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Simple Summary: The genetic adaptability of malignant cells and their consequent heterogeneity
even within the same patient poses a great obstacle to cancer patient treatment. This review summa-
rizes the data obtained in the last decade on different preclinical mice models as well as on various
immunotherapeutic clinical trials in distinct solid and hematopoietic cancers on how the immune
system can be implemented in tumor therapy. Moreover, the different intrinsic and extrinsic escape
strategies utilized by the tumor to avoid elimination by the immune system are recapitulated together
with the different approaches proposed to overcome them in order to succeed and/or to enhance
therapy efficacy.

Abstract: Immune therapy approaches such as checkpoint inhibitors or adoptive cell therapy repre-
sent promising therapeutic options for cancer patients, but their efficacy is still limited, since patients
frequently develop innate or acquired resistances to these therapies. Thus, one major goal is to
increase the efficiency of immunotherapies by overcoming tumor-induced immune suppression,
which then allows for immune-mediated tumor clearance. Innate resistance to immunotherapies
could be caused by a low immunogenicity of the tumor itself as well as an immune suppressive
microenvironment composed of cellular, physical, or soluble factors leading to escape from immune
surveillance and disease progression. So far, a number of strategies causing resistance to immunother-
apy have been described in various clinical trials, which broadly overlap with the immunoediting
processes of cancers. This review summarizes the novel insights in the development of resistances to
immune therapy as well as different approaches that could be employed to overcome them.
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1. Introduction

During the last century, it has been demonstrated that the immune system can recog-
nize and, in some cases, successfully eliminate malignant cells, a concept that led to the
development of different strategies in tumor immunotherapy ranging from vaccination
and adoptive cell therapy (ACT) to the use of immune checkpoint inhibitors (iCPI).

In addition, due to their genetic instability, transformed cells are highly adaptable
and can acquire, either spontaneously or under the selective pressure of an ongoing
immune response, different characteristics that allow them to avoid such recognition or
even to actively suppress a productive immune response leading to tumor progression
and/or relapse.

After introducing the key mechanisms of immune cell recognition of tumor cells
and the major immunotherapeutic options utilized, this review summarizes the different
strategies employed by transformed cells to avoid immune recognition and delineates
various approaches to overcome such resistances that are currently tested in preclinical
mouse models as well as in clinical trials.
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2. How the Immune System Can Recognize Malignant Cells

Two different effector cells are involved in the recognition and elimination of tu-
mor cells.

CD8+ T cells are endowed with highly polymorphic T cell receptors (TCR) that specif-
ically recognize 8-9 amino acid (aa) long peptides that are presented on the surface of
nucleated cells within the cleft of human leukocyte antigen (HLA) class I molecules. These
peptides are derived from cellular proteins that undergo a multistep process of degradation
and processing that is performed by different components of the antigen-processing ma-
chinery (APM). In detail, polypeptide chains are targeted at the multicatalytic proteasome
and the yielded peptides can be further trimmed by different cytosolic and/or endoplasmic
reticulum (ER)-resident proteases. After the peptides enter the ER via the transporter
associated with antigen processing (TAP), a series of chaperone proteins such as tapasin
and calnexin assist their association with the HLA class I heavy chain (HC) and beta-2
microglobulin (β2m). The resulting trimeric complex is then transported via the trans-
Golgi to the cell surface to undergo screening by CD8+ T cells [1]. Tumor epitopes that
are recognized by CD8+ T cells can be classified in tumor-specific antigens (TSA), which
are only expressed in tumors due to mutations or fusions resulting from chromosomal
translocation and tumor-associated antigens (TAA), also expressed by healthy cells but in
altered amounts or locations such as cancer testis antigens, differentiation antigens, or viral
antigens. While the direct presentation of TSA and TAA on tumor cells via HLA class I
antigens is mandatory for CD8+ T cells to execute their effector functions, it is not sufficient
to acquire such a function. In order to develop into functional effector cells, naïve CD8+ T
cells require recognizing their specific epitope in the presence of multiple costimulatory
signals that only professional antigen-presenting cells (APC), such as dendritic cells (DC),
can provide. Thus, DCs have to uptake tumor-derived materials and to process it into
epitopes that will then not only be cross-presented on their HLA class I molecules in
order to prime CD8+ T cells but also reach the HLA class II-processing pathway for their
presentation to CD4+ T helper cells that will further promote the functional interaction
between DC and effector cells [2]

Natural killer (NK) cells recognize transformed cells by low polymorphic receptors
that surveil the general cellular healthiness using two different systems. Activating re-
ceptors, such as the Natural Killer group 2 member D NKG2D, recognize the so-called
“induced self”, namely molecules that are induced upon stress situation, like infection or
malignant transformation, and their triggering promotes NK cell activation and cytotoxic
activity. In contrast, inhibitory receptors are involved in the “missing self” recognition
through which the level of HLA expression by target cells is evaluated and, when under
a certain threshold, the inhibitory signal is not transduced and NK cell activation can be
unleashed. From the molecular viewpoint, two families of inhibitory receptors are involved.
Whereas the killer immunoglobulin receptors (KIR) directly interact with different families
of classical HLA class I alleles, NKG2A indirectly evaluates HLA class I expression by
binding to the nonclassical molecule HLA-E that presents peptides derived from the leader
sequence of the classical HLA class I molecules, thus indirectly providing their quantifica-
tion [3]. NK cells can also be activated by triggering of the CD16 receptor upon interaction
with the constant fragment of different subclasses of antibodies, thereby leading to the
antibody-dependent cellular cytotoxicity (ADCC) of antibody-coated (tumor) cells [4].

3. Immunotherapeutic Approaches

Based on the evidence that the immune system can recognize and eliminate trans-
formed cells, different attempts have been undertaken for its therapeutic use, as summa-
rized in Table 1.
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Table 1. Immunotherapy approaches used in clinical trials.

Active Therapy

Peptide Based Peptide(s) for Tumor Antigen Injected with Adjuvant

Gene therapy Vector encoding (poly)peptide +/− adjuvant, delivered as virus, gene gun,
nanoparticles, etc.

Cell based In vitro manipulated DC

Passive cell therapy
TIL Expanded in vitro with different protocols

Engineered cell CAR or recombinant TCR
T cells or NK cells

Adjuvant therapy

Retargeting Bispecific antibodies and derivatives

Boost of response IL-2, IL-15, and derivatives
Trigger of costimulatory molecules (CD40, OX40, 4-1BB, etc.)

Block negative feedback
Block iCP (CTLA-4, PD1/PD-L1 axis, etc.)
Removal of suppressive (immune) cells
Reversion of suppressive TME (hypoxia, cytokines, etc.)

Microbiota manipulation

In light of the success of vaccination strategies against infectious disease, similar
approaches have been attempted for tumor therapy. During the last three decades, different
formulations of tumor antigenic materials have been injected into patients in combination
with steadily improving adjuvants in order to recruit professional APC like DCs to enhance
epitope cross presentation. Due to their central role in the proper activation of T cells, DCs
have also been directly used as vaccination material upon in vitro manipulation to provide
them with tumor-derived antigen(s) [5,6]. Despite the higher technical requirements and
costs of such strategies, DC vaccines allow for quality control of the DC functionality that
their in vivo targeting cannot provide.

Opposite to these forms of active immunotherapy is the ACT, where preactivated
effector cells are transferred into the patients to eradicate the tumor. Initially, these effector
cells were tumor-infiltrating lymphocytes (TIL) derived from the autologous tumors that
have been expanded and activated in vitro [7]. Nowadays, with the development of
genetic engineering, the prevailing approach in the clinic is the usage of autologous T
cells taken from the peripheral blood that have been engineered to express tumor-specific
TCR or chimeric antigen receptors (CAR) [8,9]. Due to the possible problems derived
from the co-expressed endogenous TCR in engineered T cells, NK cells are also employed
for engineering with CAR [10] and are currently being evaluated in different clinical
trials [11,12]. An alternative to genetic retargeting of effector cells against the tumor
are bispecific antibodies and derivatives, e.g., recombinant molecules consisting of two
different domains recognizing tumor-specific surface structure(s) and the CD3 receptor,
respectively, thus serving as a bridge connecting T cells and tumor cells without the
requirement of genetic engineering of the former [13].

Another therapeutic strategy consists in the provision of molecules that enhance the
functionality of the effector cells directly in vivo by either providing positive stimuli or
by blocking negative ones. Regarding the first setting of positive stimuli, this could be
mediated by the injection of T cell growth/stimulatory factors such as interleukin (IL)-2 or
IL-15, either in their “natural” form or upon genetic engineering, in order to improve the
activation of effector cells and, in the case of IL-2, to reduce its interaction with regulatory
T cells (Treg) [14–16]. Alternatively, agonists of different costimulatory pathways such
as CD40, 4-1BB, or OX-40 have been implemented to promote optimal stimulation of T
cells in vivo [17]. Since the systemic administration of such stimuli can result in adverse
toxic side effects, many tumor-targeting strategies have been implemented to enhance their
functionality, including nanoparticles or conjugation with retargeting antibodies [18,19].

The second strategy emerged with the discovery of different negative feedback mech-
anisms of the immune system that result in the shutdown of an ongoing immune response
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in order to avoid damage to healthy tissues as well as development of autoimmunity. These
so-called immune checkpoints (iCP) can be hijacked by tumors to protect themselves from
immune effector cells. Indeed, tumor cells can upregulate cytotoxic T lymphocyte antigen
(CTLA)-4 or programmed death ligand 1 (PD-L1), which can inhibit T cells by competing
with the stimulatory signal of CD28 and by triggering inhibitory receptor programmed cell
death 1 (PD1), respectively [20]. Furthermore, tumor cell-intrinsic checkpoint molecules
can also directly regulate tumor cell proliferation by acting on the EGF-R pathway [21].
The injection of patients with antibodies blocking such interactions provided good clinical
results, resulting in their approvement by the U.S. Food and Drug administration for usage
in different tumor types, but only in limited numbers of patients and with a frequent
development of resistances during treatment followed by tumor relapse.

With the recent discovery of the influence of the microbiota on the immune system, dif-
ferent approaches are also manipulating this “compartment” to improve patients’ outcome
and response to therapy [22].

4. Mechanism of Tumor Resistance

Different approaches have been utilized in order to dissect the mechanism(s) through
which tumor cells resist different therapeutic options, such as immunotherapy. These
include in-depth analyses of tumor material from patients using a broad spectrum of
omics-based technologies in the search for marker(s) or signature(s) that correlate with the
clinical outcome/response to therapy as well as with the immune phenotype. In addition,
preclinical animal models have been employed to validate these discoveries by overexpress-
ing or deleting selected genes and by evaluating the consequences on the tumor phenotype
and its interaction with the immune system. Altogether, these experiments resulted in the
classification of tumors into different categories based on their interaction with the immune
system and in the identification of multiple strategies through which the tumor can resist
to (immuno)therapy. These can be categorized into primary/innate resistances already
existing prior to therapy application or acquired resistances developing due to the selective
pressure of an ongoing (immuno)therapy response. From a mechanistic viewpoint, the two
forms share most of the mechanisms that are associated with the genetic, transcriptional,
and functional profiles of the tumor itself, which also influence the interplay between tumor
cells, the host immune system, and the development of an immune suppressive tumor
microenvironment (TME). It is important to underline that many of these mechanisms
cross-interact and support each other, thus making their classification into categories as
well as the identification of the optimal (combination of) therapeutic approach(es) for their
counteraction more complex.

4.1. “Cold” Tumor

The evaluation of tumors based on the presence of infiltrating T cells has primarily
divided them into “hot” and “cold” tumors, where the latter are characterized by no or
very limited T cell infiltrates, independently from the possible presence of other (myeloid)
immune cells. Analyses of the transcriptional signature(s) of these tumors has highlighted
that different oncogenic signaling pathways are involved in inducing this immune escape
phenotype in addition to their role in the malignant properties of the tumor cells.

Initially described in melanoma but then expanded to other solid tumor entities [23],
hyperactivity of the β-catenin signaling pathway has been associated with tumors devoid
of T cell infiltrates, resistance to therapy, and/or worse prognosis. Mechanistically, this can
be due to a gain of function mutation in the β-catenin gene or other unknown mechanisms,
leading to its enhanced expression or to the reduced presence of negative regulators of
this pathway. As a consequence of hyperactive β-catenin signaling in murine models,
tumor cells do not express chemokines such as CCL4 [24] or CCL5 [25], resulting in a
reduced or missing recruitment of Batf3-dependent DCs that are required for priming
antigen-specific CD8+ T cells [24]. In addition, the reduced presence of intra-tumoral
functional DC results in a reduced production of T cell attracting chemokines such as



Cancers 2021, 13, 551 5 of 15

the ligands of CXCR5, thus hampering recruitment to the tumor bed even of adoptively
transferred effector cells [26]. Whereas in most studies β-catenin hyperactivity has been
found as a primary, innate resistance mechanism, it was recently described in a patient in
which the only non-regressing metastasis displayed an enhanced β-catenin signaling and
was consequently not infiltrated by antigen-specific CD8+ T cells that were still present
in the patients´ circulation and that were able to recognize in vitro tumor cells derived
from that metastasis [27]. The β-catenin pathway is also involved in other mechanisms of
immune resistance, namely immune suppression, whereby tumor cells with hyperactive
signaling acquire the expression of CTLA-4 [28] and can secrete IL-10 [29]. In murine
models, it has been demonstrated that silencing of β-catenin via tumor-targeted delivery
of small interfering RNA can improve the response to therapy [30].

The non-infiltrated tumor phenotype has also been correlated in many different tumor
types with the loss of the oncogene phosphatase and tensin homolog (PTEN), which
results in constitutive activation of the phospho-inositol-3-kinase (PI3K), leading to an
enhanced transcription of suppressive factors that can impair DC function and priming of
an immune response [31,32]. In addition to the genetic loss, PTEN can also be modulated
at the posttranscriptional level via micro-RNAs [33] as well as long noncoding RNAs [34]
providing possible targets for its replenishment within the tumor cells in addition to the
implementation of PI3K inhibitors that might have undesired off-side effect(s).

Resistance to immune therapy and the absence of a T cell infiltrate have also been
associated with endothelial to mesenchymal transition (EMT) [35–37]. Tumors with a more
mesenchymal phenotype acquire, for example, the expression of transforming growth
factor (TGF)-β that can promote the differentiation of stromal cells toward cancer-associated
fibroblast (CAF). CAFs consist of a heterogenous cell population with distinct origins and
different genetic signatures and functions, but all favoring tumor progression via different
mechanisms [38,39]. In addition to the secretion of different suppressive cytokines, CAFs
are responsible for the secretion and organization of the extracellular matrix (ECM) that
can constitute the physical barrier to immune cell penetration [40]. Indeed, in murine
models, blocking of NOX4 not only allows for the inhibition of new CAF formation but
also the reversion of already “differentiated” CAFs, allowing better response to iCPI by for
example enhancing the penetration of CD8+ T cells within tumor cells [41]. In the clinical
setting, the evaluation of blood markers for ECM remodeling is evaluated as a biomarker
for therapy responsiveness and patients´ stratification [42,43].

In addition to treatments that directly act on the involved signaling pathway(s), there
are also more general strategies applied in different clinical trials to revert “cold” tumors
into “hotter” ones [44,45]. DC recruitment, activation, and antigen cross-presentation
might be promoted by the direct provision of adjuvants such as cytokines or ligands for
pattern recognition receptors (PRR) or by inducing immunogenic cell death of tumor cells
that will then release antigens as well as multiple PRR ligands for DC stimulation [46].
Normalization of tumor neoangiogenesis [47] as well as manipulation of the ECM [48] are
also implemented in combination therapies in order to facilitate immune cell infiltration as
well as drug or antibody penetration into the tumor.

4.2. Avoiding Recognition

As stated above, immune effector cells recognize molecular determinants on the target
cells and, thus, alterations in their expression can avoid immune cell recognition. Regarding
surveillance by CD8+ T cells, an antigenic epitope has to be recognized, meaning that an
epitope (i) has to exist and (ii) has to be presented on the tumor surface via an appropriate
HLA class I molecule. Concerning the first issue, a link between the tumor mutational
burden (TMB) and its “immunogenicity” has been suggested, since it can directly correlate
with the amount of neo-epitopes to which T cells have not been tolerized in the thymus
and can thus mount an active immune response. Vice versa, tumors with a low TMB can
have no epitope recognized and are thus spared from CD8+ T cell recognition but might be
therapeutically targeted by NK cells.
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For tumors that express antigenic epitopes, many escape strategies have been identi-
fied. First, if the epitope does not belong to a protein directly required for the transformed
phenotype but is the consequence of a passenger mutation, the immune pressure can
lead to tumor editing and selection of a tumor subclone that has lost its expression [49].
Otherwise, its processing and/or association with the MHC class I molecule can be affected,
leading to a reduced presence on the cell surface. The altered expression of central APM
components, such as HLA class I HC, TAP or β2m, has been demonstrated in different
tumor types and has been linked either to irreversible loss of function mutation/loss of
heterozygosity [50–52] or to a deregulated expression [53] that could be due to epigenetic
regulation [54], translational control [55], or posttranscriptional fine tuning via the expres-
sion of micro-RNA [56,57] or RNA-binding molecules [58]. Since total loss of HLA class I
surface molecules results in enhanced sensitivity to NK cell recognition, tumor cells can
also downregulate only the specific HLA class I allele presenting the epitope against which
the immune response is focused [59]. Furthermore, the altered expression of proteases
involved in peptide processing, such as ERAP1, also represents an evasion strategy by
leading to the production of different sets of peptides that do not encompass the antigenic
epitope(s) or have lower/no affinity for the expressed HLA class I alleles [60].

Since all APM components can be transcriptionally upregulated by interferon (IFN)-γ,
mutations in the components of its signaling pathway such as janus kinases (JAK) or
signal transducer and activator of transcription (STAT) [50,61,62] can make tumor cells
resistant to immunotherapy by avoiding recovered/enhanced antigen presentation [63]
even in response to local IFN-γ production during an ongoing immune response. Moreover,
hypoxia can also induce a downregulation of HLA class I expression that is not reverted by
IFN-γ due to the inhibition of its downstream signaling [64], thus further highlighting the
importance of a functional IFN signaling pathway for sensitivity to immune therapy.

For all non-somatic alterations, epigenetic modifications have been attempted to in-
duce the re-expression of differentiation antigens in order to recover therapy responses [65].
Such approaches have to be evaluated carefully because of the widespread effects of such
a reprogramming [66]. While inhibition of the methyltransferase EZH2 can recover HLA
class I APM expression in different tumor types [54] and has also been demonstrated to
“repolarize” Treg [67], it can also induce the expansion of myeloid-derived suppressor cells
(MDSC), thus possibly nullifying its positive effect [68].

Regarding recognition by NK cells and in particular by NKG2D, it has been demon-
strated that tumor cells can reduce ligand expression via epigenetic mechanisms [69,70].
Moreover, tumors can also shed the ligands and/or accumulate them within secreted
exosomes, reaching the double effect of reducing the presence of the recognition structure
on their own surface while still inducing triggering of the receptor on NK cells, which
results in receptor downregulation and thus reduced NK cell functionality [71].

Additional resistance mechanisms to effector cell recognition comprise an altered
expression of adhesion molecules such as ICAM, thus impairing the formation of a stable
and productive immune synapse between effector and target cells [72] or an intrinsic
resistance to killing obtained by upregulation of the serine proteinase inhibitor [73] or by
autophagy-mediated degradation of granzyme B [74].

4.3. Actively Suppressing the Immune Response

Tumor cells can also actively suppress effector cells in a direct cell–cell contact-
dependent way or indirectly via the recruitment of suppressive cells and/or the induction
of a suppressive TME.

4.3.1. Direct Inhibition via Upregulation of iCP and Their Inhibitory Ligands

As already stated above (see Section 3 and Table 1), the immune system has different
negative feedback loops to shut down an immune response, which can be hijacked by the
tumor to protect itself. Activated effector cells upregulate not only PD1 but also other iCPs
such as T cell immunoglobulin and mucin domain 3 (TIM-3), T cell immunoreceptors with
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Ig and ITIM domains (TIGIT), and/or lymphocyte-activation gene (LAG)-3 that, upon
ligand triggering, reduce (some of) their effector functions [75]. The expression of differ-
ent combinations of those receptors on T cells indicates different stages of dysfunctional
phenotypes that, until a certain timeframe, can still be recovered. However, thereafter, the
cells are in a state of irreversible anergy or senescence, which cannot be reverted by treat-
ment anymore [76]. This is also functionally confirmed, since TIL obtained from patients
that relapsed under iCPI could still be reactivated in vitro in the presence of IFNα [77].
Similarly, both in melanoma and in lung cancer patients, it has been demonstrated that
patients progressing after iCPI were able to respond to a second treatment targeting the
same iCP molecule not only with an alternative antibody [78,79] but also by using exactly
the same one [79–81].

In addition to the side effects caused by iCPI treatment, further attention has to be
taken into account upon their implementation, since in some patients, so-called hyper-
progressors, iCPI, can induce a much faster tumor growth. While many studies are still
ongoing to identify the underlying mechanism(s), one possibility seems to be correlated
wtih tumor intrinsic expression and signaling function of PD1. Indeed, tumor cells from
a patient with non-small cell lung cancer that progressed upon PD1 blockade expressed
PD1. Furthermore, experiments with murine cell lines demonstrated that PD1 signaling
within the tumor upon blockade of the interaction with its ligand promoted tumor cell
proliferation and survival [82]. In contrast, similar studies performed with melanoma cells
found opposing effects of intra-tumor PD1 signaling [83].

An additional inhibitory ligand frequently upregulated by tumor cells is the nonclas-
sical HLA-G molecule, which is physiologically expressed at the fetal–maternal interface to
maintain tolerance to the semi-allogeneic fetus but can be hijacked by tumor cells to inhibit
effector cells as well as myeloid cells [84].

In light of the increasing interest on NK cells as an (additional) antitumor effector cells,
blocking antibodies against their iCP NKG2A are also currently implemented in clinical
trials in order to release NK cells from inhibition [85].

4.3.2. Recruitment of Immune Suppressive Cells

Both within the lymphoid and myeloid compartment, cells with suppressive functions
responsible for maintaining tolerance and avoiding autoimmunity exist, which can be used
by tumor cells to promote their survival.

Among the different CD4+ T cell subpopulations, there are Treg characterized by the
expression of the transcription factor FoxP3, by high levels of CD25, and by low levels
of the alpha chain of the IL-7 receptor (or CD127). Treg can suppress CD8+ effector cells
both in an antigen-specific and -unspecific way. Different strategies are used to reduce
their suppressive activity either through depletion, which can be, for example, an “off side”
effect of different chemotherapeutic drugs, such as cyclophosphamide [86], or to repolarize
them, for example, by epigenetic remodeling [67].

Regarding myeloid cells, many oncogenic pathways induce tumor cells to promote
myelopoiesis and recruitment of myeloid cells into the tumor bed, leading to enhanced
frequencies of tumor-associated neutrophils (TAN), MDSC, and/or tumor-associated
macrophage (TAM) that favor tumor outgrowth by multiple mechanisms. These include
the secretion of vascular endothelial growth factor (VEGF) that promote vascularization
and thus tumor spread to the metastatic niche. Furthermore, production of the suppressive
cytokine IL-10 inhibits DC and effector T cells, whereas the expression of arginase or
indoleamine 2,3-dioxygenase (IDO) contributes to the formation of a suppressive TME
(see below). In addition, they can also mediate a “direct” resistance to iCPI therapy by
removing antibodies from the surface of nearby effector cells [87]. In order to contrast their
activity, many different strategies have been attempted in murine models as well as clinical
trials either alone or in combination with other approaches, including iCPI. Strategies
have been applied to reduce their expansion by interfering with the colony-stimulating
factor (CSF)-1/CSF1R pathway using antibodies or small molecule inhibitors [88–91] or to
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block their recruitment by targeting the CCL2/CXCR2 [92] as well as the CXCL12/CXCR4
axis [93,94]. Interestingly, the removal of MDSC can result in tumor evasion by enhanced
accumulation of Treg [95] or TAN [96]. Other attempts have been focused on the repolar-
ization of their functional activity either modulating epigenetic mechanisms using, e.g.,
histone deacetylase (HDAC) inhibitors [97,98] or targeted therapies, such as inhibitors of
the Bruton tyrosine kinase (BTK) [99–101].

4.3.3. Establishment of a Suppressive TME

To exhibit their effector function, CD8+ T cells as well as NK cells require a permissive
environment, where enough nutrients are available to support their metabolic demand of
cytotoxicity and/or cytokine production. With the discovery of the immune metabolism
and the close link between functional polarization and metabolic pathways [102], it has
become evident that effector cells require oxygen and glucose, two metabolites that are
frequently underrepresented within the TME due to the high metabolic rate of malignant
cells. In addition, important aa such as tryptophan and arginine can be depleted from
the TME via the activity of MDSC-derived enzymes, leading also to an accumulation of
degradation products such as kynurenine that can have a direct inhibitory activity. Further-
more, the expression of enzymes involved in the degradation of ATP are upregulated in
tumor or infiltrating cells leading to the accumulation of adenosine that can bind to specific
receptors, thereby inhibiting effector cells.

In order to contrast those aspects of the TME, many different strategies are attempted.
In ACT settings, protocols are currently being optimized in order to improve the

metabolic fitness of expanded cells to allow better and prolonged functionality within the
TME [103]. Protocols for the in vitro activation and expansion of the effector cells are imple-
menting different cytokines to avoid effector cell exhaustion upon stimulation [104–106]
or are already adapting the cells to the hypoxic conditions of the tumor [107]. Using
genetic engineering, effector cells have been provided with additional molecules that will
help to deal with the suppressive TME, e.g., detoxifying enzymes such as catalase [108]
or dominant negative receptors that avoid sensing TGF-β [109]. In addition, CAR or
recombinant TCR have been endowed with additional intracellular signaling domain(s)
or metabolic regulators in order to provide an enhanced fitness upon in vivo activation
within the TME [110,111] or have been depleted of negative feedback signaling [112–114].

To revert the hypoxic environment in addition to targeting the vasculature, different
nanoparticles containing MnO2 have been utilized in murine models with the double
function to transport the therapeutic cargo to the tumor and then to decompose in situ and
release oxygen to revert local hypoxia and thus to further promote response to immunother-
apy [115,116]. Similarly, the antidiabetic drug metformin by inhibiting the mitochondrial
complex I and thus reducing oxygen consumption via the mitochondria has provided
encouraging results in reverting tumor hypoxia and in improving immune cell functions
both in mice and in humans [117,118]. Targeted therapy or blocking antibodies have
also being utilized to directly inhibit the suppressive cytokine TGF-β [119] or to reduce
adenosine production by suppressive immune cells as well as tumor cells via CD73, CD39,
or CD38 [120,121]. Interestingly, although arginase “normally” has an immunosuppressive
function and is therefore targeted with specific inhibitors to revert MDSC suppressive
activity [122], a melanoma patient that did not respond to iCPI responded to treatment
with recombinant arginase, since its tumor was missing two enzymes involved in the
recycling of arginine, making it dependent on exogenous sources [123].

This example, together with the existence of hyper-progressor patients in response
to anti-PD1 antibody treatment underline how important a deep understanding of the
multiple immune escape mechanisms occurring within the tumor is, which then allows for
the selection of a personalized approach to tumor (immuno)therapy.
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5. Conclusions

The interaction between the immune system and tumor cells is a double-edged sword,
since the immune system can recognize and destroy the tumor cells; however, based on
their high adaptability, spontaneously or under the pressure of such recognition, tumor
cells develop different strategies to escape from immune surveillance or to actively suppress
immune effector cells. Since many of these processes coexist and cross-interact with each
other within individual diseases, multiple immune-based approaches of tumor therapies
have to be combined and selected in a highly personalized way. This might be achieved
not only by an in-depth analysis of the molecular and immunologic makeup of the tumor,
its microenvironment, and the circulating immune cells but also by the development of
ex vivo models for testing the efficacy of multiple therapeutic approaches emerging from
ongoing clinical studies as well as preclinical murine experiments. Moreover, due to the
tumor heterogeneity, particularly in the metastatic setting, it is possible that different
tumors within the same patient respond differently to therapy, making it more difficult to
select the best treatment(s) for each individual patient.
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Abbreviations

aa amino acid
ACT adoptive cell therapy
ADCC antibody-dependent cellular cytotoxicity
APC antigen-presenting cells
APM antigen-processing machinery
β2m beta-2 microglobulin
BTK Bruton tyrosine kinase
CAF cancer-associated fibroblast
CAR chimeric antigen receptor
CSF colony-stimulating factor
CTLA cytotoxic T lymphocyte antigen
DC dendritic cells
ECM extracellular matrix
EMT epithelial–mesenchymal transition
ER endoplasmic reticulum
HC heavy chain
HDAC histone deacetylase
HLA human leukocyte antigen
iCP immune checkpoint
iCPI immune checkpoint inhibitors
IDO indoleamine 2,3-dioxygenase
IFN interferon
IL interleukin
JAK janus kinase
KIR killer immunoglobulin receptors
Lag lymphocyte-activation gene
MDSC myeloid-derived suppressor cell
NK natural killer
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NKG2D Natural Killer group 2 member D
PD1 programmed cell death 1
PD-L1 programmed cell death ligand 1
PI3K phospho-inositol-3-kinase
PRR pattern recognition receptor
PTEN phosphatase and tensin homolog
STAT signal transducer and activator of transcription
TAA tumor-associated antigen
TAM tumor-associated macrophages
TAN tumor-associated neutrophils
TAP transporter associated with antigen processing
TCR T cell receptor
TGF transforming growth factor
TIGIT T-cell immunoreceptor with Ig and ITIM domain
TIL tumor-infiltrating lymphocytes
TIM-3 T-cell immunoglobulin and mucin domain-3
TMB tumor mutational burden
TME tumor microenvironment
Treg regulatory T cells
TSA tumor-specific antigens
VEGF vascular endothelial growth factor
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