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Abstract

Glioblastoma (GBM), the most common primary brain tumor, is the most aggressive human cancers, with 
a median survival rate of only 14.6 months. Temozolomide (TMZ) is the frontline chemotherapeutic drug 
in GBM. Drug resistance is the predominant obstacle in TMZ therapy. Drug resistance occurs via mul-
tiple pathways such as DNA mismatch repair and base excision repair systems, by which glioma cells 
acquire chemoresistance to some extent (5% and 95%, respectively). Histone3 Lysin27 residue-acetylation 
(H3K27ac) status regulates cis-regulatory elements, which increases the likelihood of gene transcription. 
Histone deacetylase (HDAC) complex deacetylate lysine residues on core histones, leading to a decrease in 
gene transcription. In cis-regulatory element regions, complexes with HDAC repress histones by H3K27ac 
deacetylation. The cis-regulating and three-dimensional transcriptional mechanism is called “super- 
enhancer”. RET finger protein (RFP) is a protein that is expressed in many kinds of cancer. RFP forms a 
protein complex with HDAC1. The disruption of the RFP–HDAC1 complex has resulted in increased drug 
sensitivity in other cancers. We conclude that the downregulation of RFP or the disruption of the RFP/
HDAC1 complex leads to an increase in TMZ efficacy in glioblastoma by changing histone modifications 
which lead to changes in cell division, cell cycle and apoptosis.
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Introduction

Glioblastoma (GBM) is the most aggressive of all 
brain tumors. Its prognosis is bleak, with a median 
survival time of 14.6 months.1) Temozolomide (TMZ) 
is an oral chemotherapeutic alkylating agent that 
offers some promise. Nevertheless, it only confers 
a 5-year survival rate in <10% of cases.1,2) TMZ is a 
prodrug, administered orally, but activated in the more 
alkaline environment of the brain tumor tissue.3–5) 
TMZ induces tumor cell cytotoxicity by methylating 
genomic DNA. The major site of methylation is at 
the N3 position of adenine (~20%), the N7 of guanine 
(~80%) and the O6 of guanine (5%). Acquired resist-
ance to TMZ is a common phenomenon in the patient 
population.6,7) DNA repair mechanisms such as DNA 
mismatch repair8–10) and base excision repair (BER)11,12) 
contribute to TMZ resistance. Temozolomide methylates  

guanine residues in glioma cells, which results in 
cell death due to the failure of the DNA mismatch 
repair system to find a complementary base for 
methylated guanine. However, MGMT creates a DNA 
repair system by demethylating the guanine residues 
methylated by TMZ. Thus, MGMT plays a vital role 
in TMZ resistance.13) Poly(ADP-ribose) polymerase 1  
(PARP1) plays a role in TMZ resistance via BER. 
PARP1 binding protein (PARPBP) or C12orf48 binds 
directly to PARP1, leading to an increase in PARP1 
activity. The expression of PARPBP is evidently 
increased in many types of cancer14) (Fig. 1). It has 
been observed that PARP1 inhibitors augment the 
therapeutic effect of TMZ in glioma.15)

In this review article, we describe that how the 
disruption of histone deacetylase (HDAC) complex 
affects the status of Histone3 Lysin27 residue- 
acetylation (H3K27ac)-mediated cis-regulatory elements 
(super-enhancer), leading to chemoresistance to TMZ.

Gene expression regulated by super-enhancer
The variety of DNA regulatory elements in the 

genome includes silencers, insulators, and enhancer 
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regions. Those control and maintain gene expres-
sion that occurs during mammalian development. 
Enhancers are particularly important in their regu-
latory roles that help determine cell fates. They 
are key cis-regulatory elements that can influence 
transcription of genes that differ in orientation or 
are thousands to millions pairs away from promoters 
and transcriptional start sites.16,17) Recent studies have 
sought to identify enhancers globally by focusing 
on the histone marker H3-lysine4-monomethylated 
(H3K4me1), with the aim of identifying many cell 
type-specific enhancer sites.18–21) However, many of 
the enhancers that are enriched by H3K4me1 have 
proximal gene transcriptional activity22) and many 
H3K4me1 associated enhancer regions are inactive.18,22) 
Conversely, H3K27ac is able to distinguish between 
inactive (poised) and active enhancer elements.23)

Even though a single enhancer can activate the 
expression of a nearby gene, high levels of cell 
type-specific and/or signal-dependent gene expres-
sion require enhancers located heterogeneously, with 
some genes residing in enhancer-rich regions of the 
genome. Such enhancer-rich regions have recently 
been termed as “super-enhancers”.24–26)

Super-enhancers were initially defined as large 
genomic loci tens of kilobases in length with an 
unusually high density of enhancer-associated 
markers, such as binding of the mediator complex, 
relative to most other genomic loci.24,25) These 
regions can also feature high density and/or 
extended (>3 KB) depositions of the histone marker 
H3K27ac. Super-enhancers can be differentiated 
from regular enhancers on the basis of differences 
in the density of mediator complex-binding sites 
or of H3K27ac markers. These differences have 
revealed the presence of 300–500 super-enhancers 
in most types of cells.24) Many super-enhancers 
and nearby genes are cell type-specific, and the 
gene sets that are associated with super-enhancers 
in a given cell type are highly enriched for the 
biological processes that define the identities of 
the cell types (Fig. 2).

In gliomas, tumor malignancy is associated 
with DNA hypomethylation, including altered 
cis-regulatory elements and promoter hypomethyla-
tion that leads to transcriptional upregulation of 
genes.27) CpG sites are found in gene promoters as 
well as in gene bodies or cis-regulatory elements 

Fig. 1 MGMT demethylation 
is a known factor in the resist-
ance of temozolomide (TMZ), 
which is the mainstream drug. 
The PARP1–PARP binding 
protein (PARPBP) complex also 
contributes to TMZ resistance 
by the BER pathway. Depletion 
of RET finger protein (RFP) 
decreases the transcription 
of PARPBP, and destroys the 
formation of complex, leading 
to cytotoxicity.

Fig. 2 Histone3 Lysin27 residue-
acetylation (H3K27ac) status 
regulates cis-regulatory elements, 
which increases the likelihood 
of gene transcription. Histone 
deacetylase (HDAC) complex 
deacetylate lysine residues 
on core histones, leading to a 
decrease in gene transcription. 
In cis-regulatory element regions 
(super-enhancer), complexes 
with HDAC repress histones 
by H3K27ac deacetylation.
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such as enhancers, silencers, and insulators.28,29) 
These regulatory elements contain binding sites 
for transcription factors and act to increase or 
decrease transcription. The protein–DNA complex 
folds a three-dimensional chromatin loop called 
a topology associated domain (TAD). TADs are 
regulated by insulators, namely CCCTC-binding 
factors (CTCFs), which can block interactions 
between enhancers and promoters in the inter-
genic regions (Fig. 3). In IDH mutant gliomas, 
hypermethylation at CTCF binding sites inhibits 
the binding of CTCF, leading to aberrant enhancer-
gene interplays and the upregulation of oncogenes 
such as platelet-derived growth factor receptor-a.30) 
The glioma-CpG island methylator phenotype-low 
subgroup has been speculated to exhibit a loss 
of genome-wide DNA methylation, including at 

CTCF binding sites, thereby affecting the chro-
matin architecture.31)

RET finger protein
RET finger protein (RFP, also termed as tripar-

tite-motif-containing 27, TRIM27) is a transcription 
factor that can become oncogenic when fused with 
RET tyrosine kinase.32–34) RFP is involved in cell 
growth35) and apoptosis36) and is expressed in diverse 
types of cancer cells.33,37–41) In these cells, RFP forms 
a tripartite complex with HDAC1 and nuclear tran-
scription factor Y (NF-Y). The knockdown of RFP 
(RFP-KD) disrupts the complex formed between RFP, 
HDAC1, and NF-Y, which increases the expression 
of thioredoxin-binding protein-2 (TBP-2).42) These 
events increase the chemosensitivity of cancer cells 
to cisplatin (Fig. 4A).

Fig. 3 (A) The protein–DNA 
complex folds a three-dimensional  
chromatin loop called a topology 
associated domain (TAD). (B) 
TADs are regulated by insula-
tors, namely CCCTC-binding 
factors (CTCFs), which can 
block interactions between 
enhancers and promoters in 
the intergenic regions. Hyper-
methylation at CTCF binding 
sites inhibits the binding of 
CTCF, thereby affecting the 
chromatin architecture.

Fig. 4 RET finger protein (RFP, 
also termed as tripartite-motif-
containing 27, TRIM27) is a 
transcription factor that can 
become oncogenic when fused 
with RET tyrosine kinase. RFP 
forms a tripartite complex 
with histone deacetylase 1 
(HDAC1) and nuclear tran-
scription factor Y (NF-Y). The 
knockdown of RFP (RFP-KD) 
disrupts the complex formed 
between RFP, HDAC1, and NF-Y, 
which increases the expression 
of thioredoxin-binding protein-2 
(TBP-2) that is related to reac-
tive oxygen species (ROS) and 
chemoresistance.
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RET finger protein/HDAC1 complex and super-
enhancer in GBM in association with cell cycles

RET finger protein is able to form a complex with 
HDAC1 in GBM cells, similar to Hela cells.42) Destruc-
tion of the complex using RFP siRNA can increase 
the efficacy of TMZ against RFP-expressing glioma 
cells. To investigate the mode of action, Ranjit et al.43) 
studied aberrant H3K27ac-controlled active cis-regulatory 
elements using chromatin immunoprecipitation next-
generation sequencing and RNA-seq. The analyses 
revealed that disruption of the RFP–HDAC1 complex 
in turn disrupted the functioning of the H3K27ac-
controlled active cis-regulatory elements. At first, the 
authors expected that the depletion of RFP–HDAC1 
would lead to the upregulation of H3K27ac in most 
cis-regulatory-element regions. However, increases 
in the amount of H3K27ac were detected in some 
regions while decreases were evident in other regions. 
The findings implied that the RFP–HDAC1 complex 
directly controls the “H3K27ac gain” and upregulated 
genes and indirectly controls the “H3K27ac loss” 
and downregulated genes.

Gene Ontology analyses indicated that the genes 
in the “H3K27ac loss” group, whose expression 
levels significantly decreased, included genes with 
functions in the cell cycle, cell division, and DNA 
replication.

RET finger protein/HDAC1 complex and super-
enhancer in GBM in association with the BER 
pathway

RET finger protein binds to the promyelocytic 
leukemia (PML) gene,44) and PML interacts with 
the mSin3a-HDAC1 corepressor,45) which in turn 
inhibits the expression of MGMT.46) Furthermore, 
RFP is linked with p53 sumoylation,47,48) and p53 
downregulates MGMT in astrocytes.48) The PARPBP–
PARP1 complex is a key BER agent that causes TMZ 
resistance. Ranjit et al.43) observed that RFP-KD led 
to a significant decrease in PARPBP expression. In 
addition, PARP1 inhibitors sensitize other cancers 
to antitumor agents by inhibiting the production of 
thioredoxin and reactive oxygen species.49,50)

Knockdown of RFP disrupts the RFP–HDAC1 
complex, which results in the upregulation of 
Forkhead box1 (FOXO1) and TBP-2 proteins and 
the subsequent generation of ROS and induction of 
apoptosis. HDAC1 inhibits FOXO1,51) which induces 
the expression of TBP-2. Overexpression of TBP-2 
results in the inactivation of thioredoxin (TRX) 
and increased oxidative stress.42) The inhibition of 
HDAC1 by RFP-KD results in the increased expres-
sion of FOXO1 and TBP-2 (Thioredoxin-interacting 
protein). RFP depletion and TMZ treatment induces 
oxidative stress in GBM cells (Fig. 4B).

Conclusion

In conclusion, RFP-KD or the disruption of the 
RFP–HDAC1 complex increases TMZ chemosen-
sitivity of GBM cells by altering the pattern of 
histone modification, which alters oxidative stress 
and cell division.
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