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SUMMARY
Malignant mesothelioma is an aggressive cancer with limited treatment options and poor prognosis. A better
understanding of mesothelioma genomics and transcriptomics could advance therapies. Here, we present a
mesothelioma cohort of 122 patients along with their germline and tumor whole-exome and tumor RNA
sequencing data as well as phenotypic and drug response information. We identify a 48-gene prognostic
signature that is highly predictive of mesothelioma patient survival, including CCNB1, the expression of
which is highly predictive of patient survival on its own. In addition, we analyze the transcriptomics data to
study the tumor immune microenvironment and identify synthetic-lethality-based signatures predictive of
response to therapy. This germline and somatic whole-exome sequencing as well as transcriptomics data
from the same patient are a valuable resource to address important biological questions, including
prognostic biomarkers and determinants of treatment response in mesothelioma.
INTRODUCTION

Malignant mesothelioma is an aggressive cancer arising from

the mesothelial cell linings of the pleura, peritoneum, pericar-

dium, or tunica vaginalis with an annual incidence of 3,300

new cases in the United States.1 Malignant pleural mesotheli-

oma (MPM) comprises 80% of the cases, while malignant

peritoneal mesothelioma (MPeM) includes the remaining

15%–20%.2 Pericardial and tunica vaginalis mesothelioma

are very rare. Mesothelioma is a difficult-to-treat cancer with

a median overall survival of approximately 12 months with a

treatment regimen of pemetrexed and cisplatin.3 Recently,

the US Food and Drug Administration (FDA) has approved

the combination of immune checkpoint inhibitors, ipilimumab

and nivolumab, as first-line therapy for MPM, with a modest

but statistically significant increase in overall survival of

18.1 months over 14.1 months in the chemotherapy group.4

MPeM has a better prognosis than pleural mesothelioma,

with median overall survival longer than 5 years, when

amenable to cytoreductive surgery and hyperthermic intraper-

itoneal chemotherapy.2
This is an open access article under the CC BY-N
Predisposing factors of mesothelioma are exposure to

asbestos fibers and prior radiation therapy.5–8 In addition,

germline mutations in BRCA1-associated-protein 1 (BAP1) in-

crease the risk of developing malignant mesothelioma as well

as other common cancers.9 The somatic mutations that have

been identified in MPM include loss-of-function mutations in

the tumor suppressor gene BAP1 as well as the epigenetic reg-

ulatory genes DDX3X and SETD2.10 In addition, recurring dele-

tions of chromosomal 3p21 (target gene BAP1), 9p21

(CDKN2A), and 22q12 (NF2) have been identified in malignant

mesothelioma.11

Because current therapies for mesothelioma lead to a

good response only in a small set of patients,12–22 it is

important to identify predictive biomarkers for patient

response. Several prior studies with small number of patients

have evaluated predictors of response to therapy and patient

survival. These include MesoNet, a deep convolutional

network approach, which uses whole-slide digitized images

to predict the overall survival of mesothelioma patients.23

Using neural networks, a gene-expression-based classifier

was obtained from a small dataset of 21 MPM patients to
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Table 1. Mesothelioma patient characteristics

Patient characteristics n (%)

122 (100)

Gender

Male 69 (57)

Female 53 (43)

Age at diagnosis, years

<60 76 (62)

R60 46 (38)

Asbestos exposurea

Yes 67 (54)

No 33 (27)

Unknown 22 (19)

Mesothelioma site

Pleura 59 (48)

Peritoneum 61 (50)

Tunica vaginalis 2 (2)

Radiation prior to mesothelioma diagnosis

Yes 9 (8)

No 113 (92)

Prior mesothelioma treatment

None 55 (45.1)

Platinum based chemotherapy 54 (44.3)

Chemotherapy plus immunotherapy 12 (9.8)

Other 1 (0.8)
aAsbestos exposure by self-report.
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predict survival.24 Another study developed a gene expres-

sion ratio-based predictor derived from 17 mesothelioma tu-

mors for determining treatment outcome.25 Additionally,

overexpression of aurora kinases A and B was observed to

be associated with more aggressive mesotheliomas.26 More

recently, loss of the tumor suppressor gene BAP1 has

been proposed as a candidate biomarker for immunotherapy

treatment in mesothelioma.27

A deeper knowledge of the genetic, transcriptomic, and

immunogenic events involved in malignant mesothelioma is

critical for successful development of prognostic biomarkers

and personalized therapeutic modalities. In this study, we

have three main aims. Our first goal is to present a mesotheli-

oma dataset of 122 patients with their genomic and transcrip-

tomic profiles, as well as phenotypic and drug response infor-

mation. Unlike previous large-scale studies that focused on

MPM patients,10,28 our dataset contains an approximately

equal representation of MPM and MPeM patients, which allows

us to identify differences between them. Our second goal is to

come up with a transcriptome-based gene signature to predict

mesothelioma patient survival in large-scale independent

cohorts and to help identify important genes that could be

potential drug target candidates. Finally, as a proof of concept,

we apply a precision oncology framework that uses transcrip-

tomic data and synthetic lethality (SL) predictions to predict

drug response and suggest potential treatment options for

mesothelioma patients.
2 Cell Reports Medicine 4, 100938, February 21, 2023
RESULTS

National Cancer Institute (NCI) mesothelioma dataset
and patient characteristics
We performed whole exome sequencing (WES) of paired blood

and tumor tissues from 122 malignant mesothelioma patients

who participated in the clinical trial at the Thoracic and Gastroin-

testinal (GI) Malignancies Branch, Center for Cancer Research,

NCI, NIH (ClinicalTrials.gov: NCT01950572) to detect somatic

and germline mutations (STARMethods). The patient population

was enriched for thosewho carried a previously described germ-

line mutation in BROCA V10 panel target genes.29 Our study

cohort includes an equal proportion of patients with pleural

and peritoneal mesothelioma compared with published meso-

thelioma cohorts, which only included patients with pleural

mesothelioma.10,28 We also performed RNA sequencing

(RNA-seq) analysis on 100 tumor samples for which RNAs

were available (STAR Methods). Phenotypic characteristics

and drug response information are also presented. This data

resource is available (Tables 1, S1, S2, S3, and S4; Data and

code availability).

Clinical characteristics of patients in the NCI mesothelioma

cohort are shown in Table 1. The majority of patients are male

(57%) with an average age at diagnosis of 54.2 years (range,

12–80 years). A large proportion of patients was diagnosed early

(62% <60 years old). Peritoneal (50%) and pleural (48%) meso-

thelioma cases existed in almost equal proportions. Most tumors

had epithelial histology (91%); the average age at diagnosis of

patients with pleural mesothelioma was higher than that of those

with peritoneal mesothelioma (58.9 ± 10.9 years vs. 50.0 ± 14.4

years, p < 0.0001), and they were more likely to self-report

asbestos exposure (61% vs. 47.5%, p = 0.02). The patients in

our study were largely treatment naive at the time of tissue

sequencing (45.1%) or had received platinum-based chemo-

therapy (44.3%), with a small proportion of patients who

received a combination of chemotherapy and immune ther-

apy (9.8%).

Germline and somatic mutations in mesothelioma
In the NCI mesothelioma cohort of 122 patients (n = 59 for MPM,

n = 61 for MPeM, n = 2 for tunica vaginalis mesothelioma), WES

analysis of germline variants was performed according to the

American College of Medical Genetics and Genomics (ACMG)

and Association for Molecular Pathology (AMP) guidelines for

variant interpretation30 (Figure 1; STAR Methods). A total of 43

Pathogenic (P) or likely P (LP) variants in 21 cancer predisposi-

tion genes were detected in 37 patients (Table S1). Consistent

with previous studies, BAP1 P/LP variants were the most com-

mon alterations seen in this cohort (13.1%), with a similar rate

of BAP1 P/LP in MPM (11.9%) and MPeM patients (14.8%).

The percentage of BAP1 mutation is higher in this cohort than

reported previously.29 P/LP variants in BAP1 were found in 16

patients, accounting for 37% of the total P/LP variants seen in

this cohort. Of these 16 patients with heterozygous P/LP BAP1

variants, 3 patients were also found to be heterozygous carriers

for a second P/LP variant in a gene predisposing to an autosomal

recessive (AR) cancer syndrome (ERCC2, SBDS, and XPA), and

1 patient was heterozygous for a P variant in SDHA, associated

http://ClinicalTrials.gov
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Figure 1. Overview of the NCI mesothelioma data and mutational signature analysis

Shown are demographic information, tumor histology, andmutational profiles of patients with mesothelioma. Themesothelioma cohort in this study is comprised

of 122 patients, including patients with pleural (n = 59), peritoneal (n = 61), and tunica vaginalis (n = 2) forms of mesothelioma. The mutational profile consists of

germline mutations in P and LP cancer predisposition genes as well as somatic mutations in genes associatedwith signaling pathways and receptors, DNA repair

genes, TFs and repressors, splicing factors, and enzymes. Copy number changes are indicated for the relevant genes.

Cell Reports Medicine 4, 100938, February 21, 2023 3

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
with an autosomal dominant (AD) predisposition to paraganglio-

mas. Eight additional patients were positive for a P/LP variant in

an AD cancer predisposition gene (ATM, BRCA1, BRCA2,

DDX41, MLH1, POT1, TP53, and WT1).

For somatic mutations (also shown in Figure 1), the median

number of mutation burden in a tumor is 53 mutations in MPM

(a burden of 1.17mutations/Mb, similar towhat has been reported

in mesothelioma),31,32 45 mutations in MPeM (1.00 mutations/

Mb), and 44.5 mutations (0.98 mutations/Mb) in tunica vaginalis

mesothelioma (STAR Methods). Insertions or deletions (indels)

were more common in the pleural form than in the peritoneal

form. The genes that most frequently carried somatic mutations

include BAP1 (24.59%), NF2 (13.11%), TP53 (8.2%), and SETD2

(6.56%). No significant difference in the frequency of these gene

mutations were observed between MPM and MPeM. We also

performed Kaplan-Meier (K-M) analysis33 to compare the overall

survival times between MPM and MPeM (Figure S1A). In general,

MPeM patients showed a higher overall survival than MPM pa-

tients in our cohort (log rank test, p = 0.043). Interestingly, a prin-

cipal-component analysis (PCA) clustering based on the tumor

gene expression data did not show any clear separation between

pleural and peritoneal mesothelioma patients (Figure S1B).

We also analyzed the copy number variations (Table S2).

BAP1 copy number loss was seen in 37.3% of patients with

MPM and 34.4% of patients with MPeM. Complete BAP1 loss

was seen in 9 patients. PIK3CA amplification with greater than

or equal to 5 copies was observed in 8 of 59 MPM cases

(13.56%). Although rare, PIK3CA amplification has been re-

ported in 3 of 42 MPM cases in a previous study.34 However,

because PIK3CA amplification is commonly found in squamous

cell lung carcinoma, the pathology specimens of these eight

cases with PIK3CA amplification were re-reviewed by a pathol-

ogist (M.M.) with expertise in thoracic pathology to rule out a

misdiagnosis of squamous cell lung carcinoma. In all 8 cases,

the diagnosis of mesothelioma was confirmed by histologic

and immunohistochemistry analysis.

Identifying a gene expression signature associated with
survival in mesothelioma
We next analyzed gene expression based on RNA-seq data for

100 NCI mesothelioma patients (Table S3) and identified the

genes associated with patient survival. Because some of the

mesothelioma samples in the NCI mesothelioma data were

acquired post treatment, we re-computed the survival of all

patients from the time of biopsy sampling to the time of death

or last follow-up (Table S4) and used these survival data for

our gene expression and copy-number-based survival associa-

tion studies.

We identified 48 genes in the NCI mesothelioma data where

increased expression is associated with worse survival using

Cox regression analysis after controlling for age, gender, and

site of disease (the mesothelioma site could be pleural, perito-

neal, or tunica vaginalis) (false discovery rate [FDR] < 0.1). We

term this set of 48 genes the ‘‘mesothelioma prognostic signa-

ture’’ gene set, and it was used for further analysis (Table S5A).

We also identified 27 genes with increased expression that

were associated with better survival (Cox regression analysis af-

ter controlling for age, gender, and site of disease; FDR < 0.1;
4 Cell Reports Medicine 4, 100938, February 21, 2023
Table S5B). We did not find any genes whose copy number vari-

ation was associated with mesothelioma patient survival (after

controlling for age and gender, FDR < 0.1). Gene Ontology

(GO) enrichment analysis on themesothelioma prognostic signa-

ture gene set showed a strong enrichment for GO terms related

to cell cycle processes, DNA repair, chromosome organization,

telomere organization, proliferation, gene silencing, and others

(Figure 2A; Table S5C).

The mesothelioma prognostic signature is highly
predictive of mesothelioma patient survival in other
independent patient cohorts
We aimed to validate whether expression of the mesothelioma

prognostic signature genes could predict patient survival in inde-

pendent mesothelioma patient cohorts (RNA-seq data were

processed as trimmed mean of M values [TMM] log counts per

million [CPM] format; STAR Methods). We defined a combined

risk score as themedian expression of the 48 genes in themeso-

thelioma prognostic signature set and computed it for each

patient. Because increased expression of these genes was

associated with worse survival, we hypothesized that their risk

scores would be a marker for survival in mesothelioma patients.

Using Cox regression analysis in cross-validation (STAR

Methods), after controlling for age, gender, and site of disease,

we found, as expected, that high risk scores were indeed asso-

ciated with worse survival outcome in the NCI mesothelioma

data (hazard ratio [HR] = 1.76, p = 6.87e�04; Figure S2A;

Table S5D). Moreover, high risk scores were also associated

with worse survival outcome when we looked separately at

pleural or peritoneal mesothelioma patients (Cox regression

analysis in cross-validation after controlling for age and gender;

pleural mesothelioma patients only: HR = 1.84, p = 0.046; perito-

neal mesothelioma patients only: HR = 2.1, p = 0.0021). A K-M

survival analysis also showed similar results (log rank test, p =

0.00029; Figure 2B).

To test the predictive value of the mesothelioma prognostic

signature, we validated it in two large, independent mesotheli-

oma datasets: the The Cancer Genome Atlas (TCGA) mesotheli-

oma dataset of 85 pleural mesothelioma patients28 and the

Bueno et al.10 dataset of 211 pleural mesothelioma patients.

We computed the risk scores using the mesothelioma prog-

nostic signature for each patient in these datasets and predicted

overall survival. Cox regression analysis controlling for age and

gender showed that increased risk scores were associated

with worse patient survival in TCGA mesothelioma (HR = 2.6,

p = 6.94e�10; Figure S2A; concordance statistic [C] obtained

using the Cox regressionmodel = 0.772) and Bueno et al.10 data-

set (HR = 1.49, p = 4.34e�07; Figure S2A; C = 0.643). The sur-

vival prediction obtained using the mesothelioma prognostic

signature (C = 0.772; Cox regression using our prognostic sig-

nature, age, and gender) was significantly higher than what

was recently reported by the deep-learning-based MesoNet

algorithm23 (C = 0.656 using whole-slide digitized images, age,

and gender) on the TCGA mesothelioma dataset. Similar results

were obtained using a K-M analysis (log rank test p = 5.37e�09

for TCGA; Figure 2C; and log rank test p = 4.59e�07 for Bueno

et al.10 data; Figure 2D). Control experiments were performed

using randomized gene sets of the same size as those present
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Figure 2. GO enrichment analysis and validation of mesothelioma prognostic signature

(A) GO enrichment analysis of the mesothelioma prognostic signature using the GOrilla tool. GO terms with p < 1e�4 are shown here (list of all GO terms with

p < 1e�3 are listed in Table S5C).

(B–D) Survival analysis using a K-M plot of patients in the top 50th (high risk) and bottom 50th (low risk) percentiles based on their predicted risk scores in (B) the

NCI mesothelioma dataset in cross-validation, (C) the TCGA mesothelioma dataset, and (D) the Bueno et al.10 mesothelioma dataset. Log rank test p values are

shown.
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in mesothelioma prognostic signature gene set, and risk scores

were computed. Reassuringly, these random control experi-

ments did not show any survival association (1,000 iterations,

randomization test empirical p < 0.001 while comparing the

actual HRs with the control; see Figures S2B and S2C for de-

tails). To test the robustness of predicting survival using the
48-gene mesothelioma prognostic signature, we computed a

risk score using an alternative method and found that the results

were quite similar to those using computing combined risk

scores (Figure S2D; STAR Methods). We also found that the

list of 27 genes whose increased expression is associated with

better survival did not show a survival association in the TCGA
Cell Reports Medicine 4, 100938, February 21, 2023 5
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dataset and showed only some significant survival association in

the Bueno et al.10 dataset (Figure S2E).

Of note, while we controlled for demographic factors like age

and gender in the Cox regression survival analysis, we did not

control for tumor histology because the overwhelming majority

of tumors in the NCI mesothelioma cohort were epithelioid

(Table S4). However, we note that controlling for tumor stage

in the TCGA mesothelioma dataset shows that the high-risk

scores (median expression of the 48 genes in the mesothelioma

prognostic signature) are significantly associated with worse

survival (Cox regression controlling for age, gender, and tumor

stage; HR = 3.0, p = 4.8e�9). We performed the survival analysis

by considering the time that elapsed from the biopsy to the time

of death or last follow-up to align it with the time when the tumor

molecular data were obtained. However, notably, even after

explicitly controlling for prior treatment time in the Cox regres-

sion model, the increased expression in all 48 genes in the me-

sothelioma prognostic signature is still markedly associated

with worse patient survival (Fisher’s exact test for enrichment

of overlapping genes between explicitly controlling or not

controlling of prior treatment is extremely significant, odds ratio =

infinity, p = 1.54e�103). Moreover, a PCA clustering of gene

expression data did not show distinct clustering of mesotheli-

oma patients with or without prior treatment (Figure S3), indi-

cating that prior treatment of some of the patients is not likely

to be confounding our analysis.

Wechecked the association of gene expressionwith survival for

the TCGA mesothelioma and Bueno et al.10 datasets separately,

using Cox regression after controlling for age and gender. For

the TCGA mesothelioma and Bueno et al.10 datasets, there are

2,144 and 1,210 genes, respectively, whose increased expression

is significantly associatedwith decreased survival (FDR < 0.1; 674

genes intersected between both of these datasets).We found that

themesotheliomaprognostic signature of 48genes has significant

overlap with the survival-associated genes from the TCGA (p =

9.41e�15) and Bueno et al.10 mesothelioma (p = 1.85e�14) data-

sets (usinga hypergeometric test). There are 31overlapping genes

between the three studies whose increased expression is signifi-

cantly associated with decreased survival in all three mesotheli-

oma datasets (FDR < 0.1; Table S5E). Some of these 31 genes

could be potential candidates for drug targeting (provided they

are druggable) because inhibiting them could potentially improve

patient survival (Table S5E). GO enrichment analysis on these 31

genes shows a strong enrichment for GO terms related to various

metabolic processes (Table S5F).

One limitation of the mesothelioma prognostic signature anal-

ysis is that independent validation of the genes (risk scores) was

done only on independent pleural mesothelioma cohorts (TCGA

and Bueno et al.10) given the absence of large-scale peritoneal

patient data. To study the ability of predicting the survival of

such patients too, we reversed the training and test datasets;

we used the median expression of the 674 genes whose

increased expression was associated with worse patient survival

in the TCGAmesothelioma and Bueno et al.10 datasets to predict

the survival of patients in our NCI mesothelioma cohort. We do

indeed see that their median expression is predictive of pleural

and peritoneal mesothelioma patient survival after controlling

for age and gender (Cox regression analysis; entire patient
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data: HR = 1.7, p = 0.0015; pleural mesothelioma patients

only: HR = 2.12, p = 0.0066; peritoneal mesothelioma patients

only: HR = 1.54, p = 0.072). This further indicates that the gene

expression patterns of pleural and peritoneal mesothelioma

patients show a great degree of overlap in their association

with patient survival.

The CCNB1 gene is strongly predictive of mesothelioma
patient survival
We explored the possibility of identifying a smaller subset of

genes among the mesothelioma prognostic signature genes

that could possibly play an important functional role in mesothe-

lioma with the hope that some of these genes may be potential

candidates for targeted therapies. Previous work by Melaiu

et al.35 has identified 51 genes that were differentially upregu-

lated consistently across various studies in mesothelioma

vs. non-malignant mesothelial samples. Two of these genes

(CCNB1 and NUSAP1) were present in our 48-gene mesotheli-

oma signature gene set.

Wecalculated the risk factorsassociatedwith the increasedme-

dian expressionof these 51genes and found them tobepredictive

of worse mesothelioma patient survival in the TCGA and Bueno

et al.10 mesothelioma cohorts (Cox regression after controlling

for age and gender; HR = 1.70, p = 9.91e�05 for TCGA and

HR=1.37,p=4.96e�04 forBuenoetal.10mesotheliomadata; Fig-

ure S4A). The median expression of the CCNB1 and NUSAP1

genes by themselves is predictive of patient survival as well (Cox

regression after controlling for age and gender; HR = 2.28, p =

1.67e�07 for TCGA and HR = 1.40, p = 2.37e�05 for Bueno

et al.10 mesothelioma data; Figure S4A). Among these two genes,

we found that the increased geneexpression ofCCNB1 alonewas

highly associated with worse mesothelioma patient survival

outcome (Cox regression after controlling for age and gender;

HR = 2.54, p = 1.89e�08 for TCGA mesothelioma and HR =

1.40, p = 1.65e�05 for Bueno et al.10 mesothelioma data; Fig-

ure S4A). A K-M survival analysis also shows that increased

gene expression of CCNB1 alone is highly associated with worse

mesothelioma patient survival outcome in the NCI mesothelioma,

TCGA mesothelioma, and Bueno et al.10 mesothelioma datasets

(Figure S4B). Although these survival associations are not as

strong as that those obtained using the 48-gene mesothelioma

prognostic signature, they are still notable. The increased expres-

sion of the CCNB1 gene alone is associated with worse survival

outcome even when we look separately at pleural or peritoneal

mesothelioma patients in the NCI mesothelioma cohort (Cox

regression analysis after controlling for age and gender; pleural

mesothelioma patients only: HR = 2.5, p = 0.0018; peritoneal me-

sothelioma patients only: HR = 1.76, p = 0.0088).

The protein-protein interaction (PPI) network
connecting mesothelioma prognostic signature genes
supports the functional importance of CCNB1 and the
complexes it forms
To further explore the pathways in which the 48 genes in the

‘‘mesothelioma prognostic signature’’ are involved, we looked

at the PPIs among them. The PPI network for these 48 genes

was inferred from the STRING dataset and website.36 We iden-

tified three different cliques in the network: clique 1 with 21
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genes, clique 2 with 5 genes, and clique 3 with 6 genes (Fig-

ure 3A). We suggest that high-degree hub proteins (i.e., proteins

with a lot of interacting partners in the PPI network) in these

cliques could play a functional role in mesothelioma and could

be potential drug targets. We note that CCNB1 and NUSAP1

are such hubs in clique 1. CCNB1 and NUSAP1 have degree

19 (ranked 2 of 48) and 16 (ranked 6 of 48), respectively, in the

PPI network (the degree of a protein is the number of interacting

partners for that protein in the PPI network).MCM2, with degree

22, has the highest rank.

Protein complex enrichment analysiswasperformedonclique1

genes, which form the largest clique in the PPI network discussed

above, using the comprehensive resource of mammalian protein

complexes, the CORUM protein complex resource37 (STAR

Methods). These genes are enriched for 2 complexes, CCNB1-

CCNF and CDK1- CCNB1-CCNF (Fisher’s test, FDR < 0.05; Fig-

ure 3B; Table S5G), of which CCNB1 and CCNF are members.

These complexes’ functional annotation indicates that they are

involved in the cell cycle and DNA processing.

We computed the correlation between the expression of the 48

genes present in the mesothelioma prognostic signature across

all patients and performed a cluster analysis on their expression

patterns (STAR Methods). Again, three clusters were identified

that significantly overlappedwith the respective cliques obtained

in the PPI network (Figure 3C, Fisher’s exact test p values are

shown), together providing convergent evidence of the functional

importance of these genes and these two complexes.

A transcription factor enrichment analysis further
points to the central role of CCNB1
We then aimed to identify the transcription factors that may con-

trol the expression of the mesothelioma prognostic signature

genes using the transcriptional regulatory relationships unrav-

eled by sentence-based text mining, TRRUST v.2 package38

for transcription factor (TF) enrichment analysis. The results are

summarized in Table S5H. We found significant enrichment for

8 TFs (TP53, MYC, YBX1, E2F1, TFAP2A, SP1, RELA, and

NFKB1; Figure 3D; Table S5H), which together regulate 9 genes

of the 48 composing the mesothelioma prognostic signature

(Figure 3E; Table S5H). Notably, of these 8 TFs, 7 have binding

sites and regulate CCNB1, again pointing to its putative central

functional role in mesothelioma. Figure 3E portrays the number

of signature genes whose expression is correlated with the cor-
Figure 3. Mesothelioma prognostic signature analysis
(A) The protein-protein interaction (PPI) network of the genes in the mesothelioma

STRING.

(B) Protein complex enrichment analysis of clique 1 genes. These genes are enric

complex (Fisher’s exact test, FDR < 0.02). The x axis represents Fisher’s test ne

(C) The correlation matrix was computed on the matrix of the 48-gene mesotheli

three clusters that significantly overlapped with the three cliques obtained in the

(D) The mesothelioma prognostic signature is enriched for 8 transcription factors

(E) Correlation between expression of mesothelioma signature genes and correspo

cohort that is potentially regulated by one or more of the 8 enriched TFs shown in (D

The number of such enriched TFs that were significantly correlated (FDR < 0.2) w

significantly correlated vs. the total number of TFs mapped to a particular gene

(F) Median essentiality values fromCRISPR-Cas9 gene knockout essentiality scre

MPP89, ISTMES2, MSTO211H, and NCIH28) for each gene are computed and

remaining genes. Less essentiality value implies that the gene is more essential.
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responding TF gene expression (Spearman correlation,

FDR < 0.2). This may provide additional evidence showing that

these TFs potentially regulate these genes. Notably, CCNB1

expression is significantly correlated with 5 of these 7 TFs.

Mesothelioma prognostic signature genes tend to be
essential in CRISPR screens of mesothelioma cell lines
Because we are interested in investigating a subset of the

48-gene mesothelioma prognostic signature that could contain

potential drug target candidates, we analyzed CRISPR-Cas9

gene knockout essentiality screens39,40 from 7 pleural mesothe-

lioma cell lines (ACCMESO1, NCIH2452, NCIH2052, MPP89,

ISTMES2, MSTO211H, and NCIH28). We took the median es-

sentiality values across the 7 cell lines for each gene. We found

that the mesothelioma prognostic signature genes tend to be

more essential than the rest of the genes (one-sided Wilcoxon

rank-sum test, p = 1.03e�08, difference in median essentiality

score = 0.21; Figure 3F). Table S5I shows the essentiality values

for the signature genes. Ten genes (MTBP, PRC1, INCENP,

MCM2, RACGAP1, IPO9, CDCA5, KIF4A, CCNB1, and

KIF18B) have essentiality in the top 10 percentile of all genes in

these cell lines. MTBP is the top essential gene among the

48-gene signature (ranked 98.7 percentile among all genes),

and CCNB1 is also essential (ranked 91.6 percentile among all

genes).

Immune cell type abundance estimates show the
differential abundance of certain immune cell types in
patients with mesothelioma
Next, we looked for immune cell types that were relatively high in

mesothelioma with the aim of understanding the mesothelioma

immune microenvironment. We used cell-type identification by

estimating relative subsets of RNA transcripts CIBERSORT41

to estimate the abundance of 22 immune cell types in each pa-

tient in the NCI mesothelioma dataset (STAR Methods;

Table S6). The estimates of immune cells of TCGA cancer pa-

tients were also obtained using a CIBERSORT analysis from

Lee et al., 2019.42 The relative immune cell abundance estimates

were compared between the NCI mesothelioma dataset (NCI

MESO), TCGA mesothelioma patients (TCGA MESO), TCGA

pan-cancer patients (mesothelioma not included), TCGA lung

adenocarcinoma (TCGA LUAD), and lung squamous cell carci-

noma (TCGA LUSC) (Figure 4A). Some immune cell types, like
prognostic signature identified 3 cliques in the NCI mesothelioma dataset by

hed in 2 complexes, the CCNB1-CCNF complex and the CDK1-CCNB1-CCNF

gative log10 p values.

oma prognostic signature across all patients. Hierarchical clustering identified

PPI network. Fisher’s exact test p values are shown.

(TFs) (details provided in Table S5H).

nding TFs. Expression of every gene in themesothelioma prognostic signature

) was correlated with expression of the corresponding mapped TF (FDR < 0.2).

ith these genes is plotted as a bar graph. The count of enriched TFs that are

is shown in parentheses.

ens from 7 pleural mesothelioma cell lines (ACCMESO1, NCIH2452, NCIH2052,

compared between genes in the mesothelioma prognostic signature and the

One-sided Wilcoxon rank-sum test p value is shown.
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(A) Boxplot of the relative fractions of the immune

cell abundance across all mesothelioma samples in

the NCI mesothelioma dataset (NCI MESO), TCGA

pan-cancer patients (TCGA PAN-CANCER; except

mesothelioma), TCGA lung adenocarcinoma (TCGA

LUAD), and TCGA lung squamous cell carcinoma

(TCGA LUSC). The relative immune cell abundance

for each immune cell type is shown as a fraction on

the y axis.

(B) K-M survival plot of patients with the top 33rd

and bottom 33rd percentiles of relative abundance

of M2 macrophages in the NCI mesothelioma da-

taset. Time is shown in years. Log rank test p value is

shown.
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CD4+ memory resting T cells, naive B cells, activated mast cells,

andmonocytes, had higher relative abundance in the NCI meso-

thelioma dataset than in other cancer types in the TCGA (one-

sided Wilcoxon rank-sum test, FDR < 0.1; Figure 4A). We also

observed that some immune cell types, like CD8+ T cells and

M0 macrophages, have lower abundance in the NCI mesotheli-

oma dataset than in other cancer types in the TCGA database

(one-sided Wilcoxon rank-sum test, FDR < 0.1; Figure 4A).

We tested the association of all immune cell types that have

more than 5% mean relative abundance across samples in the

NCImesothelioma dataset (STARMethods) with patient survival.

We found that an increase in M2 macrophages was associated

with worse mesothelioma patient survival in the NCI meso-

thelioma dataset (Cox regression HR = 17.42, p = 0.027, FDR =

0.16, after controlling for age and gender). We repeated this

analysis using K-M survival plots and found similar results (Fig-

ure 4B; log rank p = 0.0245). Because M2 macrophages are

thought to be immunosuppressive,43,44 their association with a

decrease in survival was expected. We, however, did not see

any association of M2 macrophage abundance estimates (using

CIBERSORT)withpatient survival in theTCGAmesotheliomaand

Bueno et al.10 datasets (FDR < 0.2). We also did not find any

significant difference for any immune cell type abundance esti-

mates between pleural and peritoneal mesothelioma patients

(FDR < 0.2).
Cell Repo
A synthetic lethality/rescue
transcriptome-based approach
predicts responses to anti-PD1
therapy and combination therapy
with pemetrexed in patients with
mesothelioma
To employ a precision medicine-based

approach for recommending therapies in

mesothelioma, we employed the concept

of SL/sickness and synthetic rescue (SR)

to predict patient response to drugs

(STAR Methods). Lee et al.46 used a

computational pipeline called SELECT

(SL and rescue-mediated precision onc-

ology via the transcriptome), a precision

oncology approach that aims to predict

drug response for a given cancer patient
using the whole pre-treatment transcriptome data. SELECT is

based on inferring clinically relevant pan-cancer SL and SR

pairs across cancer types by mining thousands of patient tu-

mor genomics and transcriptomics data points from

the TCGA pan-cancer data and various in vitro studies (STAR

Methods).42,45,46 For each chemotherapy or targeted therapy

drug, SELECT assigns a risk score based on the number of

downregulated SL partners of the target genes inhibited by

the drug. For immunotherapy drugs, SELECT assigns risk

scores using SR interactions in an analogous manner (STAR

Methods). It is important to note that SELECT does not train

any model parameters by looking at the test data, mitigating

the risk of overfitting the data and loss of generalization predic-

tive power on unseen datasets.

Among the 100 patients with expression data in the NCI me-

sothelioma data, 16 patients were treated with anti-PD1 im-

mune checkpoint inhibitors (pembrolizumab or nivolumab;

STAR Methods; Table S7A). DrugBank was used to map drugs

to targets that are inhibited.47 Similar to what was reported in

other clinical trials,13 only a small fraction of these patients

(18.8%; 3 of 16 patients) responded to treatment (either com-

plete or partial response). We used SELECT to predict patient

response for anti-PD1 drugs in the NCI mesothelioma patient

cohort, using the exact same parameters as used previously,

including the decision threshold value.46 Despite having a small
rts Medicine 4, 100938, February 21, 2023 9
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Figure 5. Overall SL transcriptomics-based

response prediction across several meso-

thelioma clinical trials

(A) We use SELECT to predict patient response for

anti-PD1 drugs in the NCI mesothelioma patient

cohort using patient gene expression data. Bar

plots show ROC-AUC and area under precision

recall (PR-AUC) values using the SELECT-derived

risk to predict responders (complete or partial

response) and non-responders (stable disease or

progressive disease) to anti-PD1 immunotherapy

(16 samples). ROC-AUC and PR-AUC values

range from 0–1, with higher values indicating

higher performance of the predictor. ROC-AUC

for a random predictor is expected to be 0.5.

The 95% confidence interval for ROC-AUC varied

from 0.7–1.

(B) Bar plots show ROC-AUC and PR-AUC values

using the SELECT-derived risk to predict re-

sponders (complete or partial response) and non-

responders (progressive disease) to combinations

with the chemotherapy drug pemetrexed (41

samples). The 95% confidence interval for ROC-

AUC varied from 0.46–0.88.

(C) Scatterplot showing the percentage of re-

sponders (objective response rate) from meso-

thelioma clinical trials and comparing it with the

percentage of predicted responders (coverage)

using SELECT in the NCI mesothelioma dataset.

Spearman’s r (rho) and p values are shown. The

shaded region is the 95%confidence level interval

for a linear model.

(D) Bar plot showing the percentage of predicted

responders for each drug.

(E) Heatmap showing the responders in all pa-

tients and drugs for NCI mesothelioma data. The x

axis corresponds to patient samples and y axis to

each drug. Red indicates that the patient is predicted to respond to that drug, and green indicates non-response. 50% of the total percentage of patients are

predicted to respond to at least 1 drug in the NCI mesothelioma dataset.

Article
ll

OPEN ACCESS
number of responders, we were able to accurately predict anti-

PD1 drug response in mesothelioma patients (area under ROC

curve, ROC-AUC = 0.91 [95% confidence interval is 0.7–1];

area under precision recall [PR-AUC] = 0.74; Figure 5A;

Table S7A).

Pemetrexed is a commonly used chemotherapy drug, and it

is often used in combination with other chemotherapy drugs

like cisplatin or carboplatin. In the NCI mesothelioma cohort,

pemetrexed was always given in combination with other drugs,

and we considered the 41 patients who were given this drug (1

complete response, 23 partial response, 6 progressive disease,

11 stable disease; STAR Methods; Table S7B). We used the

drug targets of pemetrexed as reported in DrugBank to predict

its corresponding drug combination response using SELECT.

We could not consider the response to the other drugs

(cisplatin/carboplatin) given in these combinations because

they could not be mapped to targets they inhibited according

to DrugBank. Despite the limitations of this analysis, when we

removed patients with stable disease from the analysis, we

were able to predict patients with complete/partial response

from those with progressive disease quite well (ROC-AUC =

0.67 [95% confidence interval is 0.46–0.88]; PR-AUC = 0.91;

Figure 5B; Table S7B).
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SL-based transcriptomics-based prediction of overall
response to cancer drugs in numerous clinical trials in
mesothelioma
We wanted to check whether the concept of SL/SRs could be

used to predict the percentage of responders to various meso-

thelioma cancer therapies. We focused on analyzing clinical tri-

als using various targeted therapies and immunotherapies

because these categories of drugs have been shown previously

to be well predicted by SELECT.46 We additionally considered a

few chemotherapies commonly used in mesothelioma, like pe-

metrexed and vinorelbine. We did not consider other commonly

used chemotherapy drugs like cisplatin and carboplatin because

they could not bemapped to drug targets they clearly inhibit (ac-

cording to DrugBank). For each of the drugs, we collected infor-

mation about the objective response rates (percentage of re-

sponders) in mesothelioma patients from many of the relevant

published clinical trials. We succeeded in obtaining this informa-

tion for 7 drugs overall, including 2 chemotherapies, 3 targeted

therapies, and 2 immunotherapies: pemetrexed, vinorelbine, ge-

fitinib, sorafenib, sunitinib, pembrolizumab, and tremelimu-

mab12–22 (Table S7C). The individual patients’ transcriptomics

data were not available for these clinical trials, so we could not

predict the individual response of each patient in these trials.
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However, we could still study how well the predicted SL-based

coverage for each drug (based on the analysis of available meso-

thelioma patients’ transcriptomes in our cohort) matches the

actual overall response observed in these trials.

To this end, SELECT was used to predict the percentage of

responders (coverage) for each drug in the NCI mesothelioma

cohort, using the same parameters and thresholds used previ-

ously46 and repeating the exact same procedure they

published (STAR Methods). We found a significant correlation

between the predicted and actual coverage of these drugs

(Spearman’s r = 0.64, p = 0.0348; Figure 5C; Table S7C).

Notably, this also suggests that the NCI mesothelioma cohort

may faithfully reflect the transcriptome of patients participating

in these various clinical trials. For robustness, we performed

the same analysis on TCGAmesothelioma patients and, reassur-

ingly, obtained similar results (Figure S5A). Figures 5D and 5E

shows the fraction of patients predicted to respond to each of

the 7 drugs considered, using SELECT (Tables S7D and S7E).

We found that 50% of the patients in the NCI mesothelioma

data were predicted to respond to at least one of the 7 drugs

based on the risk scores of the drugs computed for each patient

(Figure 5E). This percentage is higher for the TCGA data

(64.71%). Because some patients were predicted to respond

to more than one drug, we ranked the effectiveness of all drugs

for each patient in the NCI mesothelioma cohort. Across the che-

motherapies and targeted therapies considered, vinorelbine is

the highest-ranked drug (see details in Figure S5B), and this is

in line with the outcomes observed in the clinical trials.21,22 A

similar analysis was done for immune checkpoint inhibitors in

mesothelioma (Figure S5C).

DISCUSSION

In this study, we performed WES of blood and tumor tissues

from 122 malignant mesothelioma patients and systematically

studied their somatic and germline mutations. We found that

key somatic mutational signatures were associated with DNA

repair pathways, and BAP1 was the most commonly mutated

gene (�13% with germline mutation). We also performed

RNA-seq of 100 tumor tissue samples for transcriptomics anal-

ysis. Unlike previous studies, which mainly focused on pleural

mesothelioma patients, this study includes a comparable num-

ber of patients of the MPM and MPeM subtypes and, hence,

gives us a better understanding of the similarities and differ-

ences that may exist in the molecular pathophysiology of the

two anatomically distinct diseases. We acknowledge that the

TCGA mesothelioma and Bueno et al.10 datasets contain larger

numbers of pleural mesothelioma patients than our cohort.

Moreover, our dataset does not contain patient information

on pathological stage. As discussed in previous studies, we

observed that the overall survival of patients with MPeM was

higher than that of patients with MPM. Surprisingly, we did

not find too many differences between pleural and peritoneal

mesothelioma samples at the level of germline or somatic mu-

tations or at the level of copy number information or gene

expression.

We further stratified the patients based on their overall sur-

vival and analyzed the differentially expressed genes in the
high- and low-risk subgroups. We identified a ‘‘mesothelioma

prognostic signature,’’ a set of 48 genes that were over-

expressed in a high-risk cohort with poor survival, and

showed that the median expression of these genes is highly

predictive of mesothelioma patient survival in two indepen-

dent large-scale patient cohorts and, thus, may have high

translational value in the clinic. We found that these genes

were enriched for GO terms related to cell cycle processes,

DNA repair, and others. Among these 48 genes, we found

that the CCNB1 gene alone was highly predictive of meso-

thelioma patient survival. While many of the patients in the

NCI mesothelioma cohort received prior treatment, through

various control analysis, we were able to show that this is

not a confounding factor in our survival analysis. We

performed an independent validation of the mesothelioma

prognostic signature on large-scale pleural mesothelioma co-

horts solely because of the absence of similar large-scale

peritoneal datasets. However, we have shown in cross-vali-

dation that these signatures are predictive of peritoneal pa-

tient survival in the NCI mesothelioma cohort. Furthermore,

we also found that the median expression of the genes

whose expression was associated with worse survival in

pleural mesothelioma (TCGA and Bueno et al.10) is reason-

ably predictive of worse peritoneal mesothelioma survival in

the NCI mesothelioma cohort, further testifying to the overall

similar associations of gene expression and patient survival

between both disorders.

Multiple analyses showed that the CCNB1 gene may poten-

tially play an important role in mesothelioma. Cyclin B1, a pro-

tein encoded by the CCNB1 gene, is a key mitotic cyclin in the

G2-M phase transition of the cell cycle and is overexpressed in

various malignant tumors, including lung, breast, colorectal,

pancreatic, and others. Previous work has shown that Cyclin

B1 plays an important role in tumor development and tumori-

genesis.48,49 A meta-analysis about the prognostic role of cy-

clin B1 in solid tumor was conducted on 17 published studies,

concluding that overexpression of cyclin B1 is a significant

prognostic parameter and associated with poor survival in

many solid tumors.50 However, there is no prior work showing

that expression of the CCNB1 gene by itself is associated with

poor survival of mesothelioma patients. The CCNF gene, which

encodes Cyclin F, is also a member of the cyclin family, is

known to control genome instability, and may play a role in

cancer development.51 The NUSAP1 gene is a nucleolar-spin-

dle-associated protein that is known to play a role in spindle

microtubule organization52 and in some other cancers53–55

but has not been significantly discussed in mesothelioma.

Looking at CRISPR-Cas9-based essentiality screens in pleural

mesothelioma cell lines, we found that the mesothelioma prog-

nostic signature genes tend to be more essential, and we found

about 10 genes that were highly essential (including the MTBP

and CCNB1 genes). The MTBP gene is known to play a role in

cell migration and invasion in some tumors56–58 and has not

been discussed in mesothelioma. Thus, using various analyses,

we were able to identify a subset of the 48 genes in the

mesothelioma prognostic signature that are likely to play an

important role in mesothelioma. However, we note that our

studies are associative, and further in vitro and in vivo work is
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required to show any causal relationships for any of the meso-

thelioma prognostic signature genes to mesothelioma cancer

progression.

We used CIBERSORT to determine immune cell lineages

infiltrating the tumor tissue based on immune-cell-specific

marker expression and compared the immune abundance es-

timates in mesothelioma with other cancer types. We found

that some immune cell types, like CD4+ memory T cells and

naive B cells, are higher in relative abundance in NCI meso-

thelioma data than some of the other cancer types in the

TCGA. We correlated the gene expression data with patient

survival and found that increased tumor M2 macrophage

abundance was associated with poor survival. Of note, M2

macrophages are immunosuppressive in function, and their

abundance has been associated with poor survival in a few

other cancers.59

A precision oncology-based approach called SELECT has

been shown to effectively predict drug response for various

cancer treatments across many different cancer patients and

cancer types using patient transcriptomic data and the con-

cepts of SL and SR.46 Using exactly the same parameters

and thresholds used by Lee et al.,46 we applied SELECT to

the NCI mesothelioma dataset and were able to effectively pre-

dict anti-PD1 immune checkpoint inhibitor response. We were

also able to predict drug combination response for an impor-

tant chemotherapy drug like pemetrexed. We note that

SELECT does not train on the NCI mesothelioma cohort. Using

SELECT to predict the percentage of responders (coverage) for

various drugs in the NCI mesothelioma cohort (and in TCGA

mesothelioma) for which we know the response rate based

on mesothelioma clinical trials, we found a significant correla-

tion between the predicted and actual coverage for these

drugs. Obviously, the veracity of these predictions needs to

be studied carefully in controlled prospective clinical trials in

the future.

In conclusion, by analyzing genome and tumor transcriptomes

of patients with pleural and peritoneal mesothelioma, we were

able to identify gene expression profiles predictive of patient sur-

vival as well as response to available therapies. These results

need to be further validated in laboratory studies and well-con-

ducted prospective clinical trials.

Limitations of the study
Our study has several limitations. First, obviously, like so many

other related studies, the expression of the 48-gene mesothe-

lioma prognostic signature, including the CCNB1 gene, is just

associated with patient survival, and any possible causal rela-

tions remain to be further studied. Second, the SELECT anal-

ysis we performed has a few limitations: (1) the number of pa-

tient samples for drug response analysis for the anti-PD1

checkpoint inhibitors and pemetrexed is small and the

response classes are imbalanced, and (2) some parts of the

SL analysis were performed on the cohort level in the absence

of patient-specific transcriptomics data. While the results ob-

tained given these limitations are quite encouraging, further

validation in larger cohorts is warranted to evaluate the poten-

tial value of an SL-based patient stratification approach in

mesothelioma.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human PBMC from patients with malignant

mesothelioma participating in

‘‘Mesothelioma Natural History’’ clinical trial

Thoracic and GI Malignancies

Branch, Center for Cancer Research,

National Cancer Institute, NIH

https://clinicaltrials.gov/ct2/show/

NCT01950572

Human tissue biopsy samples from patients

with malignant mesothelioma participating

in ‘‘Mesothelioma Natural History’’ clinical

trial

Thoracic and GI Malignancies

Branch, Center for Cancer Research,

National Cancer Institute, NIH

https://clinicaltrials.gov/ct2/show/

NCT01950572

Deposited data

Whole Exome Sequencing data This paper https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=

phs002207.v1.p1

Individual level data

available in ‘‘Molecular Datasets’’ tab.

Release Type: Controlled access.

Authorized access can be requested via

https://dbgap.ncbi.nlm.nih.gov/aa/

wga.cgi?page=login

RNA Sequencing This paper https://www.ncbi.nlm.nih.gov/projects/

gap/cgi-bin/study.cgi?study_id=

phs002207.v1.p1

Individual level data

available in ‘‘Molecular Datasets’’ tab.

Release Type: Controlled access.

Authorized access can be requested by:

https://dbgap.ncbi.nlm.nih.gov/aa/

wga.cgi?page=login

Software and algorithms

hclust function in R https://stat.ethz.ch/R-manual/R-devel/

library/stats/html/hclust.html

Corum 3.0 CORUM protein complex

resource. Giurgiu et al., 2019.37
http://mips.helmholtz-muenchen.

de/corum/

CIBERSORT Newman et al., 2015.41 http://cibersort.stanford.edu/

SELECT Lee et al., 2021.46 https://zenodo.org/record/4661265
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Dr. Raffit

Hassan, hassanr@mail.nih.gov.

Materials availability
All unique reagents generated in this study are available from the lead contact with a completed materials transfer agreement.

Data and code availability
d The NCI mesothelioma data resource is available in Tables 1, S1, S2, S3, and S4 and dbGaP with controlled access (accession

number: dbGAP: phs002207; https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs002207.v1.p1). Indi-

vidual level data is available in the ‘‘Molecular Dataset’’ Tab and requires authorized access via https://dbgap.ncbi.nlm.nih.gov/

aa/wga.cgi?page=login.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
All patients with malignant mesothelioma treated at the Thoracic and GI Malignancies Branch, Center for Cancer Research, Na-

tional Cancer Institute (NCI), National Institutes of Health, were offered participation in a clinical trial of the natural history of ma-

lignant mesothelioma (ClinicalTrials.gov number NCT01950572; https://clinicaltrials.gov/ct2/show/NCT01950572). The study was

conducted in accordance with the principles of the International Conference on Harmonisation - Good Clinical Practice (ICH-GCP)

guidelines. Institutional Review Board of the NCI approved the study and all patients provided written informed consent. Between

September 2013 and November 2019, 425 consecutive patients were enrolled, out of them 122 underwent whole exome

sequencing of blood and tumor tissue. RNA-seq data was available for 100 patients. The diagnosis of mesothelioma in all patients

was confirmed by Board-Certified Anatomic Pathologists of the NCI Laboratory of Pathology with expertise in thoracic pathology

using appropriate histologic and immunohistochemical studies and characterized their origin (site of disease) as pleural, perito-

neal, or tunica vaginalis. Patients were enrolled regardless of asbestos exposure, age at diagnosis, or personal or family history

of cancer.

METHOD DETAILS

Analysis of germline and somatic mutations and tumor mutational burden
Whole exome sequencing (WES) was carried out on paired tumor and germline DNA, which was extracted from formalin fixed

paraffin embedded (FFPE) tumor tissue and from peripheral blood mononuclear cells (PBMC), respectively, as previously

described.60,61 Exome sequencing was performed using Illumina NextSeq500 sequencers. The bcl files generated were con-

verted to FASTQ files, which contained paired-end reads, using the bcl2fastq tool (Illumina, San Diego, CA). Germline variants

found in the mesothelioma cohort (n = 122) were called using previously published methods.60,61 High-confidence germline var-

iants were defined by the following criteria: total coverage of greater than 20x, Fisher score <75 and variant allele frequency

(VAF) R 0.25. Germline variants were curated according to the American College of Medical Genetics and Genomics

(ACMG) and the Association for Molecular Pathology (AMP) guidelines for the interpretation of sequence variants.30 Finally,

pathogenic, or likely pathogenic tier 1 and 2 germline variants used in the Fisher exact test were filtered according to Phred

score R20 and presence shown in Integrative Genome Viewer v. 2.3.31.62 Somatic variant data were collected from VCF files

of the genetic variants found in exome samples in tumors from the mesothelioma cohort (n = 122 tumors). The number of so-

matic mutations for each tumor were counted, and then divided by the number of bases in the exome of that tumor to yield the

somatic mutation burden per Mb.

RNA sequencing and data processing
RNA sequencing was performed on Illumina HiSeq2000 or NextSeq500 using TruSeq3 chemistry. The bcl files generated were

converted to FASTQ files, which contained paired-end reads, using the bcl2fastq tool (Illumina, San Diego, CA).

NCI mesothelioma data: The RNA-seq reads were processed using the sameworkflow as the NCI Genomic Data Commons (GDC)

has used to process TCGA-MESO RNA-seq reads, with the same settings where appropriate (see NCI GDCmRNA Analysis Pipeline

in https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/).63 Namely, FASTQ reads were aligned

to the NCI GDC reference genome GRCh38.p2 with GENCODE v22 gene annotations (see NCI GDC Reference Files in https://gdc.

cancer.gov/about-data/gdc-data-processing/gdc-reference-files).63 using STAR v2.7.3a in two-pass mode. Read counts were

quantified from STAR aligned read BAMs using HTSeq v0.11.2 in reverse strand-specific mode to reflect the RNA library protocol

used. Counts were further processed for downstream analysis using edgeR with default settings.64 Genes with sufficiently large

counts were filtered using the filterByExpr function, normalized using trimmed mean of M-values (TMM), and finally log counts-

per-million (CPM) transformed all with default settings. There are 100 patients for which we had RNA-seq samples. TCGA mesothe-

lioma data RNA-seq read counts (n = 85 patients) were obtained from NCI GDC.28 Similar processing as above was done for the

TCGA dataset. TCGA pan-cancer RNA-seq TPM (log transformed) data was taken from the Xena browser.65

Alternative method to compute risk scores
For the survival analysis, we also computed the risk scores using an alternativemethod. The new fractional risk score for a patient was

computed by counting the fraction of the 48 genes in the mesothelioma prognostic signature which are highly expressed (top 33

percentile of all genes) in a patient. Survival analysis for the new risk scores is done on TCGA and Bueno et al. mesothelioma datasets

after controlling for age and gender.

Protein complex enrichment and cluster gene expression
Mesothelioma prognostic signature gene-set was used for protein complex-enrichment analysis. Protein complex dataset used is

03.09.2018 Corum 3.0 current release (http://mips.helmholtz-muenchen.de/corum/). Fisher exact test was used for the enrichment

studies (FDR <0.05). Hierarchical clustering of the 48 genes composing the genemesothelioma prognostic signature was done using

the hclust function in R (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/hclust.html).
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Immune cell abundance estimates
CIBERSORT (http://cibersort.stanford.edu/) was used to estimate the immune cell abundance in each patient in the NCI mesothe-

lioma dataset, and also in the TCGA mesothelioma (n = 85) and Bueno et al. mesothelioma (n = 211) patient datasets. CIBERSORT

was run for 500 permutations using the default gene signature LM22 CIBERSORT. The results were run in the ‘Relative’ mode gener-

ating ‘Relative’ fractions of 22 immune cell types for each of the 100 patients in the NCI mesothelioma dataset. The relative values

indicate the relative abundance of each immune cell type as a fraction of the bulk tumor data (which does not include cancer). The

relative values for each sample add up to 1 for all cell types. The immune estimates for TCGA cancer patients were also obtained

using a CIBERSORT analysis from.42 For all the immune cell types which have more than 5% mean relative abundance across

samples in the NCI mesothelioma dataset, we tested their association with patient survival (FDR <0.2).

Drug response prediction using SELECT
SELECT (SynthEtic Lethality and rescue-mediated precision onCology via the Transcriptome; https://zenodo.org/record/4661265) is

a computational method to stratify patients as responders or non-responders for each drug using whole transcriptomic data.46

SELECT first infers clinically-relevant synthetic lethal (SL) or synthetic rescue (SR) pairs across cancer types by mining thousands

of patient tumor genomic and transcriptomic data in the TCGA dataset. Synthetic lethality is a genetic interaction between two genes,

such that, when one of the genes is inactivated, the cells remain viable, however, when both genes are inactivated, the cells lose their

viability.42,66 Synthetic rescue on the other hand is a genetic interaction between two genes such that, when any one of the genes is

inactivated, the cells become less viable, but downregulation (or upregulation) of the partner gene rescues the cell.42,45,46 For each of

the different cancer therapies, we mapped the drugs to the targets (which they inhibit) using DrugBank.47 For chemotherapy and

targeted therapy drugs, for each patient sample, SELECT assigns a risk score – called SL-score – based on the number of down-

regulated SL partners of the target genes inhibited by a drug. The method works under the assumption that a drug is likely to kill

a tumor more effectively when its SL partners are downregulated, as the inhibition of the target by the drug will lead to active SL

formations (as both the SL gene pairs will becoming jointly downregulated). For immunotherapy drugs, SELECT assigns risk scores

using SRs and it works under the assumption there is an innate resistance to a drug if there are a lot of SR partners that are down-

regulated in the cancer sample, as the inhibition of the target by the drug will lead to active SR formations. Using the SL/SR network,

SELECT was previously shown to accurately predict drug response and stratify many patients in 28 of 35 independent targeted and

immunotherapy datasets ranging across various cancer types and for many different drugs,46 using the same set of parameters. For

both SL and SR based approaches, higher the risk score, more likely the patient would respond to a drug.46 These risk scores are

then used for drug response validations and classifying patients as responders or non-responders in many independent datasets.

Following the findings of Lee et al., 2021,46 for the drug coverage analysis, a risk score >0.44 was used to classify a patient as

responder for chemotherapy or targeted therapy and a risk score R0.9 was used to classify a patient as responder for immuno-

therapy. We emphasize that our analysis uses the exact same parameters and thresholds that was used in the original SELECT pipe-

line,46 to identify the pertaining SL and SR partners and to compute risk scores in themesothelioma cohorts, without any training and

parameter tuning on the latter.

QUANTIFICATION AND STATISTICAL ANALYSIS

For survival analysis, survival data was censored as of November 1, 2019. The K-M method was used to estimate the survival prob-

ability from diagnosis date to death or last follow-up (censored) date. Data were stratified either by site (peritoneal, pleural) alone, or

were first analyzed according to subgroups of asbestos, smoking history, diagnosis age, and gender, and then stratified by site.

Hazard ratios (and their 95% CI) were calculated by Cox proportional hazard model with pleural mesothelioma as reference. Median

overall survival estimates were provided with their 95%CI (however, some were non-estimable). K-M plots are presented with point-

wise 95%confidence limits and the number at risk for various points. As some of themesothelioma samples in the NCImesothelioma

data were acquired post treatment, we computed the survival of all patients from the time of biopsy sampling to the time of death or

last follow-up. This survival time estimate was used for the gene expression and copy-number based survival association studies.

Mesothelioma prognostic signature set identification and cross-validation was done based on survival analysis. Risk scores for

each patient is computed as the median expression of the mesothelioma prognostic signature gene-set for that patient. For the

NCI mesothelioma data, we did the analysis using a ‘‘leave-one-out’’ cross validation. For each of the training samples, we re-

computed the genes whose increased expression is associated with worse survival using Cox regression analysis after controlling

for age, gender, and site-of-disease (FDR <0.1), and the median expression value (risk score) for this set of genes was computed for

the test data point. The risk scores were then associated with survival analysis using Cox regression (after controlling for age, gender,

and site of disease).

To calculate differential gene expression between pleural and peritoneal mesothelioma, we used edgeR64 on the RNA-seq count

data to compute differential expression between the two groups, after controlling for various confounding factors like age and gender

(FDR <0.1). One-sided Wilcoxon rank-sum test was used for the analysis in Figure 3F and for the immune cell abundance estimates

analysis related to Figure 4A.
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