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Abstract
With the development of novel assay technologies, biomedical experiments and analyses have gone through substan-
tial evolution. Today, a typical experiment can simultaneously measure hundreds to thousands of individual features
(e.g. genes) in dozens of biological conditions, resulting in gigabytes of data that need to be processed and analyzed.
Because of the multiple steps involved in the data generation and analysis and the lack of details provided, it can
be difficult for independent researchers to try to reproduce a published study. With the recent outrage following
the halt of a cancer clinical trial due to the lack of reproducibility of the published study, researchers are now
facing heavy pressure to ensure that their results are reproducible. Despite the global demand, too many published
studies remain non-reproducible mainly due to the lack of availability of experimental protocol, data and/or com-
puter code. Scientific discovery is an iterative process, where a published study generates new knowledge and
data, resulting in new follow-up studies or clinical trials based on these results. As such, it is important for the
results of a study to be quickly confirmed or discarded to avoid wasting time and money on novel projects. The
availability of high-quality, reproducible data will also lead to more powerful analyses (or meta-analyses) where mul-
tiple data sets are combined to generate new knowledge. In this article, we review some of the recent develop-
ments regarding biomedical reproducibility and comparability and discuss some of the areas where the overall field
could be improved.
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INTRODUCTION
Over the past two decades, the biomedical field

has been transformed by the advent of new high-

throughput technologies such as gene expression

microarrays, protein arrays, flow cytometry and

next-generation sequencing. Experiments and

protocols have become increasingly complex, invol-

ving the use of instruments that can be very sensitive

to specific settings. For example, small changes in the

photomultiplier tube voltage of a flow cytometer or

a microarray scanner could drastically change the

output of an experiment [1]. It is thus crucial that

protocols be well described, standardized and shared

in order for an experiment to be reproducible and

comparable within and between laboratories.

Furthermore, these novel biomedical technologies

generate large high-dimensional data sets from indi-

vidual experiments. The growth of such data has

highlighted the importance of implementing data

management and analysis plans as an integral part

of experimental design. In consequence, data analysis

procedures contribute significantly to the reproduci-

bility or non-reproducibility of an experiment or

publication. Unfortunately, as of today, too many

published studies remain irreproducible due to the

lack of sharing of data, computer code or software

required to reproduce the study results. This lack of

reproducibility has had significant impact, leading

to the halt of a cancer clinical trial when key gene

expression signatures used for decision making were
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found to be caused by analysis errors and could

not be independently reproduced by researchers

[2]. Had the data and computer code been made

available, the results of the study could have been

invalidated more rapidly, which could have saved

funding, avoided giving patients false hope and

most importantly ensured patients received effective

treatment [3]. Fortunately, over the past decade,

computers, software tools and online resources

have drastically improved to the point that it is

easier than ever to share data, code and construct

fully reproducible data analysis pipelines.

In this article, we review some of the fundamental

issues involved in the comparability and reproduci-

bility (C&R) of biomedical data going from assay

standardization to reproducible data analysis. Our

intent is not to exhaustively review all possible prob-

lems with all existing assays, but rather to select a

few concrete examples based on our own experience

and present some thoughts and solutions toward the

overall concept of C&R. This article is divided into

two main sections, one related to the experiment

reproducibility and one to the analysis reproducibil-

ity, though the two topics significantly overlap.

REPRODUCIBILITYOFASSAY
ANDPRIMARYDATA
Overview of data generation process
and its impact on C&R
We examine a prototypical biomedical data gener-

ation process to illustrate factors that may negatively

impact the C&R of the data throughout different

stages of the process. As shown in Figure 1, a data

generation process can be roughly broken down

into three core stages (Steps 1–3) of information

transformation from signals contained in biological

samples to numeric values captured in data sets for

analysis. In Step 1, biological samples are measured

and raw instrument data are generated. There are

Figure 1: Life cycle of scientific discoveries. The overall cycle is broken down into five different steps. After com-
pletion of all steps according to the reproducible guidelines (Table 1), the results would rapidly lead to confirmed
(or discarded) discoveries. The confirmed discoveries would then be translated into new knowledge and data sup-
porting novel studies.

392 Huang and Gottardo



several factors that may influence the C&R of

data at this stage. These include some obvious fac-

tors such as the specific type of technologies (e.g.

hybridization-based or sequence-based gene expres-

sion) [4–7] or platforms (e.g. Affymetrix, Illumina or

Operon) [8–12], the Standard Operating Procedures

(SOPs) for biological sample preparation, experi-

mental design, experiment layout and measurement

[13, 14], as well as other conditions that are often

not specified in the experiment protocol. For ex-

ample, the level of experience or expertise of the

technicians performing the experiment [15, 16], or

the origin of the reagents (e.g. batch effects [17, 18])

are also possible sources for differences between in-

dependent experimental results. Therefore, in Step 1,

to increase the C&R of data, all these factors should

be thought out and optimally controlled and stan-

dardized whenever possible. When factors such as

technicians or reagent batches may not be standard-

izable across multiple studies or laboratories, a mea-

suring system comprised of a specific platform using a

specific technology should strive to minimize vari-

ations caused by these factors and increase robustness

against changes in these factors. Whenever possible,

the SOPs should be shared and made available to the

community. Several online platforms are now avail-

able for storing and sharing such information includ-

ing ‘elabprotocols’ (elabprotocols.com) and ‘figshare’

(figshare.com). In Step 2, raw information from an

instrument is calibrated and quantified into numeric

values. This step often involves image analyses for

information alignment and/or dimension reduction.

Consequently, the specific algorithms used to make

such transformations, their implementation in soft-

ware and the specific data storage structures, includ-

ing data formats (i.e. databases or flat files) and

variable naming conventions, are vital to maintaining

data consistency and should be standardized and re-

corded to a maximal level for effective C&R of the

data. We will refer to the data derived from this

step as primary data versus the secondary data gen-

erated after Step 3. In some specific cases, primary

data are derived directly from the instrument, but in

many cases the extremely large size of the raw data

(e.g. raw images) makes it prohibitive to share these

and the lack of true raw data is accepted. In

‘Standards and Data Sharing’ section, we provide

more discussions on data standards and data sharing.

Finally, in Step 3, data from Step 2 are further (pre-)

processed before study objective-driven analyses

are conducted. This later step often involves further

data alignment such as background adjustment or

data aggregation such as per-biomarker summariza-

tion from multiple subset measurements. Certain

quality assurance and control processing may also

occur to remove unreliable data and reduce any

systematic variations between data points. As in

Step 2, the specification and implementation of

the algorithms and the data storage structures

should be tracked in the effort to maintain the

C&R of the data. In ‘Reproducibility of Assay

Results and Derived Data’ section, we will discuss

some of the tools available to share Step 2 data and

associated computer code for data processing and

analysis.

Metrics to quantify C&R
We use accuracy and precision as two building-block

metrics to illustrate the concept of C&R. While the

exact definition of C&R may vary depending on the

context, accuracy and precision are two well-defined

statistical concepts. Specifically, accuracy indicates

how close a measurement is to its true (actual)

value, whereas precision indicates how close meas-

urements are to each other. Deviation from accuracy

(i.e. bias) is often introduced by systematic sources of

error. For example, factors mentioned earlier such as

the measuring system or a poor reagent may be a

primary source of bias that cannot be removed by

repeating or averaging large numbers of measure-

ments. On the other hand, precision (i.e. variability)

of data can generally be improved by increasing the

number of measurements. For this reason, biological

and technical replicates are recommended in an ex-

perimental design to help distinguish biological vari-

ation from technical variation. In general, there is a

trade-off between accuracy and precision, in the

sense that one cannot optimize both simultaneously.

For example, in microarray image analysis, spots can

either be summarized by the estimated foreground

intensity or the background-corrected intensity

(foreground minus the background). Foreground

intensities are typically less variable but can exhibit

higher bias compared with background-corrected in-

tensity. In this context, many research groups have

proposed pre-processing techniques that aim at find-

ing a good compromise between the two [19].

A hypothetical example is shown in Figure 2,

where comparable and reproducible data do not

necessarily require unbiased measurements as long

as they are ‘consistently inaccurate’ (Panel C).

Imagine a hypothetical gene expression device that
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always measures the expression of a gene as being

zero. The experiment is highly reproducible but

completely biased and thus useless. It is not atypical

for an experimentalist to compute a coefficient of

correlation between two series of experiments and

to be very pleased when he/she obtains a value close

to 1. Unfortunately, the large correlation could be

explained by the fact that the measurements are

biased and both are correlated with the same experi-

mental artifact. So it is important that when C&R is

evaluated, accuracy is also taken into consideration.

Therefore, to ensure meaningful integrative analysis

of biomedical data from multiple sources, although

there may be issues of reliability, we encourage the

inclusion of a well-established ‘gold standard’ of

measurement whenever possible such as the inclu-

sion of ‘established’ positive and negative controls

that provide reasonable upper limits on the sensitivity

and specificity of the experimental measurements. In

this way, any signals identified from comparable and

reproducible data can also be scrutinized against the

gold standard for true scientific values.

Methods to correct for experimental bias
In the presence of possible experiment-specific bias,

data pre-processing methods can be used to improve

C&R. It is common practice to reduce non-

biological sources of variation via pre-processing

techniques such as background correction, batch

effect removal or normalization. Many of these

methods were established during the early days of

microarrays at a time when experimental procedures

were still being optimized and technical variability

was omnipresent. Such methods include lowess nor-

malization [20], quantile normalization [21],

ComBat [22], SVA [23] and RUV-2 [24] for batch

effect removal and gcRMA for removing

non-specific binding of oligonucleotides [25], to

cite a few. Due to the positive impact these methods

have had on C&R, many other fields have adopted

similar pre-processing techniques, e.g. flow cytome-

try [26] and next-generation sequencing [27]. Most

of these methods rely on the assumption that the

majority of biomarkers (genes or proteins) are not

differentially expressed and the numbers of up-and

down-regulated biomarkers are roughly equal across

samples. Such an assumption can be reasonable when

the dimension of the biomarkers collected in each

sample is large but may not be satisfied in lower di-

mension biomedical data. In the latter case, internal

or external validation data are usually used to correct

for experimental bias that may be related to meas-

urement, instrument or sampling design [28]. When

there is a lack of standard for a quantity’s true value

[29] and validation data are infeasible to generate,

calibration methods based on paired samples [30]

can be adopted to adjust for experiment bias. For

example, in the field of flow cytometry true gold
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Figure 2: Precision-accuracy trade off. Four different protocols are compared. Protocol B exhibits large variance
(wide box) with small bias (close to the true value on average) while protocol C has small variance but large bias.
Overall, protocol D exhibits good variance-bias trade off and should be prefered.

394 Huang and Gottardo



standards do not exist yet and it is thus difficult to

evaluate C&R. The FlowCAP group (flowcap.flow-

site.org) is currently working with the Human

Immunology Project group [31] to derive objective

criteria and gold standards that will be used to stand-

ardize and evaluate pre-processing of flow cytometry

data.

Standards and data sharing
As data sets get richer with more data points, more

variables and more metadata, it is important to define

standards that can be used to capture and distribute

all necessary information toward achieving reprodu-

cibility [32]. Several standards have been proposed

for biomedical data to achieve these goals including

MIAME for gene expression [33], MINSEQE for

sequencing experiment [34], MIATA for T cell

assays [35] or MiFlowCyt for flow cytometry [36].

In addition to assay protocol information, primary

and secondary data, it is important that any

pre-processing done to the data be fully described

(e.g. normalization for microarrays). Unfortunately,

too many assays are still lacking data standards (e.g.

bead array multiplex assays) or if data standards are

available, manufacturers and/or software companies

have been slow at adopting them. For example, des-

pite the availability of data standards for defining

preprocessing for flow cytometry, no analysis soft-

ware has yet fully adopted this format and it is very

difficult to share reproducible analyses across software

platforms. We, the flow informatics community, ba-

sically had to reverse engineer commercial software

file formats and write custom open-source software

that can read these [37].

Funding agencies have been very supportive to the

creation and adoption of standards for biomedical

data, by funding many of the standards that are exist-

ing. For example, as part of the Human Immunology

Project Consortium (HIPC), a project funded by the

NIH, we and other bioinformaticians are currently

working toward the definition of novel standards

for immunological data. Similarly, the Collaboration

for AIDS Vaccine Discovery (CAVD), funded by the

Bill and Melinda Gates Foundation (BMGF), has set

up an immune monitoring consortium to establish

validated T-cell and antibody immunological assays

across a network of Good Clinical Laboratory

Practices-certified laboratories that could monitor

the anticipated pipeline of HIV vaccine trials emanat-

ing from the field. Once data and data formats have

been standardized, it is important to make these data

publicly available for the benefit of science, and to this

extent, funding agencies have an important role to

play. Most funding agencies including the National

Science Foundation and the NIH clearly encourage

investigators to share data and/or have defined

policies to this end. Similarly, charitable organizations

such as the BMGF and the Wellcome Trust are also

actively working with grantees to maximize the

amount of data available to the research community.

Example projects that have good data sharing policies

and have setup databases for sharing data, that we are

personally involved in, are the HIV Vaccine Trials

Network (HVTN), HIPC and the CAVD. In add-

ition to helping retrieve data more efficiently (e.g. via

queries), databases can help minimize human errors in

data manipulation by ensuring that raw and processed

data along with metadata are automatically uploaded

with minimal manual intervention. Databases can also

help maintain data consistency by checking that some

standards are followed or by doing basic data quality

checks. For example, the Immunological Portal data-

base (ImmPort.org) provides data templates that help

investigators upload their data in a standardized

format. It is thus a good idea to use specialized data-

bases whenever possible to store and share data.

Despite this global effort, many policies are still

either too vague or not properly enforced and data

are treated as the private property of investigators who

aim to maximize their publication record at the ex-

pense of the widest possible use of the data. This situ-

ation threatens to limit both the progress of the

related research and its application for public health

benefit. We feel that it is important for funding agen-

cies to set stricter and clearer data sharing policies,

particularly for sensitive data (e.g. individual genomes

and clinical data) where policies are often vague or

industrial partnerships make the creation of such poli-

cies very difficult. In these cases, despite their sensitive

nature, these data could and should be shared as long

as they are properly de-identified to protect the pa-

tients identity under the Health Insurance Portability

and Accountability Act.

Once data and all necessary information are made

available, these data need to be appropriately cited

when the study and its results are published. To this

end, it is crucial that journals set data sharing policies

or guidelines and that authors do follow these guide-

lines. Unfortunately, as mentioned in a recent study

[38], too few journals have clear policies for data

deposition and even fewer make it mandatory for

publication. That study found that even when data
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deposition is a requirement, the majority of authors

did not fully follow the instructions. For example, it

is common for researchers to share processed data

only, which makes it nearly impossible to reproduce

the results or use different analysis tools that require

primary data. For example, in the field of genomics,

many researchers share processed sequence file for-

mats (e.g. wiggle files), which prevents anyone from

analyzing the data with an algorithm that requires

primary data (e.g. raw or aligned reads).

REPRODUCIBILITYOFASSAY
RESULTSANDDERIVEDDATA
Here, we discuss some of the tools available to

researchers to perform reproducible analysis and

share processed data, computer code and final results

as detailed in the following subsections and summar-

ized in Table 2. Analysis of data issued from high-

throughput experiments can be extremely complex,

involving multiple steps from data formatting and

pre-processing to statistical inference. Thus, it is im-

portant that all steps be recorded for full reproduci-

bility as shown in Figure 1 and Table 1 (Steps 2–5).

This can be difficult to do with a point-and-click

software interface, where there is no easy way to

save intermediate results. This is not to mention the

fact that the ‘manual’ analysis of a high-throughput

data set typically requires the use of multiple software

tools and is very time consuming. In addition, it is not

clear how robust the conclusions of a study are to

small perturbations in any of these analysis steps. As

such, it might be a good idea to be able to quickly

redo an analysis after tuning some parameters to

optimize the analysis; something that is not practical

within a point-and-click environment.

Tools for reproducible analyses
In recent years, several open-source, community-

based projects have emerged that enable researchers

to construct and share complete and fully reprodu-

cible data analysis pipelines. The Bioconductor pro-

ject [39], based on the R statistical language [40],

provide >500 software packages for the analysis

of a wide range of biomedical data, from gene

expression microarrays to flow cytometry and next-

generation sequencing. These packages can be com-

bined via scripts written in the R language to form

complex data analysis pipelines, connect to data

repositories and generate high-quality graphics. The

resulting R scripts can then be used to record and

later reproduce the analysis (along with all input

parameters). Because all steps of the analysis are auto-

mated when the script is executed, it is easy to assess

the robustness of the results when tuning some

parameters. Other similar projects with perhaps

more focused capabilities include BioPython [41]

and BioPerl [42] that are based on the Python and

Table 1: Checklist for a comparable and reproducible experiment following stages in the life cycle of scientific
discoveries as shown in Figure 1

Scientific discovery
stage

Recommendations Check

Step 1: Biological samples
for measurement

Store and share source of samples and/or samples if possible «
Store and share extra samples for reproducibility (when possible/applicable) and future studies «

Step 2: Raw instrument
data

Standardized experimental protocol «
Store and share measuring system (technology and platform) «
Store and share Standard Operating Procedure (SOP) «
Store and share experiment conditions not specified in SOP (e.g. techinician and time) «

Step 3: Primary data Perform quality control «
Store and share primary data and metadata «
Store and share code and softwarefor algorithms used during summary (e.g. image analysis) «
Use open-source software and avoid point-and-click analysis interfaces «
Use data standards and databases «

Step 4: Data analysis
results

Store and share analysis results and derived data «
Store and share code and software (with versions) «
Use open-source software and repository for sharing code and data «
Validate results using independent data or experiment(s) (when possible) «

Step 5: Publication or
report

Publish results with link to code, data and software «
Use dynamic reporting when possible (e.g. Sweave) «
Publish in open access journals «
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Perl languages, respectively (to our knowledge, nei-

ther BioPython nor Perl have tools for the analysis of

flow cytometry data).

Even though several graphical user interfaces (e.g.

RStudio for R) are available for writing computer

scripts based on R/Bioconductor (or BioPerl,

BioPython), the learning curve can still be steep for

novice users. More user-friendly-based tools are

now available to construct reproducible data analysis

pipelines using combinations of available modules

that are for the most part wrappers of packages writ-

ten in R, Perl or Python (or some other language).

For example, a popular platform for gene expression

analysis, GenePattern, versions every pipeline and

its methods, ensuring that each version of a pipe-

line (and its results) remains static [43]. A more

recent project, GenomeSpace (genomespace.org),

funded by the National Human Genome Research

Institute, can now combine GenePattern with other

popular Bioinformatics tools including Galaxy,

Cytoscape and the UCSC genome browser. As

such, users can perform all of their analysis using a

single platform. In the clinical and immunological

field, LabKey Server is a popular web-based tool

for storing immunological data (via a database) and

building complex analysis pipelines that can be

shared with other users [44]. LabKey Server also ver-

sions every pipeline for full reproducibility. LabKey

Server is currently being used by large research net-

works including the CAVD, the HVTN and the

Immune Tolerance Network, to name a few.

Standards and code sharing
In the same fashion that experimental protocols need

to be published in order for an experiment to be

reproduced, computer code, software and data

should also be published along with the results of a

data analysis. Ideally, software would be open source

and computer code would be well packaged and

standardized to facilitate exchange and usability.

Both Bioconductor and GenePattern, mentioned

earlier, provide facilities for users to package and

share code with other users. Bioconductor is based

on the R packaging system, which is highly standar-

dized and has been a driving force behind the

wide adoption of both R and Bioconductor.

Table 2: List of tools and resources for reproducible biomedical data analysis mentioned in this review

Name Description/usage URL

Online protocol storing and sharing
elabprotocols Web-based Laboratory Protocol & SOP Management http://www.elabprotocols.com
figshare Web-based tool for storing and sharing all sorts of research output http://www.figshare.com

Databases and data management tools
LabKey Server Biomedical research data management with powerful programming

interfaces for analysis
http://www.labkey.com/

ImmPort The Immunology Database and Analysis Portal http://www.immport.org

Analysis tools
Bioconductor Collection of R packages for high-throughput biological data analysis http://www.bioconductor.org/
Biopython Python tools for computational molecular biology http://www.biopython.org
BioPerl Perl tools for bioinformatics, genomics and life science research http://www.bioperl.org

Analysis platforms with graphical user interface
RStudio Integrated development environment (IDE) for R http://www.rstudio.org/
GenePattern Genomic analysis platform with web-based interface http://www.broadinstitute.org/

cancer/software/genepattern/
GenomeSpace Genomic analysis platform linked with multiple tools including

GenePattern,Galaxy and Cytospace
http://www.genomespace.org/

Code sharing and versioning tools
GitHub Web-based tool for software development and collaboration based on

the Git version control system
http://www.github.com/

Authoring tools
GenePattern
Word Plugin

Microsoft Word add-in for the GenePattern Reproducible Research
Document

http://www.broadinstitute.org/
cancer/software/genepattern/

Sweave Integration of R code into LaTeX documents http://www.statistik.lmu.de/�leisch/
Sweave/

knitr Elegant, flexible and fast dynamic report generation with R. knitr is
integrated in RStudio for ease of use.

http://yihui.name/knitr/
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Bioconductor goes even further by: (i) ensuring that

all submitted packages are peer-reviewed and (ii)

providing version control repositories and build sys-

tems where source code is maintained, versioned and

binaries automatically built for all computer operat-

ing systems. Among other things, the peer-review

process ensures that the package follows some basic

guidelines, are well documented, work as advertised

and are useful to the community. The open-source

and versioning system provides full access to algo-

rithms and their implementation, which are crucial

to obtain full reproducibility. For users who want to

version and share software code outside of the

Bioconductor (or similar) project, there exist many,

free web-based hosting services to store, version and

share code (and even data). One of our favorite plat-

forms is GitHub, which the company markets as

‘Social Coding for all’. GitHub makes it easy for

anyone to store and version control computer

code, packages, documents, webpages and even

wikis to document their code. The social aspect of

GitHub makes it easy for users to work in teams on a

common project, software or manuscript. GitHub is

free for all open-source projects.

Unfortunately, very few journals have code/soft-

ware sharing policies and even fewer have require-

ments that the code/software be open access. For

example, BMC Bioinformatics only has policies for

software articles and even for these the source code

is not required, only an executable. PLoS One re-

quires authors of manuscripts in which software is

the central part of the paper to release software and

make code open source for submission. Although

this policy is clearer, it is still up to the editor/

reviewers to decide whether software was a central

part of the paper. In a day and age where most ex-

periments generate large amount of data, software is

always going to play a central role, so why not make

this policy universal for all submissions involving data

analysis? Fortunately, based on our own experience,

we feel that reviewers are pushing in the right dir-

ection by asking that code be open source and

released along with the paper. So even if journals

have no clear policies yet, we, the community, can

enforce that code be released every time we review a

paper.

Validation and robustness of results
In addition to ensuring reproducility of assay data

and results, it is always a good idea to try to validate

the results of a study using an idependent platform

or data set. This is particularly relevant for studies

involving large data sets that can generate long lists

of novel findings such as a list of differentially ex-

pressed genes from a microarray experiment or a list

of transcription factor binding sites from a

ChIP-Seq (chromatin immunoprecipitation fol-

lowed by sequencing) experiment. In the context

of gene expression or ChIP-Seq, quantitative poly-

merase chain reaction (qPCR) can be used to val-

idate some of the genes or sites [45, 46]. Note that

such experimental assays (including qPCR) are also

subject to variation, which can affect the validation

[45]. If direct experimental validation is not feasible,

computational validation can be used instead. For

example, the list of differentially expressed genes (or

biomarkers) can be tested using an independent data

set that was generated by a different group. In the

context of ChIP-Seq de novo motif finding tools

have been used to validate binding sites that contain

the expected motifs [47].

The lack of validation partially explains why very

few published biomakers have clinical utilities [48].

In addition, when it gets to statistical inferences, ro-

bustness in model building and stability in feature

selection due to sampling variations may also con-

tribute greatly to the reproducibilty of analysis

results. Several schools of intensive research have

been dedicated to this area lately. For example,

data mining or high-dimensional data analyses

methods that incorporate resampling techniques,

e.g. bagging [49] or boosting [50], often provide

more stable and hence more reproducible results

[51]. Similarly, predictions based on consensus of

multiple analysis results are generally more robust

and perform better than any single method [52].

Authoring tools
Several tools have been proposed to automatically

incorporate reproducible data analysis pipelines or

computer code into documents. An example is the

GenePattern Word plugin that can be used to embed

analysis pipelines in a document and rerun them on

any GenePattern server from the Word application

[53]. Another example that is popular among statis-

ticians and bioinformatics is the Sweave literate lan-

guage [54] that allows one to create dynamic reports

by embedding R code in latex documents. This is

our preferred approach because it is open source

and does not depend on proprietary software. As

an example, every Bioconductor package is required

to have fully reproducible documentation (called a

398 Huang and Gottardo



vignette) written in the Sweave language. Recent

software development tools such as RStudio (rstu-

dio.org) and knitr (yihui.name/knitr) have made

working with Sweave even more accessible, which

should reduce the learning curve for most users. In

fact, this article was written using the Sweave lan-

guage and processed using RStudio and the source

file (along with all versions of it) is available from

GitHub (http://github.com/raphg/BiB-review-

CR). Ideally, all material including the Sweave

source file, computer code and data, which

Gentleman and Temple refers to as a ‘compendium’

[55], would be made available along with the final

version of the manuscript and be open access, allow-

ing anyone to reproduce the results or identify po-

tential problems in the analysis. An obvious option

would be to package code, data and the Sweave

source file into an R package for ease of distribution

as is commonly done for Bioconductor data pack-

ages. Anyone could directly install this package in R

and have access to all necessary materials. Journals

that promote this openness should further improve

their impact versus non-open journals by giving

more credibility to the published results, in the

same fashion that open access journals typically

have greater impact factors [56]. Unfortunately, cur-

rently very few journals are pushing for full repro-

ducibility and even less have clear reproducibility

policies. An example of a journal moving in the

right direction is Biostatistics. Biostatistics now has

a reproducibility guideline and is now working

with authors toward making sure that published re-

sults are reproducible given that data and code are

provided [57]. When data and code are provided and

results can be reproduced by the associate editor, the

article is marked with an R for reproducible.

CONCLUSION
We have reviewed some of the key steps involved

in the C&R of biomedical data going from protocols

to code and data sharing. For ease of reference,

Tables 1 and 2 summarize some of the ideas discussed

including available resources and a checklist for a

comparable and reproducible scientific discovery.

Even though experiments, protocols and data ana-

lyses have become more complex than ever before,

tools and methods for C&R have also significantly

improved. Unfortunately, we are still far from the

ideal situation where every study can be reproduced

and relevant data be compared and pooled across

laboratories or institutions. Besides experiment and

protocol consistency, there is still a lot of work to be

done in terms of data and analysis standardization

that would not only improve reproducibility but

also facilitate data exchange and meta analyses.

Perhaps one way to achieve this is for experimental

and computational groups to work together when

developing novel assays, standards and analysis

tools. This is something that is integral to the

CAVD and HIPC projects mentioned previously.

For example, both the CAVD and HIPC have bio-

informatics and biostatistics and assays subcommittees

that work together to optimize and standardize novel

assays and analysis tools.

In terms of data, code and software sharing, we

cannot yet rely on goodwill and self discipline when

it comes to sharing publication material and making

studies fully reproducible. As such, we feel that

today, the most important step forward toward im-

proving C&R is for funding agencies, publishers and

researchers to work together by setting very strict

reproducibility guidelines and policies. Such policies

could potentially save a great deal of money and

resources by making sure that scientific errors can

quickly be discovered and corrected instead of

giving birth to new scientific projects and clinical

trials based on erroneous results. Of course, no one

should be afraid of making their publication material

available because someone might identify a flaw in

the study. As Alexander Pope said, ‘To err is human,

to forgive is divine’; we all learn by our mistakes and

this is the only way science can move forward.

Key Points

� Today, a typical experiment can simultaneously measure hun-
dreds to thousands of individual features (e.g. genes) in dozens
of biological conditions, resulting in gigabytes of data that need
to be processed, analyzed and potentially reproduced.

� Multiple ongoing open-source, community-based projects have
emerged that enable researchers to share study protocols,
experiment constructs, resulting data sets, as well as complete
and fully reproducible data analysis pipelines.

� Experimental and computational groups need to work together
when developing novel assays, standards and analysis tools
ensuring that all steps leading to the results of a study are
optimized and reproducible.

� The availability of open-acess, high-quality and reproducible
data, will also lead tomore powerful analyses (ormeta-analyses)
where multiple data sets are combined to generate new
knowledge.

� Funding agencies, publishers and researchers need to set strict
C&R policies that would allow rapid revealation and correction
of scientific errors instead of giving birth to new scientific
projects and clinical trials based on erroneous results.
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