doc2vec utilizes the paragraph vectors, which captures the context
for each paragraph and provides the features for each sentence
[16].

Although word2vec has enabled considerable progress in repre-
sentation learning, it cannot be used to express the semantic poly-
semy of words as it yields a single d-dimensional vector for a single
lexicon, as mentioned above. For example, ‘‘right” that appears in
‘‘right to vote” and ‘‘turn right” differ in meaning; however, they
are embedded at the same point using word2vec. The approach
to solving this problem is known as word sense disambiguation
in NLP [17], and it prescribes architecture for considering the con-
text and meaning of a sentence. In biological sequences, the con-
text of a word in a sentence is equivalent to the role of a
particular nucleic/amino acid in the whole sequence. Hence, the
polysemy in biological sequences is critical, similar to that
observed in natural languages. Here, we have introduced the fol-
lowing two methods that can allow the consideration of such con-
texts: one method that can be performed to achieve this by
rendering the neural network recursive using a recurrent neural
network (RNN) or long short-term memory (LSTM) [18] and
another method that uses the attention mechanism.

RNN and LSTM are developments of the classical autoregressive
language models that have been primarily utilized for sequential
tasks, such as document generation and machine translation
[19,20]. In the language model with a forward LSTM, as shown in
Fig. 4, the occurrence probability of the t-th word in a sentence,
wt , depends on the set of words that appear before wt (denoted
as w1:t�1). The model trains the parameters to maximize the joint
probability for all words, w1; � � � ;wt ; � � � ;wTf g. To calculate
p wt jw1:t�1ð Þ, LSTM uses the hidden layer of wt (the output for
which is denoted by hforward;t 2 Rd), which depends on wt�1 and
hforward;t�1. As the hidden layer is computed recursively depending
on the word order, LSTM-based models allow context-aware learn-
ing. Currently, most LSTM-based language models are based on
bidirectional-LSTM (bi-LSTM), which can be used to consider the
context not only in the forward but also in the reverse direction.
In a backward LSTM, the hidden layer of wt and its output
hbackward;t depend on wtþ1 and hbackward;tþ1. By considering word
dependency in the backward direction, bi-LSTM can incorporate
relationships among words that cannot be captured by using the
forward LSTM alone. In bi-LSTM, all hidden layers are trained to
maximize the joint probability of generating the entire sentence
as follows:

1
T

XT
t¼1

logp wt jw1:t�1ð Þ þ logp wtjwtþ1:Tð Þf g: ð2Þ
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Embeddings from language models (ELMo) represent the dis-
tributed representations provided by the model stacked with mul-
tiple bi-LSTM [21]. This model is referred to as bidirectional
language model (bi-LM), and contains a stack of L bi-LSTM mod-
ules. ELMo is obtained by estimating the weighted-sum of outputs
from 2Lþ 1 layers, which are hidden layers for both forward and
backward LSTM modules and an input embedding layer. ELMo
avoids polysemy as it refers to the hidden layers of LSTM which
considers the context for the input sentence, in addition to the
input embedding layer which depends only on the lexicon. In fact,
ELMo successfully embeds the same lexicon to different points in a
high-dimensional space, depending on the context.

Another approach for addressing the polysemy issue is to use
the attention mechanism. Briefly, attention quantifies the degree
of dependency between words [22,23]. Neural networks with
attention mechanisms comprise an attention weight that is
obtained by calculating the association of hidden layers (e.g., using
the inner product) for arbitrary combinations of words in sen-
tences. If the two words used to compute the attention weight
originate from different sentences, this attention is referred to as
the source-target-attention. On the other hand, if they originate
from an identical sentence, it is designated as self-attention. Mod-
els that are based on the use of attention weights in the forward
propagation are extremely expressive, allowing for a natural intro-
duction of an attention mechanism to representation learning.
Transformer, which implements the attention mechanism and posi-
tional encoding [24] in Key-Value Memory neural network [25,26]
without conventional context-aware architectures, such as RNN or
LSTM, has demonstrated achievement of a state-of-the-art accu-
racy in several tasks, including machine translation [27].

Bidirectional encoder representations from transformers (BERT) is the
model with multiple stacks of transformers (see Fig. 5) [28]. In the
pre-training of BERT, the input is a set of tokens connecting two
sentences. A part of the input words is randomly masked. When
the masked word is the t-th word, wt , the model predicts what is
considered as the context before and after wt . This language model
is called Masked Language Model (MLM). Compared to the tradi-
tional autoregressive language models, MLM can ‘‘jointly”, rather
than ‘‘independently”, consider the context before and after. That
is, the occurrence probability of wt ; p wt jw1:t�1;wtþ1:Tð Þ, cannot be
factorized into p wt jw1:t�1ð Þ � p wt jwtþ1:Tð Þ; this modification con-
Fig. 5. The graphical representation of Bidirectional encoder representations from
transformers (BERT) architecture. Preparation of special tokens ([CLS], [MASK] and
[SEP]) enables the model to extract features based on the self-attention of the whole
sentence. BERT is trained with the following two tasks: masked language model
(MLM) and next sentence prediction (NSP). In pre-training for MLM, the model
predicts the masked tokens original meaning (e.g., predicting ‘‘have” and ‘‘dollars”
from F MASK½ �) considering the context before and after the masked tokens.
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tributes to the improved accuracy. Therefore, in contrast to the
Eq. (2), MLM maximizes the following joint likelihood:
1
jMj

X
wt2M

log p wt jw1:t�1;wtþ1:Tð Þ; ð3Þ
where M shows the set of masked tokens. Additionally, the model
performs a binary classification of whether the two input sentences
are semantically consecutive. Similar to the approaches used in
other methods, we can use the outputs of pre-trained transformer
layers as the distributed representations of input sentences.

Neural networks with attention mechanisms, such as trans-
former and BERT, capture distal word associations better than con-
ventional recursive models represented by RNN and LSTM [22,29].
This is because, in recursive models, a hidden layer of a certain
word depends on the hidden layers of the neighboring words only,
and the contribution of distal words becomes small or converges to
zero. In contrast, the use of attention is robust against such weight
loss since the model always refers to its association with all words.
This feature of BERT is attractive from the biological perspective
since distal interactions are important for structural predictions
and other purposes. Meanwhile, the calculation of the all-
against-all attention always involves substantial computational

complexity, O T2
� �

for a sentence with T words. Thus, it is impor-

tant to reduce this complexity, for which various approximation
methods have been proposed [30,31]. Another advantage of using
BERT is task-independent versatility. For instance, when we use
ELMo, it is necessary to prepare a task-specific model to transfer
the obtained distributed representations to other tasks. In such
cases of transfer learning, the new model may forget the features
learned in pre-training, thus necessitating the conduction of care-
ful retraining of the model in a sophisticated manner represented
by ULMfit [32]. In contrast, with BERT, we can utilize the same
architecture used in pre-training (as shown in Fig. 5) without mod-
ification. Fine-tuning, which uses pre-trained hidden layers for ini-
tialization and optimizes the parameters for each task, has
achieved state-of-the-art accuracy in several NLP tasks [28].

The main advantage of obtaining features through unsupervised
learning is that it can retain versatility for the transfer learning to
various tasks. However, to build a specialized model for a specific
task, representation learning in a supervised manner is also useful.
StarSpace is a supervised learning method [33], which uses labeled
documents as the training dataset, and embeds words and labels in
the same space so that a label is close to words associated with it.
Embedding with StarSpace allows for text classification, that is, the
prediction of labels used in the course of learning with higher accu-
racy than the other unsupervised methods, and it provides highly
interpretable vectors. As shown by this example, supervised repre-
sentation learning is also a practical option if the correct labels are
known.

Since the development of word2vec in 2013, the field of repre-
sentation learning in NLP has been expanding at an astonishing
pace. Considering the models based on transformer or BERT, sev-
eral modern improved methods have continued to provide
increased accuracy [34,35]. Furthermore, similar to the consider-
able impact of the attention mechanism, the emergence of new
concepts may also help reconstruct the current paradigm of lan-
guage modeling. These substantial developments in machine
learning will be useful for bioinformatics and sequence analyses.
As numerous examples are introduced in later sections, we believe
that application of the latest representation learning techniques to
biological sequences will lead to a discovery or elucidation of novel
information in this domain.



Table 1
Comprehensive survey of representation learning application in biological sequences

Method
name

Model Training data Task Avail. and
repr.

Ref.

ProtVec word2vec 547 K proteins family classification, disorder prediction + [36]
HLA-vec word2vec HLA-I binding/non-binding peptides HLA-I binding prediction ++ [37]
m-NGSG word2vec 0.1 K–3 K proteins protein classification ++ [38]
ene2vec word2vec 89 K positive and 495 K negative mRNAs N6-methyladenosine site prediction ++ [39]
– word2vec 3 K–101 K of 300 bp genomic regulatory regions regulatory region prediction ++ [40]
ProtVecX word2vec 371–44 K proteins venom toxin prediction, enzyme prediction +++ [41]
MHCSeqNet word2vec 228 K peptide-MHC pairs MHC binding prediction +++ [42]
– word2vec 1 M 16S rRNAs sample class (e.g., body part) prediction +++ [43]
fastDNA word2vec 356–3 K bacterial genomes species identification ++ [44]
NucleoNN word2vec 86/72 SNPs in the control/exposure samples investigating allele-interactions ++ [45]
– word2vec 3 K–22 K CPI pairs CPI prediction +++ [46]
FastTrans word2vec 1 K membrane transporter and 1 K membrane non-

transporter proteins
substrate prediction of transport proteins ++ [47]

INSP word2vec 78 nuclear proteins nuclear localization prediction ++ [48]
– word2vec 9 M proteins function prediction ++ [49]
Its2vec word2vec 126 K ITSs species identification ++ [50]
4mCNLP-

Deep
word2vec C. elegans genome (WBcel235/ce11) N4-methylcytosine sites prediction ++ [51]

– doc2vec 525 K proteins localization, T50, absorption, enantioselectivity prediction +++ [52]
EP2vec doc2vec 650 K enhancers and 93 K promotors enhancer-promoter interaction prediction ++ [53]
IDP-Seq2Seq Seq2Seq 3 K proteins disorder prediction ++ [54]
– Glove 244 K–504 K chromatin accessible regions chromatin accessibility prediction ++ [55]
CircSLNN Glove 37 dataset of RBP-binding sites on circular RNAs RBP-binding sites prediction of circRNAs + [56]
– FastText 3 K promoters and 3 K non-promoters promoter stregnth classification ++ [57]
iEnhancer-

5Step
FastText 1 K human enhancers and 1 K human non-enhancers enhancer prediction ++ [58]

TNFPred FastText 18 tumor and 133 non-tumor necrosis factors tumor necrosis factors classification ++ [59]
eDNN-EG FastText 518 essential and 1 K non-essential genes essential gene prediction + [60]
ProbeRating FastText 440 K proteins and 274 K nucleic acids nucleic acid-binding proteins binding preference prediction ++ [61]
CSCS bi-LSTM 4 K–58 K viral proteins viral escape mutation prediction +++ [62]
UniRep mLSTM 24 M proteins structure and function prediction +++ [63]
UDSMProt AWD-LSTM language

model
499 K proteins enzyme class prediction, gene ontology prediction, remote homology, fold detection +++ [64]

USMPep AWD-LSTM language
model

23 K–120 K MHC binding peptides MHC binding affinity prediction ++ [65]

BindSpace StarSpace 505 K TF-associated and 505 K non-associated DNA TF-binding prediction ++ [66]
MutSpace StarSpace cancer mutation sites cancer type prediction ++ [67]
SeqVec ELMo 33 M proteins 3-state secondary structure prediction, disorder prediction, localization prediction, membrane

prediction
++ [68]

NuSpeak ULMfit 92 K RNAs designing RNA toehold switches ++ [69]
DNA- transformer transformer E. coli genome (MG1655)
transcription

start sites,
translation
initiation sites,
4mC methylation
sites prediction

++ [70]

TAPE BERT 31 M proteins 3-state secondary structure prediction, contact prediction, remote homology detection, fluorescence
prediction, stability prediction

+++ [71]

ESM-1b BERT 27 M–250 M proteins remote homology detection, 8-state secondary structure prediction, contact map prediction,
quantitative prediction of mutational effects

++ [72]

ProtBert BERT 216 M–2B proteins 3-/8-state secondary structure prediction, subcellular localization prediction, membrane-boundness
prediction

++ [73]

DNABERT BERT H. sapiens genome (GRCh38.p13) promoter prediction, TF-binding site prediction, splicing site prediction, functional variant analysis +++ [74]
BERT4Bitter BERT and bi-LSTM 256 bitter and 256 non-bitter peptides prediction of bitter peptides ++ [75]
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3. Survey of representation learning applications in sequence
analysis

We conducted an exhaustive survey, as shown in Table 1 and
supplementary data, for articles that met the following criteria:
(i) peer-reviewed and published in PubMed, except for BERT,
which was recently published with a limited number of peer-
reviewed articles; (ii) explicitly used a language model, such as
word2vec or BERT; (iii) provided the source code or the model
for repeatability or verification.
3.1. Applications for structure/function prediction

ProtVec is the first model to use the embedding method for
biological sequences [36]. This method regarded 3-mers of amino
acids as words and used data on 546,790 protein sequences
obtained from the Swiss-Prot database as the training dataset.
Subsequently, word2vec using the skip-gram model was applied
to the dataset, and 100-dimensional protein vectors were calcu-
lated. Originally, ProtVec was evaluated based on protein family
classification and disordered protein prediction accuracies and
it achieved high performance in both. Currently, ProtVec has also
been utilized for predicting kinase activity [78] and gene function
[79]. As ProtVec is a straightforward model, various extensions
have been proposed. One of the extensions is seq2vec, which
embeds not the k-mers of amino acids but embeds the whole
protein sequences [80]. Seq2vec utilizes doc2vec [16], an NLP
method that embeds documents instead of words, which showed
a higher performance than ProtVec in terms of protein family
classification performance. Another extension is dna2vec [81],
which embeds variable-length k-mers rather than fixed-length
DNA k-mers using word2vec. ProtVecX is a similar method that
uses word2vec to embed variable-length amino acid k-mers [41].

SeqVec is the first model that uses ELMo to achieve amino
acid representation based on the whole protein sequence [68].
ELMo was applied to the UniRef50 dataset, which contains
33 M proteins with 9.6G residues, regarding single amino acids
as words. The extracted features were then used as input into
the per-residue prediction and per-protein prediction. With and
without the evolutionary information, the model could accu-
rately predict the secondary structure, disorder, localization,
and membrane binding. The performance did not exceed that of
the state-of-the-art methods [82,83]. However, it was better than
ProtVec [36] which is a context-independent model. In certain
tasks, such as protein function prediction, it outperformed one-
hot encoding of k-mer-based embeddings and provided compet-
itive results obtained using ELMo [84].

UDSMProt is another language model representation extrac-
tor using a variant of LSTM [64]. The structure used is called
AWD-LSTM [85], which is a three-layered bi-LSTM that intro-
duces different types of dropout methods to achieve accurate
word-level language modeling. UDSMProt was initially applied
to the Swiss-Prot database and then fine-tuned for specific tasks,
such as enzyme commission classification, gene ontology predic-
tion, and remote homology detection. UDSMProt showed that
upon pre-training with external data, the model performed in a
manner that was comparable to the existing methods that were
tailored to the task using a position-specific scoring matrix
(PSSM) and outperformed them in two out of the three tasks con-
ducted. Additionally, it demonstrated that utilization of pre-
training information could compensate for the lack of data, com-
pared to the case where PSSM information was provided. These
results and extensions, such as USMPep, which revealed the abil-
ity to successfully predict MHC class I binding [65], imply that
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language models can be used to efficiently contextualize and
achieve word-based representation.

ESM-1b is a BERT-based model trained on a massive biological
corpus, particularly amino acid sequences [72]. The study pre-
sented a series of BERT models with varying parameter sizes. After
conducting pre-training using up to 250 million protein sequences,
where each amino acid residue in a sequence was treated as a
word, models could accurately predict the structural characteris-
tics of proteins, including remote homology, secondary structure,
and residue–residue contact. Representations put forth by the
pre-trained 34-layer model were merged with multiple sequence
alignments (MSAs), which were considered as the original input
of the existing secondary structure or contact prediction methods,
and data on their prediction accuracy was improved. This result
indicated that embedded representations based on the
pre-trained BERT incorporated more information than the MSAs.
Furthermore, the 34-layer model was fine-tuned to predict the
quantitative effect of mutations and was found to outperform the
state-of-the-art methods. Apart from the model trained on individ-
ual sequences, Rao et al. proposed a model trained on the sets of
amino acid sequences in the form of MSAs [86]. As an attractive
alternative, other protein BERT models, such as TAPE transformer
and ProtBert, have also been developed [71,73]. Meticulous inspec-
tion of the TAPE transformer revealed that data on attention maps
extracted from the pre-trained model reflected the context of input
amino acid sequences [87]. For instance, one attention module,
which specializes in deciphering residue–residue interactions,
exhibited a significant correlation with experimental labels
although no structural information was provided. This phe-
nomenon was later investigated by reconstructing protein contact
maps using data obtained from the attention maps of pre-trained
ESM-1b [7]. The collection of studies illustrates that BERT-based
models are highly interpretable and widely applicable to protein-
related bioinformatics problems.

DNABERT, in contrast, is the only model currently available that
can be used to pre-train BERT-based models using a whole human
reference genome [74]. During preprocessing, the genome, whose
gaps and unannotated regions were excluded, was split into 5 to
510 consequent nucleotide sequences without overlapping and
subsequently converted to 3- to 6-mer representations. In a simple
sense, each subsequence of length 3 to 6 was regarded as a word.
BERT models were pre-trained using k-mers with a masked lan-
guage modeling objective and applied to downstream tasks. Upon
performing task-specific fine-tuning, DNABERT demonstrated
state-of-the-art or comparative performance in predicting pro-
moter regions, binding sites of transcription factors (TFs), and
splice sites. Attention analysis revealed that fine-tuned models
captured the characteristics of each set of target sequences. For
example, DNABERT fine-tuned using splicing datasets exhibited
high attention weights in intronic regions in addition to the target
splice sites, indicating the ability of the model to learn the contex-
tual significance of splicing enhancers or silencers in predicting
splice sites. The study further applied DNABERT to predict promot-
ers in the mouse genome and reported higher performance than
those of existing deep learning methods. Additionally, we recently
adapted DNABERT for predicting RNA–protein interactions and
demonstrated that the fine-tuned model could translate transcript
region type and RNA secondary structure through attention analy-
sis [77]. Overall, two-step training of the BERT architecture demon-
strated its broad application to translate various genomic features
in a cross-organism manner.

3.2. Applications for molecular interactions

Tsubaki et al. proposed a model by combining a graph neural
network for compounds and a convolutional neural network
3204
(CNN) for proteins to predict compound–protein interactions
(CPIs) [46]. Representations of compounds and proteins were
obtained in an end-to-end manner. The word embeddings in the
protein were learned from the training dataset using word2vec
(3-mer of amino acids as words). To obtain protein vector repre-
sentation, the average value of a set of hidden vectors was used
with d-dimensional embedding after a hierarchical convolutional
filter. Extensive evaluations were conducted for three CPI datasets
(human, C. elegans [88] and DUD-E dataset [89]). The results
showed that using the raw amino acid sequence as the input, the
proposed approach significantly outperformed the existing meth-
ods utilizing traditional chemical and biological features. They also
established that the model could highlight 3D structural
interaction sites between the compounds and proteins through
an attention mechanism similar to that observed with words in
sentences.

ProbeRating is a neural network-based recommender system
utilizing word embeddings in NLP to infer binding profiles for
unexplored nucleic acid-binding proteins (NBPs) [61]. ProbeRating
achieves this goal using a two-stage framework. In the first stage,
representation learning is performed using a package called Fas-
tBioseq, implementing FastText. Thus, data on the input feature
vectors are extracted from the NBP sequences and nucleic acid
probes. The authors previously selected 3-mers amino acids for
proteins and 5-mers for nucleic acids as words. Three datasets
(Uniprot400k [90], RRM3k [91], and Homeo8k [92]) were used to
pre-train the FastBioseq protein embedding models, whereas
RNA embedding models were trained directly from the RRM162
dataset [91]. In contrast, 8-mer frequency features were used for
the DNA sequences in the Homeo215 dataset [93]. In the second
stage, prediction of the NBP binding preference was redefined as
a recommender system formulation, where NBPs are considered
as users and RNAs or DNAs are considered as products to be recom-
mended. When no preference was available for a given user, the
authors adapted and extended a strategy that converted the bind-
ing intensity prediction problem into a similarity prediction problem,
solved it, and then converted it back. Extensive evaluation experi-
ments were conducted for the following two tasks: RBP–RNA inter-
action and TF–DNA interaction. The results showed that
ProbeRating outperformed three baseline methods (Nearest-
Neighbor, Co-Evo [94] and AffinityRegression [93]). Further analy-
sis suggested that this advantage was beneficial using both the
neural network approach and data on input features extracted
via word embeddings.

3.3. Applications in synthetic biology

Valeri et al. proposed a model that could predict synthetic
riboregulators called toehold switches [95]. The model comprised
a language model for toehold switch classification and a
CNN-based model for toehold switch performance regression. In
the language model, a sequence of toehold switches was embed-
ded using ULMfit regarding a nucleotide as a word. They trained
the model using toehold switches experimentally characterized
by Angenent-Mari et al. [96]. The results showed that the model
exhibited good and robust performance even for sparse training
data and that the features obtained by the model revealed
unknown properties of the toehold switches. They also showed
that the trained model is easily fine-tuned by transfer learning
using small external data [97,98], and the fine-tuned model exhib-
ited superior performance compared to an existing model. Finally,
they showed that the fine-tuned model could help in the efficient
design of toehold switches for various applications, such as SARS-
CoV2 detection.

UniRep is a representation that comprehensively summarizes
the semantics of arbitrary proteins and can be useful for various
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types of prediction tasks [99]. A protein sequence is embedded into
UniRep using multiplicative LSTM (mLSTM), trained with 24 M
UniRef50 sequences [100], where an amino acid is regarded as a
word. UniRep is used to recapitulate biophysical properties, phylo-
genetics, and secondary structures of proteins. The authors also
showed that UniRep outperformed other representations for pre-
dicting the structural and functional properties of de novo proteins,
single point mutants, and natural proteins. These results suggest
that UniRep is useful for the rational design of proteins. As a
proof-of-concept, UniRep re-trained using deep mutational scan-
ning data of GFP [101] was shown to effectively extrapolate GFP
brightness outside the training domain. Therefore, UniRep was
suggested to markedly reduce the cost for the rational design of
GFP. Collectively, UniRep embodies various known protein charac-
teristics and may be a versatile representation for protein
bioinformatics.
3.4. Applications for other tasks

StarSpace is a supervised embedding method, which is different
from the unsupervised embedding methods that we have intro-
duced in Section 2 [33]. Although StarSpace was originally devel-
oped for general NLP tasks, such as text classification, there are
currently two bioinformatics applications available. The first appli-
cation is BindSpace, which is used to predict the binding sites of
TFs [66]. BindSpace uses HT-SELEX experiments as the training
dataset and applies StarSpace to the dataset by considering 8-
mers and TFs as words and labels, respectively. In performance
evaluation using the ENCODE ChIP-seq dataset, BindSpace
achieved high classification performance even between paralogous
TFs, which contain highly similar binding motifs. The second appli-
cation is MutSpace, which is used to estimate the cancer types of
patients from somatic mutation patterns [67]. This method
regarded mutation patterns and cancer types as words and labels,
respectively. MutSpace shows state-of-the-art performance in a
breast cancer subclass classification problem. The high perfor-
mance of these two applications means that StarSpace is likely to
perform well in countering other bioinformatics problems.

A constrained semantic change search (CSCS) is a method for
discovering word changes that significantly alter the semantics
from an original sentence based on embedding techniques [102].
The key feature of this method is that it does not detect word
changes that would abolish the grammar of the sentence but those
that preserve the grammatical structure. For example, in an NLP
task, CSCS can change ‘‘winegrowers revel in good season” to
‘‘winegrowers revel in flu season.” We define x and x̂ as the original
and mutated sentences, respectively. The embedded representa-
tions of x and x̂ are defined as z and ẑ, respectively. Here, the
semantic change is modeled as the distance between these embed-
ded representations, that is, jjz� ẑjj. Additionally, the preservation
of the grammatical structure is evaluated by p x̂jxð Þ, which is also
modeled using embedding techniques. Finally, x̂ maximizing
jjz� ẑjj þ bp x̂jxð Þ, where b is a scaling factor. One biological applica-
tion of CSCS is the modeling of viral evolution [62]. This application
considered viral proteins, preservation of the infectivity, and
escape from antibody recognition as sentences, preservation of
grammar, and semantic change, respectively, and detected escape
mutations from immune systems as a result of the CSCS analysis.
The analyses of HIV-1 and influenza viruses showed that mutations
detected by the CSCS were in good agreement with the experimen-
tal mutation results.

Woloszynek et al. applied word2vec to a metagenomic dataset
by regarding 4–15-mers in sequencing reads as words [43]. They
trained word2vec with a skip-gram model using 2,262,986 full-
length 16S rRNA amplicon sequences from GreenGenes [103], a
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microbial 16S rRNA sequence database obtained using metage-
nomic analysis. They verified the robustness of the model in a tax-
onomic identification task using an independent dataset of 16,699
full-length 16S rRNA sequences from the KEGG REST server [104]
as a validation dataset. The embedding features exhibited superior
performance to the k-mer frequency features. Additionally, the
embedding has also performed using the American Gut project
dataset [105], which comprises 11,341 partial 16S rRNA sequences
from three body sites (the gut, skin, and oral cavity), and showed
comparable performance to conventional methods, such as
sequence alignment in the body site classification task. These
results suggest the availability of embedding with pre-trained
models instead of sequence alignment for metagenomic sequence
profiling.
4. Summary and outlook

In this study, we introduced basic algorithms and reviewed the
recent literature concerning representation learning applications
in sequence analysis. Heinzinger, et al. highlighted three difficul-
ties in biological sequence modeling with NLP [68] as follows: (i)
proteins range from approximately 30 to 33,000 residues, which
is markedly longer than the average English sentence, which con-
sists of 15 to 30 words [106]; (ii) proteins use only 20 amino acids
in most cases; if we consider one amino acid as a word, the word
repertoire is 1/100,000 of English language, and if we consider 3-
mer as a word, the word repertoire is 1/10 to 1/100 of English lan-
guage; (iii) UniProt [90] is 10 times larger than the size of Wikipe-
dia in terms of data repository size, and extracting information
from a very large biological database may require the use of a com-
mensurate model. Embedding of biological sequences using NLP
overcomes these difficulties and outperforms existing methods in
several tasks, such as function, structure, localization, and disorder
prediction (Table 1). In addition to these general biological tasks,
representation learning has also been used to solve specific prob-
lems, such as RNA aptamer optimization [107], viral mutation pre-
diction [62], and venom toxin prediction [41]. In these studies,
representation learning of biological sequences could capture bio-
physical and biochemical properties of the biological systems.

The development of novel representation learning methods has
been actively studied in machine learning research. For example,
hyperbolic embedding methods have been pursued in recent years
[108,109]. These methods allow embedding of the data not in
Euclidean space, which is utilized in all the studies introduced in
this review, but in the hyperbolic space. The hyperbolic space exhi-
bits constant negative curvature; thus, it shows characteristic geo-
metric features not observed in Euclidean space, such as the sum of
the interior angles of a triangle being less than 180. Changes in the
embedding space can considerably alter the efficiency of represen-
tation learning, while theoretical and experimental analyses have
shown that hyperbolic embedding methods are suitable for data
with hierarchical latent structure. Furthermore, research on
embedding into more complex spaces, such as mixed-curvature
spaces, has also attracted attention [110]. Although these non-
Euclidean embedding methods have recently been used for various
biological analyses, such as phylogenetic [111], and single-cell
RNA-seq analyses [112], no applications exist for the biological
sequence analysis emphasized in this review. Thus, the develop-
ment of such an application is warranted.

Data on new approaches are published daily in this field, and
the scientific community is engaging relentless efforts to compare
their accuracy and to validate their potential uses [71,113,114]. It
is, therefore, important to ensure the models are available in an
easy-to-use format with documentation. Considering that power-
ful computer resources are required for the establishment of
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large-scale language models, such as transformer-based models,
researchers without access to these resources will be unable to
reproduce them even with the source code. Additionally, consider-
ing the rapid growth of biological databases, the source code for
creating models should be made available for future updates. Only
a limited number of studies have published data on both the
source code and the pre-trained model with the relevant documen-
tation. Finally, participants in this community must publish their
papers in a reproducible and verifiable format.

In this study, we comprehensively surveyed and reviewed the
application of representation learning to biological sequence anal-
ysis. Although NLP-based biological sequence analysis is in its early
stages and warrants further development, in the light of novel
challenges in biology, such as single-cell analysis, genome design,
and personalized medicine, representation learning may con-
tribute to the progression of bioinformatics studies thus revealing
the grammar of life.
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