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Abstract

Background: Celastrus orbiculatus (Celastraceae) are used as traditional Chinese medicine to treat inflammation and
cancer. This study aims to evaluate the effect of Celastrus orbiculatus extract (COE) on the apoptosis in human
hepatic carcinoma HepG2 cells with mTOR overexpression.

Methods: The stable expression of mTOR in HepG2 cells (HepG2/mTOR+) were established by lipofectin
transfection of GV238-mTOR recombinant plasmids and further antibiotic selection. Human hepatic carcinoma
HepG2/mTOR+ cells were treated with different concentrations (20, 40, 80, 160, and 320 μg/mL) of COE for 24 h. The
cell proliferation upon COE treatment was detected by MTT. Apoptosis was measured by Flow Cytometry. The
activity of mTOR signaling pathway was detected by Western Blotting.

Results: COE significantly inhibited the proliferation of HepG2/mTOR+ cells. The expression levels of Bax and
Caspase-3 protein were increased in the HepG2/mTOR+ cells in a dose-dependent manner. The proteins expression
of Bcl2, Bcl-2 L12, mTOR, phospho-mTOR, 4EBP1, phospho-4EBP1, P70S6k, and phospho-P70S6k in HepG2/mTOR+

cells were reduced in dose-dependent manners. Furthermore, COE and mTOR inhibitor rapamycin (RAPA)
synergistically induced apoptosis in HepG2/mTOR+ cells by regulating apoptosis-related proteins and inhibiting
mTOR signaling pathways.

Conclusion: COE could inhibit the proliferation of HepG2/mTOR+ cells, and induce the cell apoptosis. The
mechanisms may be related to the regulation of the expression of Bcl-2, Bcl-2 L12, and mTOR signaling pathways.
These data suggest that COE may be a potential treatment for human hepatocellular carcinoma.
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Background
Hepatocellular carcinoma (HCC) is one of the most
common malignant tumors in the world [1]. In recent
years, the incidence and mortality rate of HCC is in-
creasing. Despite multimodal therapies, including sur-
gery, chemotherapy, and radiotherapy, the curative effect
on HCC patients is not as good as anticipated [2].

Recent studies of new anti-metastatic agents have dem-
onstrated that some Chinese herbs with chemopreven-
tive capability can slow down the metastasis of several
types of cancer [3, 4]. Previous studies showed that the
ethyl acetate extract of Celastrus orbiculatus extract
(COE) exhibited many significant anti-tumor bioactiv-
ities, such as inhibiting proliferation and inducing apop-
tosis [5–7]. Mechanistic target of rapamycin (mTOR) is
associated with poorly differentiated tumors and bad
prognosis. The two mTOR-containing complexes
(mTORC1 and mTORC2 pathways) that involve pRPS6
and p-AKT are up-regulated by 40–50% in HCCs [8].
Thus, blocking the mTOR signal pathway is an attractive
strategy for HCC treatment. Preliminary experimental
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studies have revealed that COE has a significant inhibi-
tory effect [9–13] on the epithelialmesenchymal transi-
tion (EMT), invasion, and metastasis, and inhibits the
growth of several types of cancer cells. The preliminary
results of our study suggest that COE can inhibit the
activity of the mTOR signaling pathway [14], but the
underlying molecular mechanism has not been revealed
completely. This study explored the effects of COE on
the proliferation and apoptosis in the HepG2/mTOR+

cells, which may bring new hope for clinical treatment
of cancer characterized with mTOR activation.

Materials and methods
Preparation of extract
The dried stems of the C. orbiculatus were provided by
Zhixin Pharmaceutical Co., Ltd. (Guangzhou, China). As
described previously [5, 9–14], the authentication and
preparation of COE was made by professor Wangqiang
(China Pharmaceutical University) [15]. Briefly, the pow-
der of the herb was extracted with 10-fold of 95% etha-
nol under heat for 3 h three times and the mixtures were
filtered and concentrated. Then the obtained extractions
from ethyl acetate were concentrated using a rotary
evaporator and stored at − 20 °C. Before use, the extracts
were dissolved in DMSO with the final concentration of
DMSO not exceeding 0.1%. The positive control drug,
Cisplatin (abbreviated to DDP, 2 mg/L), was product of
Haosen Pharmaceutical Co., Ltd. (Jiangsu, China) [16].

Chemical reagents and antibodies
DMEM and fetal bovine serum (FBS) was obtained from
GIBCO-BRL (Gaithersburg, MD, USA). The antibodies,
including rabbit β-actin, mTOR, phospho-mTOR,
4E-BP1, phospho-4E-BP1, P70S6k, and phospho-P70S6k
were purchased from Cell Signaling Technology (Beverly,
MA). Rabbit Bax antibody was acquired from Santa Cruz
in USA. Rabbit Bcl-2, Bcl-2 L12, and Caspase-3 antibody
from American Epitomics Company were also obtained.
HRP labeled goat anti-rabbit IgG was purchased from
Hangzhou Huaan Biotechnology Co.

Cell culture
Human hepatocellular carcinoma HepG2 cells were
obtained from the Cell Bank of Chinese Academy of
Sciences Shanghai Institute of Cell Biology (Shanghai,
China). The HepG2 Cells with high expression of
mTOR, termed as HepG2/mTOR+, were constructed by
our laboratory. The cells were cultured in DMEM which
was supplemented with 10% FBS at 37 °C in a humidified
incubator containing 5% CO2.

Cell viability assay
The cell viability was determined using MTT assay.
HepG2/mTOR+ were inoculated at a density of 1 × 104

cells per well in 96-well plates, treated with COE at
various concentrations (20, 40, 80, 160 and 320 μg/mL).
The cell incubated only DMSO was considered as the
negative control. The incubation was continued for 24,
48, and 72 h, respectively. Subsequently, 20 μL of MTT
was added to plates and incubated for another 4 h. The
supernatant was gently discarded and replaced with
150 μL DMSO to dissolve the formazan crystal. The
absorbance (A) value was detected at 490 nm. Each ex-
periment was repeated for three times.

Flow cytometry
HepG2/mTOR+ Cells treated with different concentra-
tions of COE for 24 h, cells were washed with PBS by
centrifugation for 5 min. Subsequently, cells were incu-
bated with 5 μL Annexin V-FITC and 5 μL PI or FITC
isotype control for 30 min at 4 °C in the dark. The levels
of fluorescence were analyzed with FACSort software
(Becton-Dickinson, USA). Each assay was performed
with three independent experiments.

Western blot analysis
HepG2/mTOR+ Cells were incubated with different
concentrations of COE for 24 h. The total proteins, ex-
tracted with cell lysis buffer (Beyotime, Jiangsu, China)
for 30 min on ice, were quantified by NanoPhotometer
pearl (IMPLEN, Germany). 50 μg of total protein were
separated on 10% SDS-PAGE for electrophoresis, and
then transferred to PVDF membranes. The membranes
were blocked with 5% BSA for 2 h, and then incubated
with appropriate primary antibodies overnight at 4 °C.
The following day, the membranes were incubated with
the secondary antibody for 2 h and detected by using the
ECL reagent.

Statistical analysis
All experiments were performed in triplicate, and the
results are presented as mean ± standard deviation.
Statistical analysis was carried out with GraphPad Prism
5.0 Software. The unpaired Student’s t-test was used to
determine P-values for the differences. Results were con-
sidered significantly different when P < 0.05.

Results
Establishment of the stable HepG2 cell line with mTOR
overexpression
The GV238 vector with Luciferase reporter gene was
digested with MluI and BglII. And then the mTOR
(NM_004958) promotor genes were cloned into GV238
vector by using molecular biological technology (Fig. 1a).
The GV238-mTOR recombinant plasmids were trans-
fected into HepG2 cells, named as HepG2/mTOR+ cells,
with using transfected GV238 vehicle HepG2 cells as
control [17]. HepG2/mTOR+ cells in logarithmic growth
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phase were seeded in a 6-well plate at 5 × 104 /well. The
cell morphology has no appreciable difference after
mTOR gene transfection under a microscope (100× mag-
nification) (Fig. 1b). The mTOR protein expression was
detected by western blots. Compared to the wild type
HepG2 cells, the mTOR protein expression in HepG2/
mTOR+ cells were significantly increased (Fig. 1c, d).
These results showed that we had successfully established
a stable HepG2 cell line with overexpressed mTOR.

COE inhibited the viability in the HepG2/ mTOR+ cells
After adding different concentrations of COE (20, 40, 80,
160, and 320mg/L), the cell viability was investigated by
MTT for 24, 48, and 72 h, respectively. Compared with
the vehicle and wide type HepG2 cells, the growth of

untreated HepG2/mTOR+ cells has not shown any signifi-
cant difference. On the other hand, in the treated groups,
the growth of HepG2/mTOR+ cells was inhibited signifi-
cantly in a dose-dependent and time-dependent manner
(Fig. 2). The half inhibitory concentration of COE for 24 h
was 126mg/L. In order to decrease the cytotoxicity of the
drug, the concentrations (20, 40, and 80mg/L) of COE
were selected for further study.

Morphology of the HepG2/ mTOR+ cells
Phase-contrast images of cells from the same fields were
taken 24 h after the treatment of COE. Representative
pictures of HepG2/mTOR+ cells showed that the viabil-
ity was significantly decreased (Fig. 3a, b). Transmission
electron microscopy demonstrated that there were many

Fig. 1 Generation of the HepG2/mTOR+ cells. a Construction of the GV238-mTOR recombinant plasmid. b cell morphology under a microscope
(100×). c and d the expression levels of mTOR in the HepG2/mTOR+ cells. (**P < 0.01, versus vehicle; ***P < 0.001, versus wild type)

Fig. 2 Effects of COE on the viability of the HCC cells. The HepG2/mTOR+ cells were treated with either 0.1%DMSO as solvent control or different
concentrations of COE (20, 40, 80, 160, and 320mg/L) for 24, 48, and 72 h, respectively, and the cell viability was evaluated with MTT assay.
(*P < 0.05, **P < 0.01, ***P < 0.001, compared with the solvent control)
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microvilli and fenestrations on the cellular surface of the
wide type HepG2 cells. There were many organelles in
the cytoplasm, and the mitochondria were regular. After
the treatment of COE, the cytoplasm was concentrated,
the cell membrane was bubbled, and the apoptotic bod-
ies were produced (Fig. 3c). It was shown that some cells
were necrotic, and the cell membranes ruptured with
the contents were released.

COE induced the apoptosis in HepG2/ mTOR+ cells
After adding different concentrations of COE (20, 40,
and 80mg/L) for 24 h, apoptosis was detected by flow
cytometric analysis (2 mg/L DDP was used as the posi-
tive control drug). There was no significant difference
between the wild type HepG2 cells and HepG2/mTOR+

cells. And the results showed that after the drug

treatment, the percentage of the apoptotic HepG2/mTOR+

cells was significantly increased in a dose-dependent
manner (Fig. 4a, b). The results of Western blots
showed that COE increased the expression of Bax
and Caspase-3. Meanwhile, COE decreased the expression
of Bcl-2 and Bcl-2 L12 in a concentration-dependent
manner, especially reducing the ratio of Bcl-2/Bax
(Fig. 4c-e). It indicated that COE induced the apoptosis of
the HepG2/mTOR+ cells in a concentration-dependent
manner.

COE effects on the mTOR signaling pathway
After adding different concentrations of COE (20, 40,
and 80mg/L) for 24 h, the protein expression correlated
mTOR signaling pathways were determined by Western
blots (2 mg/L DDP was used as the positive control

Fig. 3 Effects of COE on cellular morphology of the HCC cells. The HepG2/mTOR+ cells were treated with 0.1%DMSO as solvent control, or 2 mg/
L DDP, or different concentrations of COE (20, 40, and 80mg/L) for 24 h. a and b the HepG2/mTOR+ cells were observed under inverted
microscope and taken phase-contrast images from the same fields (100×). c the morphological changes were observed under transmission
electron microscope (2950×, Scale, 1 μm); red arrows are representative of the apoptotic bodies. (**P < 0.01, ***P < 0.001, compared with
the vehicle)
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drug). Compared to the untreated control, in HepG2/
mTOR+ cells, the protein levels of mTOR, p-mTOR and
its downstream proteins such as 4EBP1, p-4EBP1,
P70S6k, and p-P70S6k, were reduced significantly in
both dose-dependent and time-dependent manners after
COE treatment (Fig. 5).
The mTOR signaling pathway is a master regulator of

cell growth and metabolism. Dysregulation of the mTOR
pathway has been implicated in a number of human
diseases such as cancer, diabetes, obesity, neurological
diseases, and genetic disorders. Rapamycin (RAPA), a
specific inhibitor of mTOR, has been shown to be effect-
ive in treating several diseases [18]. In order to confirm
whether COE has a synergistic effect with mTOR inhibi-
tors and induces apoptosis via mTOR signaling pathways
in HepG2/mTOR+ cells, we used 100 nmol/L RAPA to
observe the effects of COE on apoptosis. The results

showed that COE reduced the cell number (Fig. 6a, b)
and induced apoptosis (Fig. 6d-g) in HepG2/mTOR+

cells. The cell morphology was observed by transmission
electron microscopy after the co-treatment of RAPA and
COE. The cell membranes were ruptured and the con-
tents were released (Fig. 6c). The expression levels of the
proteins that are involved in mTOR signaling pathways
were changed significantly. Compared with the treat-
ment with COE or RAPA alone, the co-treatment of
COE and RAPA showed a synergistic effect in HepG2/
mTOR+ cells (Fig. 6h, i). Taken together, these data re-
vealed that COE could further promote tumor cell apop-
tosis when mTOR signaling pathways are suppressed.

Discussion
Many extracts derived from herbs have been tested as
inhibitors of cancer cell proliferation both in vitro and in

Fig. 4 COE promoted apoptosis of the HCC cells. The HepG2/mTOR+ cells were treated with 0.1%DMSO as solvent control, or 2 mg/L DDP, or
different concentrations of COE (20, 40, 80 mg/L) for 24 h. a and b the apoptosis was detected by Flow cytometry. c-f the protein expression of
Bcl-2, Bcl-2 L12, Bax, and Caspase-3 were examined by Western blots. (**P < 0.01, ***P < 0.001, compared with the vehicle)
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vivo [19–21]. The preliminary results of our study
have demonstrated that COE is cytotoxic to various
cancer cells including human glioblastoma cells [11],
hepatocellular carcinoma [5–7], and human gastric
cancer [9, 10, 12, 13]. Mammalian target of rapamy-
cin (mTOR) is a class of non-conserved evolutionary
protein kinase, and involved in a variety of physio-
logical and pathological processes, such as cell prolif-
eration, cell differentiation, autophagy, angiogenesis,
etc [22–25]. The two mTOR-containing complexes
(mTORC1 and mTORC2) have different sensitivities
to rapamycin. mTORC1 is inhibited by a complex

consisted of rapamycin and FKBP12 protein [26]. In
contrast, mTORC2 is generally resistant to rapamycin,
however, in certain cell types, mTORC2 may show
sensitivity after prolonged rapamycin treatment [27].
Accumulated evidence supports that there are muta-
tions, amplifications, or deletions of mTOR signaling
pathways in many tumors. These proteins can cause
over-activation of mTOR pathways, leading to abnor-
mal tumor cell proliferation [28]. Clinical specimens
from patients with hepatocellular carcinoma were an-
alyzed by using immunohistochemistry [29]. The re-
sults showed that the expression level of mTOR is

Fig. 5 Expression of the proteins that are involved in the mTOR signaling pathways. The HepG2/mTOR+ cells were treated with 0.1%DMSO as
solvent control, or 2 mg/L DDP, or different concentrations of COE (20, 40, and 80 mg/L) for 24 h. The proteins expression of mTOR, p-mTOR,
4E-BP1, p-4E-BP1, P70S6K, and p-P70S6K were studied by Western blot analysis. (**P < 0.01, ***P < 0.001, compared with the vehicle control)
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higher than that in the adjacent non-tumor liver tis-
sue, and protein expression level of mTOR was posi-
tively correlated with malignancy and poor prognosis.
This suggests that mTOR may be a potential target
for the treatment of hepatocellular carcinoma. Bio-
markers for mTOR inhibitor efficacy have been

evaluated in both preclinical and clinical studies. Our
data identified that COE is able to inhibit mTOR sig-
naling pathways.
The Bcl-2 family is the key factor in the

mitochondria-mediated signal pathway of apoptosis [30].
Bcl-2 is an inhibitor of apoptosis, preventing the release
of mitochondrial cytochrome c, while Bax is a
pro-apoptotic factor that in turn promotes its release.
Bcl-2 L12 has been discovered as a new gene of Bcl-2
family which can inhibit apoptosis of tumor cell [31, 32]
and was found to be over-expressed in tumor tissue [33].
Caspase-3 is another important terminal cleaving en-
zyme in the process of cell apoptosis [34]. This study in-
dicated that COE could reduce the expression of Bcl-2
protein and increase the expression of Bax and
Casepase-3 total protein, while the ratio of Bcl-2/Bax
was decreased. Therefore, COE played a pro-apoptotic
role through the Bcl-2, Bax, and Casepase-3-mediated
signaling pathway. The results of the present study dem-
onstrated that COE inhibited the proliferation of
HepG2/mTOR+ cells and induced apoptosis in a
concentration-dependent manner. Furthermore, the
combination of COE and RAPA synergistically induced
apoptosis in HCC cells by regulating apoptosis-related
proteins and inhibiting the mTOR signaling pathways.

Conclusion
In summary, COE contributed to promote apoptosis of
HepG2/mTOR+ cells, which was closely related to Bcl-2
family. Also, COE was able to suppress the mTOR
signaling pathways. Nevertheless, in vivo data are still
required for further verifying our findings. Altogether,
the present study reveals that COE can be considered as
a potential antineoplastic drug for treating hepatocellular
carcinoma.
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