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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of
dopaminergic neurons in the Substantia Nigra pars compacta, leading to classical PD motor symp-
toms. Current therapies are purely symptomatic and do not modify disease progression. Cannabidiol
(CBD), one of the main phytocannabinoids identified in Cannabis Sativa, which exhibits a large
spectrum of therapeutic properties, including anti-inflammatory and antioxidant effects, suggesting
its potential as disease-modifying agent for PD. The aim of this study was to evaluate the effects of
chronic treatment with CBD (10 mg/kg, i.p.) on PD-associated neurodegenerative and neuroinflam-
matory processes, and motor deficits in the 6-hydroxydopamine model. Moreover, we investigated
the potential mechanisms by which CBD exerted its effects in this model. CBD-treated animals
showed a reduction of nigrostriatal degeneration accompanied by a damping of the neuroinflamma-
tory response and an improvement of motor performance. In particular, CBD exhibits a preferential
action on astrocytes and activates the astrocytic transient receptor potential vanilloid 1 (TRPV1), thus,
enhancing the endogenous neuroprotective response of ciliary neurotrophic factor (CNTF). These
results overall support the potential therapeutic utility of CBD in PD, as both neuroprotective and
symptomatic agent.

Keywords: phytocannabinoids; neuroinflammation; ciliary neurotrophic factor; transient receptor
potential vanilloid 1; 6-hydroxydopamine; cannabidiol

1. Introduction

Parkinson’s disease (PD) is a progressive movement disorder and its prevalence
in the population is rapidly rising, with a consequent increasing economic burden on
society, in terms of medical care. Indeed, the number of individuals affected by PD was
estimated to have more than doubled globally from 1990 to 2016 [1]. Several efforts are
currently ongoing to address this health challenge, including the attempt to develop new
therapeutic strategies that can modify the course of PD, by modulating the underlying
pathogenetic mechanisms such as the inflammatory process [2,3]. Although it is widely
recognized that glial cell activation can contribute to the progression of neuronal damage
in PD [2,4], it is interesting to note that microglia and astrocytes can polarize into pro- and
anti-inflammatory phenotypes in response to changes in brain microenvironment [3–5].

Phytochemicals offer a wide variety of compounds with potential therapeutic uses in
PD, due to their anti-inflammatory and antioxidant properties. In particular, phytocannabi-
noids have shown both neuroprotective capacity and the potential to alleviate motor
symptoms [6], which makes them an attractive class of compounds to evaluate as potential
innovative therapeutics for PD. Their effects have been extensively studied over the years
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in various neurodegenerative pathologies, such as Huntington’s disease [7,8], Alzheimer’s
disease [9,10], Multiple Sclerosis [11,12] and Amyotrophic Lateral Sclerosis [13], yielding
promising results.

Cannabidiol (CBD) is one of over 100 phytocannabinoids identified in Cannabis
Sativa and constitutes up to 40% of the plant extract, being the second most abundant
component. Unlike ∆9-tetrahydrocannabinol, which combines therapeutic properties
with some important adverse effects, CBD is not psychoactive [14] and exhibits a large
spectrum of therapeutic properties among which the anti-inflammatory and antioxidant
effects emerge [15–18]. These properties make CBD a therapeutic agent potential capable
of counteracting the progression of nigrostriatal damage that characterizes PD.

The aim of this study is to evaluate the effects of chronic treatment with CBD on
neurodegenerative and neuroinflammatory processes, and motor deficits in a classic toxic
model of PD based on unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA).
The potential mechanisms by which CBD exerted its effects in this model have been
also investigated. CBD-treated animals showed a reduction of nigrostriatal degeneration
accompanied by a recovery of motor performance. In particular, CBD, by activating the
astrocytic transient receptor potential vanilloid 1 (TRPV1) [19], enhanced the endogenous
neuroprotective response of ciliary neurotrophic factor (CNTF). Specifically, activation of
TRPV1 on astrocytes increases endogenous CNTF synthesis in vivo, enhancing the viability
of dopaminergic neurons through activation of the CNTF receptor alpha subunit (CNTFRα)
and preventing neurodegeneration and inducing the recovery of motor performance after
administration of MPP+ and 6-OHDA in PD rat models [20–23].

2. Results
2.1. Cannabidiol Treatment Attenuates Nigrostriatal Degeneration and Improves
Motor Performance

The potential effects of CBD treatment on PD progression were investigated by using
the unilateral intrastriatal 6-OHDA-lesion model. The 6-OHDA injection in the striatum
causes a partial and gradual degeneration of the nigrostriatal pathway, providing a thera-
peutic window (28 days) useful to evaluate the neuroprotective efficacy of new therapeutic
strategies [24]. In this study, the 6-OHDA injection induced a 75% loss of dopaminergic
striatal terminal and 70% loss of dopaminergic neurons in the SNc after 28 days (Figure 1).
Animals treated with CBD showed a 21% significant reduction of the striatal terminal
degeneration (Figure 1A; p = 0.012) and cell body loss in the SNc (Figure 1B; p = 0.008) in
comparison with control group. CBD also ameliorated 6-OHDA-induced motor deficits
as assessed by behavioral tests. Lesioned animals showed a prevalent use of the forepaw
ipsilateral to the lesioned side over the contralateral, “parkinsonized” forepaw at cylinder
test. Interestingly, animals treated with CBD displayed a significantly lower preference
(34%; p = 0.032) in the use of the ipsilateral limb than control rats, indicative of a behavioral
rescue (Figure 2A). Analogously the apomorphine-induced rotational behavior, a func-
tional index of nigrostriatal lesion in 6-OHDA animal models, was significantly reduced
(54%) (p = 0.044) in the animals treated with CBD (Figure 2B). Last, the rotarod test was
performed to evaluate the motor coordination of rodents. While the analysis of baseline
(pre-lesion) motor activity did not reveal any difficulty to stay in balance on the rotating bar
in both experimental groups, after nigrostriatal lesion, animals exhibit a reduction (about
50%) in the motor performance as shown in the control group. CBD treatment did not
ameliorate motor performance at this test (Figure 2C).
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Figure 1. Effect of CBD treatment on the neurodegenerative process in the nigrostriatal pathway. The
graphs show the percentage of lesion of (A) in the striatum. (B) in the SNc. (C) Representative images
of the nigrostriatal damage in both experimental groups. Results are expressed as mean ± SEM.
* p < 0.05 vs. control t = 2947, df = 12. ** p < 0.01 vs. control t = 3102, df = 13, Student’s t-test unpaired
two-tailed. N = 6 to 8 in each group.

Figure 2. Effects of chronic treatment with CBD on motor behavior of 6-OHDA lesioned rats. The graphs show the
motor performance evaluated using the (A) Cylinder, (B) Apomorphine-induced rotational and (C) Rotarod test in both
experimental groups. Results are expressed as mean ± SEM. * p < 0.05 vs. control t = 2218, df = 39 (Cylinder), t = 2109,
df = 28 (Apomorphine), Student’s t-test unpaired two-tailed. N = 9 to 20 in each group.

2.2. Cannabidiol Modulates the Neuroinflammatory Process in the SNc through a Preferential
Action on Astrocytes

The 6-OHDA-induced neurodegenerative process is accompanied by a neuroinflam-
matory response in the SNc characterized by the increase in glial cells density (microglia
and astrocytes) and a change towards a pro-inflammatory phenotype [25]. No differences
in the number of CD11b+ cells/mm [2] and in microglia cell polarization towards the
cytotoxic M1 (CD11b+/CD32+) or cytoprotective M2 phenotype (CD11b+/CD206+) were
observed in animals treated with CBD compared to controls, as shown in Figure 3. As
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we did not observe any effects on microglia density and phenotype, potential changes in
microglia morphology after CBD treatment have been investigated. CBD-treated animals
showed an 8% increase in the number of microglia endpoints (p = 0.010) (Figure 4A,C),
accompanied by an increment in the length of microglia branches (Figure 4B,C), but the
effect was not statistically significant (p = 0.082).

Figure 3. Immunomodulatory effect of chronic treatment with CBD on microglia activation and
polarization in the SNc. Com-parison of (A) CD11b+ cell density and (B) microglia polarization state
in the SNc in both experimental groups. (C,D) Representative images of the microglia activation
and polarization in the SNc in both experimental groups. The results are expressed as mean ± SEM.
N = 6 to 8 in each group.
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Figure 4. The graphs show the percentage of the (A) number of endpoints/cell and (B) branch length/cell (µm) in the
SNc lesioned side with respect to the unlesioned side in both experimental groups. (C) Parameters analyzed to study
microglial morphology. Results are expressed as mean ± SEM. * p < 0.05 vs. control t = 2992, df = 13, Student’s t-test
unpaired two-tailed. N = 5 to 8 in each group.

Unlike microglial cells, the density of GFAP+ cells was significantly reduced (14%;
p = 0.011) in the SNc of animals treated with CBD, as shown in Figure 5A–C. Nevertheless,
the treatment with CBD did not affect the phenotype of these cells. Indeed, no differences
in the number of GFAP+ cell polarized towards the cytotoxic A1 (GFAP+/CD32+) or
cytoprotective A2 (GFAP+/CD206+) phenotype were observed in animals treated with
CBD compared to controls (Figure 5B–D).

2.3. Cannabidiol Induces the Activation of TRPV1-CNTF Cascade in the Astrocytes

In order to scrutinize the potential molecular mechanisms underlying CBD modu-
lation of astrocytes, we focused our attention on TRPV1 activation, being CBD a TRPV1
agonist [19]. In CBD-treated animals, increased expression levels of TRPV1 receptor were
observed by both immunohistochemical analysis and Western Blot in astrocytic cells com-
pared with the control group (IHF: 61%, p = 0.063; WB: 81%, p = 0.059). In contrast, no
differences in TRPV1 receptor expression levels on microglial cells between two experimen-
tal groups were found (Figure 6A–C and Figure 7A). Colocalization analysis and Western
Blot showed that the increased astrocytic TRPV1 expression in CBD-treated animals is
accompanied by a rise in the levels of the ciliary neurotrophic factor (CNTF) compared to
control animals, with a difference bordering on statistical significance (IHF: 67%, p = 0.052;
WB: 122%, p = 0.080) (Figure 6B,C and Figure 7B).
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Figure 5. Immunomodulatory effect of chronic treatment with CBD on astrocytes activation and
polarization in the SNc. (A) Comparison of GFAP+ cell density in the SNc in both experimental groups.
(B) Comparison of astrocyte polarization in SNc in both experimental groups. (C,D) Representative
images of the astrocyte activation and polarization in the SNc in both experimental groups. Results
are expressed as mean ± SEM. * p < 0.05 vs. control t = 2937, df = 13, Student’s t-test unpaired
two-tailed. N = 7 to 8 in each group.
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Figure 6. TRPV1 and CNTF glial expression in the substantia nigra. (A) Quantification of TRPV1
expression in astrocytes and mi-croglia. (B) Quantification of CNTF expression in astrocytes. (C,D)
Representative images of the TRPV1 and CNTF expression in both glial subpopulations in the SNc,
in both experimental groups. The results are expressed as mean ± SEM. N = 4 to 5 in each group.
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Figure 7. TRPV1 and CNTF astrocytic expression in the substantia nigra. (A) Quantification of TRPV1
expression in astrocytes. (B) Quantification of CNTF expression in astrocytes. (C,D) Representative
images of Western Blot for TRPV1, CNTF and GFAP expression in the lesioned (Dx) and unlesioned
(Sx) SNc, in both experimental groups. Results are expressed as mean ± SEM. N = 2 to 4 in each group.

3. Discussion

Current pharmacological treatments of PD are essentially focused on alleviating the
characteristic motor symptoms by compensating the loss of dopamine in the nigrostriatal
pathway, without affecting the progression of the disease. Therefore, the identification of
new therapeutic strategies capable of slowing down or counteracting the neurodegener-
ative process that characterizes PD is one of the major challenges in this field. Natural
compounds, especially phytocannabinoids, represent potential candidates in the treatment
of neurodegenerative diseases. In particular, CBD, one of over 100 phytocannabinoids
identified in Cannabis sativa, shows anti-inflammatory and antioxidant actions, which
make it a potential and promising candidate in the PD context [15,26–30]. In this study, we
evaluated the neuroprotective and symptomatic efficacy of chronic treatment with CBD
in a rat model of PD, based on the unilateral intrastriatal infusion of 6-OHDA. Animals
treated with CBD showed a significant reduction of the striatal terminal degeneration
and cell body loss in the SNc in comparison with the control group. Interestingly, the
increased survival of dopaminergic neurons was accompanied by a recovery of motor
performance. The results of this study agree with previous findings, further supporting the
neuroprotective and symptomatic action of CBD treatment in different in vivo models of
neurodegeneration [7,31–33].

In contrast to pre-clinical studies, the results on motor symptoms obtained in clinical
trials are not as straightforward. While CBD treatment exhibited beneficial effect on most
non-motor symptoms of PD patients, such as psychosis and sleep disorders, it does not
show any notable efficacy on motor symptoms [34–36]. This discrepancy could be due
to the dosages of CBD, which are lower than the one chosen in the present study. This
hypothesis is supported by the results of a recent clinical study, in which PD patients
are treated with escalating doses of CBD until the target dose of 20 mg/kg/day (per os),
which is much higher than doses used in previous studies [37]. In particular, a beneficial
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effect was observed on tremor, as assessed by the reduction of the Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale total and motor scores, nocturnal sleep,
and emotional and behavioral dyscontrol [37]. Another factor to be considered is the
administration route, which also differs between pre-clinical and clinical studies. In the
exploratory, as well as in preclinical studies, administration routes that provide higher
bioavailability of the drug—such as intraperitoneal and intravenous route- are commonly
used to prove the efficacy of a drug [38]. Therefore, the oral administration at relatively
low doses used in the abovementioned clinical trials may have reduced the bioavailability
of CBD and possibly some of its effects. It is noteworthy that the choice of pharmacological
administration by intraperitoneal injection adopted in the present study was based on the
properties of purified CBD (crystallised form) since this highly lipophilic form made the
oral administration impossible. Moreover, based on previous pre-clinical studies [7,31,39]
we employed a dosage which demonstrated beneficial effects in combination with a good
tolerability profile. Last, we cannot exclude that the symptomatic improvement, observed
in our study, may be attributed to starting the treatment shortly after the lesion induction,
while the current clinical studies administered CBD after a diagnosis is made (i.e., about
50% of dopaminergic neurons in the brain are already destroyed [40]). Although this could
represent a limitation of our study, this treatment paradigm was essential to explore the
neuroprotective effects of this drug. In addition, chronic CBD treatment led to a decrease
of the number of reactive astrocytes in the SNc without affecting microglial activation, as
demonstrated by the comparable number of CD11b positive microglial cells in animals
treated with CBD and controls. However, it should be noted that CBD-treated animals show
an increase in the number of microglia endpoints and branch length, an index of the resting
state of these cells. Indeed, under physiological conditions, microglia cells are characterized
by extensive and branched processes whereas, under pathological conditions, these cells
undergo morpho logical changes characterized by a reduction in both the number and the
length of its ramifications [21,22]. Therefore, CBD did not reduce the extent of microglial
response in the SNc, but it induced a moderate restoration of the resting condition in these
cells. No straightforward phenotypic variations towards the cytotoxic or cytoprotective
phenotype were instead observed after CBD treatment in both glia cell populations. These
results confirm previous studies showing an immunomodulatory effect of CBD on glial
cells [41–45], characterized by the reduction in the number of active cells and in the
consequent release of pro-inflammatory factors, such as TNFα, COX-2 and iNOS [33,46].
These effects could account for the therapeutic action exerted by CBD in this study.

In order to further investigate the potential molecular mechanisms underlying the
action of CBD, the expression levels of TRPV1 vanilloid receptor in the SNc were evaluated.
Indeed, together with its antagonistic activity on cannabinoid CB1 and CB2 receptors [47],
CBD can act as an agonist of the TRPV1 vanilloid receptor, playing a key role in the activa-
tion of anti-inflammatory response [19,48–50]. The assessment of the expression levels of
TRPV1 in glial cells in the SNc highlighted a notably increased expression of the TRPV1
receptor in astrocytes of CBD-treated animals, but not in microglial cells. CBD-mediated
activation of TRPV1 in the astroglial cells was accompanied by a marked increase in CNTF
levels compared with the control group. Nam and collaborators (2015) showed that the
activation of the TRPV1 astrocyte receptor is responsible for the neuroprotective and symp-
tomatic effects observed in an animal model of PD based on MPP+ administration. In
particular, capsaicin-induced activation of the TRPV1 receptor on the astrocytes enhances
the endogenous neuroprotective response promoted by these glial cells, through the pro-
duction and release of the ciliary neurotrophic factor (CNTF) [20].CNTF is a member of
the interleukin-6 (IL-6) cytokine family that is almost exclusively expressed in the nervous
system [51] where it is released by astrocytes, which increase its production following
brain injury [20,21,52,53]. In addition to promoting adult neurogenesis [52], CNTF showed
to increase survival of neurons after injury [52,54] and improve cognitive and memory
function in rodent models [39]. As CNTF receptor expression in the SNc dopaminergic
neurons is known [20,55], and according our preliminary results, we hypothesize that
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CNTF released by the astrocytes after CBD-induced TRPV1 activation might promote the
survival of dopaminergic neurons, resulting in a recovery of motor performance as shown
by recent studies [20,21,56]. Future studies will be required to validate the involvement of
this pathway as one of the potential mechanisms of action of CBD in this animal model.
In conclusion, the present study demonstrated the neuroprotective, anti-inflammatory
and symptomatic effects of CBD treatment in an animal model of PD, potentially via
the activation of astrocytic TRPV1-CNTF pathway. Although it cannot be excluded that
other signaling pathways can contribute to the abovementioned effects—according to the
pleiotropic action of CBD—the results of this study overall support the therapeutic potential
of this phytocannabinoid as disease-modifying and symptomatic treatment for PD.

4. Materials and Methods
4.1. Animals

Male Sprague–Dawley rats (Charles River, Calco, LC, Italy) were anaesthetized with
Sodium thiopental (50 mg/kg, i.p.) and placed in a stereotaxic frame (Stoelting, Chicago,
IL, USA). They received a unilateral injection of 6-OHDA (20 µg/3 µL in saline/0.02%
ascorbic acid; Sigma, St. Louis, MO, USA) into the right striatum (1.0 mm anterior, 3.0 mm
lateral and 5.0 mm ventral, with respect to bregma and dura). All animal experiments
were carried out with strict observance of protocols and guidelines approved by Local
Committee, Italian Minister of Health and European Union legislation (Permit Number:
7/2019-PR of 8 January 2019 in compliance with article 31, D.Lgs.n. 26/2014).

4.2. Drug and Study Design

CBD (Purity: 99.5% (HPLC)—Linnea SA, Riazzino, TI, Switzerland) was prepared by
isolation and purification from Cannabis sativa L. aerial parts. Prolonged decarboxylation
allowed the conversion of the natural acidic form cannabidiolic acid to CBD. The procedure
required refining steps with final crystallization. The treatment of rats (n = 12/group)
with CBD (10 mg/kg/day, in Tween 80-saline 1:16, i.p.) or vehicle (control group) started
24 h after surgery (6-OHDA injection) and lasted 28 days. The day before neurotoxin
infusion, the baseline motor performance was evaluated by cylinder and rotarod test and
the tests were repeated before the sacrifice, the apomorphine-induced rotational behavior
was assessed only before the sacrifice. Animals were deeply anesthetized with Sodium
thiopental (150 mg/kg, i.p.) and transcardially perfused with saline and ice-cold 4%
paraformaldehyde (Merck, Darmstadt, Germany). Brains were rapidly removed, post-
fixed for 24 h in the same fixative and subsequently transferred in solutions of sucrose
at increasing concentrations (up to 30%). Brains were then cut in serial coronal sections
(40 µm) containing both the striatum and the substantia nigra pars compacta (SNc) using a
microtome (Histo-line Laboratories) and underwent immunohistochemical staining.

4.3. Behavioral Evaluation

All tests were performed during the light phase (10:00–16:00), in full compliance with
the directive of the European community. Cylinder test: Rats were placed individually
in a glass cylinder (21 cm diameter, 34 cm height) for 5 min, and their behavior was
recorded by video camera. The number of wall contacts made by the rat with the left or
right forepaw was counted and preference of paw use was calculated using the following
formula: (Ipsilateral/(ipsilateral + contralateral) − (contralateral/ipsilateral + contralat-
eral)). Apomorphine-induced rotational test: The animals were injected with apomorphine
(0.5 mg/kg dissolved in saline with 0.2% ascorbic acid, i.p.). The procedure induces a
rotational motor response toward the opposite side to that of the 6-OHDA induced lesion.
This response was evaluated using an automatic rotameter connected to the rat by means
of an plastic belt for 30 min (Bioseb, Largo, FL, USA) and calculated by subtracting the total
number of ipsilateral rotations from the total number of contralateral rotations. Rotarod
test: Animals were briefly pre-trained on an automated 4-lane rotarod unit (Panlab, Spain)
using both fixed and accelerating speed protocols, as reported in a previous study [57].
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For the constant speed protocol, rats were placed on the rod and sequentially tested at
12 rpm for a maximum of 120 s. The animals were tested three times with a 10-min resting
interval between each trial. For the incremental speed protocol, rats were placed on a rod
that accelerates smoothly from 4 to 20 rpm over a period of 3 min. For both protocols, the
time spent on the rod was recorded automatically for each animal.

4.4. Immunohistochemical Staining

The nigrostriatal lesion was assessed by immunohistochemistry directed against
the dopaminergic marker tyrosine hydroxylase (TH) on coronal sections of both SNc
and striatum. Briefly, sections were processed with a rabbit anti-TH primary antibody
(1:2000, Chemicon AB152) and a biotinylated anti-rabbit immunoglobulin G secondary
antibody (1:500, Vector Laboratories, San Francisco Bay Area, CA, USA) and revealed
using a commercial kit based on the avidin-biotin technique (Vectastain ABC Elite kit,
Vector Laboratories). Reaction products were developed using nickel-intensified 30-30-
diaminobenzedine tetrahydrochloride for 1 min (DAB Substrate Kit for Peroxidase, Vector
Laboratories). Microglia and astrocyte activation and polarization in the SNc was assessed
by triple immunofluorescent staining directed against (a) the Cluster of Differentiation
molecule 11 b (CD11b) (1:300, Serotec MCA275 R) for microglia or the Glial Fibrillary
Acidic Protein (GFAP; 1:1000, Sigma, USA, G3893) for astrocytes, (b) the Cluster of Differ-
entiation molecule 32 (CD32, 1:300, Santa Cruz, Dallas, TX, USA, sc-28842) or CD206 (1:300,
Santa Cruz, USA, sc-48758) for assessing cytotoxic (M1-A1) or neuroprotective (M2-A2)
phenotypes, respectively) TH for SNc localization (1:200, Novusbio NB300-110). Transient
Receptor Potential Vanilloid 1 (TRPV1) (1:1000, Alomone Labs, Israel, ACC-030) and ciliary
neurotrophic factor (CNTF) (1:500, Millipore, Burlington, MA, USA, MAB338) levels in
glial cells were assessed by double immunofluorescent staining. Alexa Fluor 350 (1:150,
Thermo Fisher, Dallas, TX, USA), 488 and 594 (1:300, Thermo Fisher, Waltham, MA, USA)
were used as secondary antibodies.

4.5. Image Analysis

Image analysis was performed using an AxioSkop2 microscope, equipped with Apo-
tome 2, connected to a computerized image analysis system (AxioCam MR5, Zeiss, Gina,
Germany) with dedicated software (AxioVision Rel 4.2, Zeiss, Germany). The striatal
degeneration was expressed as the percentage of striatal volume deprived of TH im-
munoreactivity, with respect to the entire striatal volume. The number of TH-positive
neurons in the SNc was counted bilaterally on every four sections throughout the entire
nucleus by unbiased stereology using the optical fractionator method (Stereo Investigator
System 9.03.2, Microbrightfield Inc., Williston, VT, USA). The results were expressed as
the percentage of TH-positive neurons in the lesioned SNc compared with the intact hemi-
sphere. Cell count of microglia and astrocytes was performed by analyzing three different
SNc sections, chosen according to rostrocaudal coordinates. Cell density was assessed by
counting CD11b- or GFAP-positive cells from a stack of 16 pictures (in a 0.04 mm [2] frame,
1 mm-thick, 40× magnification) taken from three discrete areas of the same SNc section.
The analysis of microglia or astrocytes polarization was performed by evaluating the per-
centage of CD32-positive (M1-A1) and CD206-positive cells (M2-A2) of the total microglia
cells or astrocytes. The microglia process length and number of endpoints were quantified
using skeleton plugin in FIJI (NIH, Bethesda, MD, USA) [58]. The results obtained were
expressed as a percentage of branch length (µm)/cell and number of endpoints/cell in the
lesioned SNc compared with the intact hemisphere. Colocalization analyses for TRPV1 and
CNTF in glial cells were accomplished by using the EzColocalization plugin in FIJI [59].
Metric matrix used in this analysis was the threshold overlap score (TOS).

4.6. Western Blot

Animals were sacrificed by decapitation and SNc area was rapidly removed and
frozen on dry ice, and stored at −80 ◦C. Protein lysate was obtained by re-suspending
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SNc in ice-cold lysis buffer (CelLytic, Sigma, USA) containing diluted phosphatase (1:10,
Roche, Monza, Italy) and protease inhibitors (1:25, Roche, Italy). After centrifugation, the
supernatant was collected and protein concentration was measured using a Bicinchoninic
Acid Protein Assay (Sigma, USA). Protein lysates were run on 10% gels, transferred onto ni-
trocellulose membranes (Biorad, USA) and western blot was performed. Membranes were
blocked (Odyssey blocking buffer, LiCor, USA) and incubated overnight with the following
primary antibodies: anti-GFAP (1:2000, Sigma, USA, G3893), anti-TRPV1 (1:500, Santa
Cruz, USA); anti-CNTF (1:500, Millipore, Germany, MAB338). As secondary antibodies,
anti-mouse 1:10000 secondary IgG HRP-Conjugated were used. Image analysis of western
blots was performed using Azure 600 azure biosystems and software (LiCor, Biosciences,
Rockville, MD, USA) and signal was normalized with the corresponding GFAP signal.

4.7. Statistical Analysis

The results are expressed as mean ± SEM. Statistical analysis was performed using
GraphPad Prism 8 (GraphPad software, San Diego, CA, USA). Comparisons between
groups were made using Student’s t-test unpaired two-tailed. Statistical significance was
set at p < 0.05.
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