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Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with chronic and recurrent 
characteristics caused by multiple reasons. Although the pathogenic factors have not 
been clarified yet, recent studies have demonstrated that intestinal microbiota plays a 
major role in UC, especially in the immune system. This review focuses on the descrip-
tion of several major microbiota communities that affect UC and their interactions with 
the host. In this review, eight kinds of microbiota that are highly related to IBD, including 
Faecalibacterium prausnitzii, Clostridium clusters IV and XIVa, Bacteroides, Roseburia 
species, Eubacterium rectale, Escherichia coli, Fusobacterium, and Candida albicans 
are demonstrated on the changes in amount and roles in the onset and progression of 
IBD. In addition, potential therapeutic targets for UC involved in the regulation of micro-
biota, including NLRPs, vitamin D receptor as well as secreted proteins, are discussed 
in this review.
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iNTRODUCTiON

Ulcerative colitis (UC) is a sort of chronic recurrent disorder with the characteristics of intestinal 
mucosa inflammation and ulceration (1–3). The disease causes significant morbidity worldwide, with 
morbidity and prevalence increasing over time (4). UC is also regarded as a polygenic and multiple 
diseases caused by a series of complex factors such as environment, genes, and immunomodulatory 
factors (5).

The microenvironment of the gut forms a good microbiota habitat, which has been demonstrated 
to affect many physiological conditions in earlier studies (6–8). Since intestinal microbiota is consid-
ered as an important organ of the human body in recent times, an increasing number of studies have 
linked this microenvironment to gastrointestinal diseases. Because the composition of the intestinal 
microbiota is stable over a period of time, many studies inferred the gut microbiota as a potential pre-
dictor of health status and a target for therapeutic intervention (9). Moreover, it has been report that 
intestinal microbiota has a key role in inflammatory bowel disease (IBD), including UC and Crohn’s 
disease (CD) (10). Considering the complexity and diversity of the human gut microbiota, there is 
no denying that it is difficult to demonstrate the presence of specific bacterial strains, which play a 
certain role in the pathogenic mechanism of IBD. Unlike the well-researched CD, our knowledge on 
UC is relatively deficit, and there remain many contradictions to be elucidated.

In this review, the relationship between UC and several popular microbiota communities highly 
related as well as the potential therapeutic targets for UC involved in the regulation of microbiota 
will be discussed.
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Table 1 | Changes of potential beneficial and harmful microbiota in UC.

Changes in UC Mechanisms Reference

beneficial microbiota

Faecalibacterium prausnitzii ↓ Enhancing production of Treg cells, energy supply of intestinal epithelial cells and IL-10 (30–35, 38, 40–44)

Clostridium clusters IV and XIVa ↓ Producing butyrate (34, 43–45, 58)

Bifidobacterium ↓ Inhibiting intestinal inflammation by acting on Treg cells (101, 102)

Bacteroides ↓ Inducing CD4+ cells by enhancing IL-10 and IL-17 through secreting PSA (69, 70)

↑ Invade intestinal tissues and cause damage (67)

Helicobacter pylori ↓ 5-ASA and antibiotics (105–108)

↑ Epidemiological data showed no significant correlation (109, 110)

Roseburia species ↓ Producing butyrate (44, 46)

Eubacterium rectale ↓ Unknown (33, 44)

Harmful microbiota
Escherichia coli (adherent invasive) ↑ Invading intestinal epithelial cells, replicating in macrophages and inducing granulomas (21, 94–97)

— Inactive UC patients (87, 88, 93)

Fusobacterium ↑ Unknown (38, 112–116)

Listeria monocytogenes ? Unknown (117, 118)

Candida albicans ↑ Unknown (119, 120)

PSA, polysaccharide A; UC, ulcerative colitis; Treg, regulatory T.
↓, Decrease; ↑, increase; —, unchange; ?, to be determined.
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PaRT i: MiCRObiOTa

The colon has two mucus layers, which is different from the 
small intestine with a single layer of mucus. The inner layer is a 
mucous lining that is closely linked to the intestinal epithelium, 
which provides a sterile environment. Outer layer is a mucous 
layer of varying thickness, composed of mucins, trefoil peptides, 
and secretory IgA (11, 12). Although there is bidirectional effects 
between the microbiota and the host, its direct effects on intesti-
nal epithelial cells are limited by mucus layers and antimicrobial 
peptides (AMPs) such as defensins and regenerating islet-derived 
3 gamma (Reg3g) (7, 13, 14). The healthy and complete mucus 
layer only enables intestinal microbiota to attach to the mucus 
layer instead of the direct touch of intestinal epithelial cells. There 
are four phyla of microbiota in normal human intestine including 
Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria, two 
of which (Bacteroidetes and Firmicutes) are dominant in the gut 
(15–17). In the intestinal tract of healthy people, Firmicutes, a 
community of Gram-positive bacteria, are classified into two main 
groups: Bacilli and Clostridia (primarily Clostridium cluster IV 
and Clostridium XIVa). The Gram-negative Bacteroidetes resides 
in the gut as one of the most abundant genera. And some studies 
have shown that these four groups are relatively stable in healthy 
people (9, 18). Here, in this section, we focus on the description 
of the microbiota which are closely related to the pathogenesis 
and progression of UC (summarized in Table 1 and Figure 1).

Faecalibacterium prausnitzii
The F. prausnitzii is one of the richest species. There are large 
population of F. prausnitzii bacteria in the normal human body, 
occupying 6–8%, even 20% among all kinds of microbiota  
(17, 19–23). Some studies reported it as one of the main producers  
of a short-chain fatty acid (SCFA) called butyrate in the intestine. 

SCFA has an anti-inflammatory effect that results from the 
production of regulatory T (Treg) cells and the energy supply 
of intestinal epithelial cells (24, 25). In addition, it (SCFA) also 
exerts anti-inflammatory effects through upregulating the anti-
inflammatory cytokines secretion such as IL-10 (26, 27). It was 
further reported that the anti-inflammatory effects are partially 
related to their disruption of NF-κB activation, blocking IL-8 pro-
duction (28, 29). Based on those previous studies, F. prausnitzii 
plays an important role in the protection of colonic functions 
through its anti-inflammatory mechanisms.

In recent studies, F. prausnitzii has been demonstrated to 
involve in the maintenance of intestinal health (26, 29–46). Of 
note, some studies have shown that there is a significant differ-
ence in F. prausnitzii between healthy people and UC patients (30, 
31, 33–38, 41, 46). Compared with healthy people, F. prausnitzii 
species had lower counts in UC patients (30–35, 38, 40–44). For 
instance, Machiels et al. introduced real-time PCR analysis to find 
that F. prausnitzii in UC patients had a lower abundance than 
health people. They also demonstrated an inverse correlation 
with disease activity (46). Furthermore, Varela et al. found that 
less than 12 months of remission and more than one relapse/year 
were linked with low counts of F. prausnitzii. And the recovery 
of the F. prausnitzii population after relapse has connection with 
clinical remission maintenance (42). In fact, phylogenetic analy-
sis showed that there were at least two subtypes of F. prausnitzii, 
with differences in the distribution of subtypes among people 
with gut disorders and healthy subjects (32, 39). Phylogroup I was 
accounted for 87% in healthy subjects while under 50% in IBD 
patients. By contrast, phylogroup II was found in IBD patients 
with >75%, while only 52% in healthy subjects. This study reveals 
that even though the majority of the F. prausnitzii population exists 
in both healthy subjects and gut diseases individuals, the latter 
has a reduced richness and an altered phylotype distribution 
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FigURe 1 | Role of the gut microbiota in the pathogenesis of UC. The picture describes the changes in the major intestinal microbiota in the UC and its influence on 
gastrointestinal. This illustration contains 11 types of intestinal microbiota and their changes mentioned in this review. The mechanisms underlying the effects of 
certain microbiota on the gastrointestinal are described. It includes microbiota acting on DC cells by secreting substances such as PSA, butyrate and SCFAs. Then, 
DC cells further act on CD4+ T cells or regulatory T (Treg) cells to inhibit inflammation. There are also mechanisms by which AIEC destroys the gut barrier and further 
induces inflammation. The first four species of microbiota are painted in dark red, representing harmful microbiota. The other seven species of microbiota are 
painted in other colors, representing healthy microbiota. UC, ulcerative colitis; DC, dendritic cell; PSA, polysaccharide A; SCFA, short-chain fatty acid; AIEC, 
adherent-invasive Escherichia coli.
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exists among diseases (39). So far, it is unknown whether there are 
any other subtypes within the species or other Faecalibacterium 
species. Besides the researches in patients, there are also some 
studies in experimental data. For instance, Martín et al. reported 
that administration of F. prausnitzii led to a significant decrease in 
IBD severity in both severe and moderate chronic colitis models. 
They also demonstrated that this kind of microbiota could pre-
vent physiological damage in a chronic low-grade inflammation 
murine model (47, 48). Furthermore, Zhang et  al. found that  
F. prausnitzii inhibits interleukin-17 to ameliorate colorectal 
colitis in rat (49).

Although some studies have shown the characteristics of  
F. prausnitzii, the influential factors of F. prausnitzii still remain 
to be unclarified. For instance, treatment with mesalazine and 
immunosuppressive agents did not restore the number of  
F. prausnitzii (37). On the contrary, it was also reported that the 
plenty of F. prausnitzii was increased in time of induction therapy 
in patients (36).

Clostridium
Clostridium is a community of Gram-positive bacteria, which 
includes several significant human pathogens such as the 
causative agent of botulism and an important cause of diarrhea, 
Clostridium difficile. Clostridium species normally inhabit in 

animal and human soil and intestinal tract. It also exists as a nor-
mal resident in the healthy lower reproductive tract of women 
(50). There are three major species (C. difficile, Clostridium 
coccoides, and Clostridium leptum) of Clostridium species related 
to UC.

As a Gram-positive bacterium, C. difficile could produce 
toxins and cause colitis, especially in patients with antibiotic 
treatment, resulting in the destruction of commensal microbiota  
(51, 52). Toxins secreted by C. difficile can lead to a severe effect on 
intestinal mucosa. Of note, it has been reported that Clostridium 
difficile infection (CDI) led to the damage of intestinal barrier 
through the secretion of exotoxin (53). CDI has risen sharply in 
the past two decades. IBD patients are more likely to be infected 
with C. difficile because of immunosuppression and dysbiosis 
in  vivo (54–56). Singh et  al. showed that individuals with IBD 
had a 4.8-fold increase in risk of CDI than individuals without 
IBD and there is no difference between individuals with UC 
vs. CD (55). Interestingly, Mabardy et al. reported a decrease of 
mortality for IBD and non-IBD patients with C. difficile but a 
greater decrease in mortality for IBD patients (54). The incidence 
and severity of IBD associated with CDI are significant, especially 
in UC patients with colonic involvement, where the probability 
of surgery is 20% (57). Notably, C. difficile has been discussed to 
cause the relapse of IBD (58). The main problem raised by the 
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current study is that CDI is produced after antibiotic treatment 
(59, 60). UC patients may have a higher risk of infection with 
C. difficile because of antibiotics and immunomodulatory drugs. 
However, it is worth mentioning that, in addition to the poten-
tial pathogenicity of C. difficile, there is no direct evidence that  
C. difficile can cause UC.

On the contrary, the other two Clostridium species are  
C. coccoides (also called Clostridium clusters XIVa) and C. leptum 
(namely, Clostridium clusters IV), which appears to be credible 
factor related to UC (34, 43, 44). Clostridium clusters IV and 
XIVa were demonstrated to play a significant role in maintaining 
intestinal function by producing butyrate (45, 61). Furthermore, 
it was reported that those two microbiota were reduced in the 
occurrence of UC, suggesting a potential therapeutic target in the 
treatment of UC (43, 44). For instance, C. leptum was reported to 
induce murine tolerogenic dendritic cells (DCs) and Treg cells 
in vitro while disrupting the immune inflammatory response (62).

Bacteroides
Bacteroides are a genus of Gram-negative, obligate anaerobic 
bacteria, which are important components of the mammalian 
gut commensal bacteria. Bacteroides species are non-endospore-
forming bacilli and may be either motile or non-motile depending 
on the species of the host. Bacteroides species are usually genetically 
diverse and constitute the dominant microbiota in the mammalian 
gastrointestinal tract, playing a fundamental role in processing 
complex molecules in the host gut to simple molecules (63, 64).

The bacteria can exert its beneficial effects on the host by immune 
regulation and maintenance of homeostasis. It was reported that  
UC showed an increase of the number of Bacteroides fragilis, 
which could enhance the mRNA expression of anti-inflammation- 
related cytokines such as IL-10, through the secretion of polysa-
ccharide A (PSA) (65–68). Colonized B. fragilis can reverse CD4+ 
T-cell defects and Th1/Th2 imbalance in germ-free mice (65). 
Furthermore, it was suggest that B. fragilis could protect from 
experimental colitis, possibly by inducing CD4+ cells via IL-10 
(69, 70). For instance, Round et al. reported that B. fragilis directed 
Foxp3+ Tregs development and germ-free animal monocoloniza-
tion by augmenting the suppressive capacity of Tregs and inducing 
the anti-inflammatory cytokines production solely from Foxp3+ 
T  cells in the gut (70). Besides those researches conducted on 
patients, experimental data were obtained in animal models. For 
instance, there has been reported that Il10−/− mice had increased 
proportions of Bacteroides species (71). In addition, Okayasu et al. 
found that the amount of Bacteroides was significantly increased 
in mice with acute and chronic UC (72).

Based on the above evidence, we believe that B. fragilis is 
critical for maintaining a healthy physiological state of the host. 
However, B. fragilis is not entirely beneficial in UC. Contrary to 
previous reports, it was reported to invade intestinal tissues and 
cause damage in individual patients (73). In addition, other gen-
era of Bacteroides (Bacteroides vulgatus and Bacteroides ovatus) 
were also found to influence IBD progression (74–80).

Escherichia coli
Escherichia coli, usually found in the lower intestine of warm-
blooded organisms, belongs to the family of Enterobacteriaceae  

(a large family of Gram-negative bacteria that includes many harmful 
species). As a commensal bacterium widely found in vertebrates, 
it infected many people each year through intraintestinal and 
extraintestinal pathways and was reported to kill more than two 
million humans per year (81). Because E. coli can be transmitted 
in water and sediment, it is often used as a test indicator of water 
pollution. The temperature and nutrients in these environments 
can support the viability of saprophytic E. coli (82, 83).

It has been reported that the number of E. coli is elevated 
in UC, whether in mouse models or UC patients (21, 84–89). 
For instance, the number of E. coli at the inflammatory sites of 
UC patients showed a significant increase compared with the 
control group. Meanwhile, comparative analysis method was 
introduced to analysis the restriction patterns of E. coli isolated 
from inflammatory and unchanged tissues, respectively. Those 
results showed that the local inflammatory change did not pro-
mote specific strains of E. coli (87). Siczek et al. also demonstrated 
that administration of NanoAg2 could reduce the number of  
E. coli alleviating colitis in experimental models of UC (90). Some 
other reports, however, showed that the number of E. coli did 
not rise significantly compared with healthy controls (41, 91, 92). 
Considering the increased number of E. coli has connection with 
the activity status of UC patients, the difference in the severity 
of UC may account for the reason. For instance, more abundant 
of E. coli were found in active UC patients than in inactive UC 
patients or healthy people (87, 88, 93).

Escherichia coli from ileal CD patients, particularly adherent-
invasive Escherichia coli (AIEC) strains, have been reported to 
be enriched in UC patients (94, 95). The concentration of E. coli 
in mucosal sample is larger than that in fecal sample (96). The 
invasive ability of AIEC strains allows bacteria to move through 
the human intestinal barrier to the deep tissues. Furthermore, 
AIEC is able to invade intestinal epithelial cells, replicate in mac-
rophages and induce granulomas in vitro (97). AIEC adheres to an 
N-glycosylated chitinase 3-like-1 on IECs via the chitin-binding 
domain of chiA promoting the pathogenic effects of AIEC in mice 
with colitis (98). The number of AIEC can affect the course of 
the disease. In addition, mesalazine, an anti-inflammatory drug, 
can decrease the number of AIEC and relieve inflammation in 
patients with IBD (99). Therefore, mesalazine might serve as a 
potential therapeutic strategy in the treatment of UC caused by 
AIEC infection.

Others
Bifidobacterium, a community of anaerobic Gram-positive genus, 
is everywhere in the intestine (100). Bifidobacterium is widely 
used as one of probiotics, and studies have demonstrated that it 
plays a significant role in the UC treatment. It was demonstrated 
that oral administration of Bifidobacterium could block intestinal 
inflammation by acting on Tr1 cells, leading to the production of 
IL-10, thereby ameliorating colitis in immunocompromised mice 
(101, 102). However, so far, since we have little knowledge on the 
relationship between Bifidobacterium and UC, further studies are 
demanded on this issue.

Helicobacter pylori is found in the gastrointestinal tract, 
characterized by its microaerophilic metabolism and spiral shape 
(103, 104). Although H. pylori is widespread in the epithelium of 
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FigURe 2 | Possible mechanisms controlled by NLRPs, VDR, and Metrnl in regulation of intestinal homeostasis and ulcerative colitis. NLRP3 and NLRP6 
inflammasomes regulate secretion of IL-1β and IL-18. IL-18 helps to maintain a non-pathogenic gut microflora, which promote a healthy gut environment. IL-18 is 
not produced in Nlrp3−/− or Nlrp6−/− mice, leading to the development of potentially pathogenic species. Nlrp12−/− mice results in a more inflammatory environment 
caused by higher production of cytokines such as IL-1β and IL-6. ATG16L1 is decreased in Vdr−/− mice, which leading to reduction of AMP. Furthermore, ATG16L1 
decreasing can also inhibit IL-18 production through upregulating NLRP3 expression. In the intestinal epithelial cell-specific Metrnl knockout mice, reduction of AMP 
leading to microbiota imbalance. NLRP, NLR family, pyrin domain-containing; VDR, vitamin D receptor; AMP, antimicrobial peptide.
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the stomach, studies have shown that it can also be detected in 
the colon and fecal in UC patients (105–108). The relationship 
between UC and H. pylori is contradictory and complex. For 
example, it was demonstrated by Engler et al. (109) that infection 
or treatment with H. pylori significantly alleviated the severity 
of DSS-induced chronic colitis as well as T-cell transfer-induced 
colitis both in clinical symptom and histopathological features, 
indicating the protective role of H. pylori in UC. However, 
some epidemiological data showed that there was no significant 
correlation between H. pylori and UC (110, 111). Thus, future 
studies are needed to distinguish between a true protective role of  
H. pylori and the outcome of UC.

Fusobacterium species are anaerobic Gram-negative bacteria, 
which are members of the normal microbiota of the oral and 
intestinal tract. However, certain species of Fusobacterium, such 
as adherent, invasive, pro-inflammatory species, were identi-
fied as UC pathogens (38, 112, 113). The relative abundance of 
Fusobacterium in the colonic mucosa of mouse colitis models 
or IBD patients is increased, among which 69% of all IBD 
patients-derived Fusobacterium were identified as Fusobacterium 
nucleatum (114–116). Moreover, commensal bacteria, includ-
ing Fusobacterium varium that was one of mucosal organisms 
isolated from UC patients, were found as a possible pathogen in 
UC (112, 113).

Apart from those above microbiota, there are some other spe-
cies relate to the pathogenesis and progression of UC, including 
Roseburia hominis, Eubacterium rectale, Listeria monocytogenes, 
and Candida albicans (33, 35, 44, 46, 117–120). For instance, 
in UC patients, R. hominis, a well-known kind of Firmicutes 

phylum bacteria that produces butyrate, differs from that of 
healthy individuals in number (44, 46). E. rectale was reported 
to be significantly reduced in abundance (33, 44), especially in 
pediatric UC (35). The Gram-positive L. monocytogenes is an 
intracellular pathogen and is often transmitted to other sites. In 
recent years, studies have found that it may exacerbate the sever-
ity of UC (117). However, in UC endoscopic biopsy samples, it 
was shown that the number of L. monocytogenes did not differ 
from the normal group. As a result, it does not stand by the 
direct action for L. monocytogenes in the IBD pathogenesis (118).  
C. albicans is most often isolated in 91.7% patients in UC and can 
delay healing of UC (119, 120).

PaRT ii: POTeNTial TaRgeTS FOR  
UC THeRaPY

In the above contents, the roles and changes of several kinds of 
microbiota in UC have been fully discussed in above contents. 
Since intestinal microbiota are important in the onset and 
development of IBD, searching for new intervention targeting 
microbiota may have potential therapeutic implications for the 
treatment of UC. It has been reported that interventions such as 
NLRPs and vitamin D receptor (VDR) may affect the pathogen-
esis and progression of UC through regulating the composition 
of microbiota. In addition, several kinds of secreted proteins have 
been demonstrated to serve as potential therapeutic targets for 
UC. In this section, we will focus on recent studies on the targets 
of microbiota, which might be potential therapeutic strategies in
the treatment of UC (illustrated in Figure 2).
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NlRPs
NOD-like receptor (NLR) family is one of the important groups 
of PRRs in IBD. The number of NLRs variety in human and 
mice are 22 and 30, respectively (121). They are characterized by 
central nucleotide binding and oligomerization domain. NLRPs 
(NLR family, pyrin domain containing) can activate caspase-1 
and start the inflammatory process (122).

The NLRP3 inflammasome is the most clarified inflammasome 
and has been reported to further affect disease progression in UC 
by influencing microbiota (123). Previous reports showed the 
changes in the number and composition of microbiota in Nlrp3−/− 
mice. Nlrp3−/− mice have been reported to have larger number 
of microbiota in colon than the wild-type mice (124). Hirota 
et al. showed that the number of Firmicutes and Proteobacteria 
are increased in the colon from Nlrp3−/− mice compared with 
the wild-type group (125). Although Nlrp3−/− mice were dem-
onstrated to be highly susceptible to DSS-induced UC in several 
studies, one study put forward the contrary results proving that 
deficiency of the NLRP3 inflammasome protected mice against 
DSS (124–127). Therefore, further efforts are demanded in the 
determination of the effects and mechanisms of the NLRP3 
inflammasome in UC so that we are able to take advantage of 
the NLRP3 inflammasome in the treatment of UC in the future.

The expression of the NLRP6 inflammasome can be detected 
in both the large intestine and the small intestine. It was reported 
that Nlrp6−/− mice more susceptible to UC induced by DSS 
with tissue injury, bleeding, and increased permeability of the 
gut epithelium (126, 128). It was supposed that the changes in 
microbiota population of these mice might result from aberrant 
host–pathogen interactions at this site (129).

The NLRP12 inflammasome has also been found to be par-
ticipated in the inflammatory process of the colon, especially the 
protective role in acute colitis. Nlrp12−/− mice exhibited more 
severity in colitis upon DSS administration than wild-type mice 
(130, 131). For instance, Zaki et al. showed that Nlrp12−/− mice 
were highly vulnerable to colon inflammation, indicating the 
connection with increased production of inflammatory cytokines 
including IL-1β and IL-6. Those effects were led to by the activa-
tion of inflammation-related pathways such as NF-κB and ERK 
signals in colonic macrophages.

The current major problem is that we have not yet been able 
to figure out its downstream mediators of the NLRPs and their 
inflammasomes. It is not clear which factors mediate the effects 
and whether the observed results are related to a specific micro-
biota or a combination thereof.

vitamin D Receptor
Vitamin D is a group of lipid-soluble steroid substances that pro-
motes the absorption of calcium and magnesium ions. Besides, it 
has various biological effects, including depression, cardiovascu-
lar disease and cancer (132–134). The VDR as a nuclear receptor 
of vitamin D plays an important role in regulating intestinal 
microbiota homeostasis and commensal bacteria living environ-
ment (135–139). It has been reported that VDR signaling pathway 
abnormalities and low expression are related to UC (140–143).

Vitamin D can not only regulate the immune response to intes-
tinal microbiota but also change the composition of microbiota 

(144, 145). For instance, using genome-wide association analysis, 
two cohort studies showed that the variation of Vdr gene in the 
host could affect the intestinal microbiota through the measure-
ment of selected bile and fatty acids in humans (146). Chen 
et  al. reported that the levels of Eubacterium, Bacteroides, and 
Salmonella were significantly different between Vdr−/− and wild-
type mice (147). It was also demonstrated in another study that 
the number of Firmicutes was decreased and that of Bacteroides 
and Proteobacteria were increased in the fecals in Vdr−/− mice 
(144). Jahani et  al. showed that vitamin D deficiency at birth 
caused lower number of colonic Bacteroides and Prevotella later 
in life (148). Moreover, Vdr-deficient mice would cause bacterial 
imbalance, such as depletion of Lactobacillus, as well as enrich-
ment of Clostridium and Bacteroides. In addition, those changes 
might lead to alterations in some important pathways and further 
cause other diseases (149). Interestingly, giving vitamin D could 
lead to an increased number of colon Citrobacter rodentium 
through inhibiting the Th17 response (150). Remarkably, the 
lack of vitamin D diet could cause intestinal barrier dysfunction, 
which substantially made the body more susceptible to infection 
by intestinal microbiota (151). Similarly, immune changes might 
cause Vdr-deficient mice to become more sensitive to non- 
pathogenic bacteria and increase sensitivity to Salmonella-induced 
colitis inflammation (152, 153). Moreover, lacking Vdr will cause 
dysbiosis and resistance to colonization by C. rodentium through 
strengthening IL-22-producing innate lymphoid cells (154).

So far, although the positive effects of vitamin D system have 
been proven on the regulation of intestinal microbiota in animal 
studies, the evidence of those positive effects in human experiment 
were deficient in the UC patients. Thus, to ultimately take advan-
tage of intestinal microbiota in the treatment of UC, further basic 
researches and clinical studies should be conducted on this issue.

Secreted Proteins
Secreted proteins belong to a large family which can be secreted 
by a cell whether in an endocrine or exocrine manner. Among 
all of the secreted proteins, cytokines are the most studied 
proteins. Since first reported in 1965, cytokines were regarded 
as loose and broad proteins with molecular weight of 5–20 kDa 
and was demonstrated to play vital roles in the cellular activity 
(155). As we discussed earlier, several kinds of microbiota could 
affect intestinal barrier status through regulating the secretion of 
various kinds of cytokines, thus producing effects on the patho-
genesis and progression of UC. For instance, F. prausnitzii could 
upregulate the production and secretion of IL-10 while inhibiting 
the secretion of IL-8 (26, 27, 29). In addition, Bacteroides and 
Bifidobacterium were reported to act on DCs to regulate the levels 
of IFN-γ and TGF-β secreted from CD4+ T cells and Treg cells 
(156). Of note recent studies have reported that several kinds 
of cytokines, such as IL-1β and IL-10, have an impact on intes-
tinal microbiota and subsequently led to the regulation of UC  
(157, 158). It was demonstrated that interferon-β, an NLRP3 
inflammasome inhibitor and its secretion of IL-1β and IL-18, 
contributed to the amelioration of gut inflammation and mainte-
nance of gut homeostasis (159). Taken together, taking advantage 
of targeting to those cytokines might become a potentially effec-
tive therapeutic strategy in the UC treatment.

http://www.frontiersin.org/Immunology/
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Beside cytokines, another kind of important secreted proteins 
regulating the gut homeostasis is adipokine, which are secreted 
by adipocyte. For example, Metrnl, one of the adipokines, has 
been reported by studies in our lab which showed a potential 
regulatory effect on the pathogenesis and development of 
UC. Metrnl belongs to a secreted protein containing 311 
amino acids. It has a similar function to its only homologous 
gene, Meteorin (Metrn), which is a novel neurotrophic factor  
(160, 161). Recombinant Metrnl protein can accelerate neu-
roblast migration in vitro and display a neuroprotective effect 
in vivo (162). A previous study in our lab identified Metrnl as 
a novel adipokine during a process to screen new adipokines, 
demonstrating that Metrnl was abundant in the subcutaneous 
adipose tissue in both humans and mice (163, 164). Meanwhile, 
we found that Metrnl had higher expression in the human 
gastrointestinal tract, specifically expressed in the intestinal epi-
thelium (165). Consistently, the mRNA of Metrnl in the mouse 
gastrointestinal tract also had the highest expression among the 
tested 14 types of tissues. In the intestinal epithelial cell-specific 
Metrnl knockout mice, the Metrnl level in the gut fluid were 
significantly reduced, whereas the Metrnl level in the serum 
showed a decreasing tendency with no statistical significance. 
The cell-specific Metrnl deletion did not affect physiological 
conditions of body weight, food intake, blood glucose, colon 
length and histology, intestinal permeability, mucus content, or 
mucin 2 expression but significantly decreased AMPs expres-
sion, such as Reg3g and lactotransferrin (165). As AMPs are 
closely related to microbiota balance, Metrnl may become a 
potential target for UC treatment. However, developing the 
related treatment is still a long way to go.

CONClUSiON aND PeRSPeCTiveS

So far, different genera of microbiota have been described. 
It is widely acknowledged that intestinal microbiota plays a 

significant role in the pathogenesis and progression of UC.  
It has been reported that certain single microbiota or a com-
bination of individual microbiota may serve as the one of the 
causes of UC. Furthermore, more and more studies have shown 
that there is a high prevalence of certain bacterial species in UC 
patients. However, our understanding on the pathogenicity of 
the individual microbiota and the human host is still limited. So 
far, none of the bacteria have been specifically shown to be the 
direct cause of UC because the majority of the related studies 
were conducted only after the onset of disease. As we discussed 
earlier, several strategic targets for UC involved in microbiota 
were reported taking advantage of their anti-inflammatory 
effects. However, the mechanisms underlying the treatment 
of bacterial populations in specific hosts are not very clear, or 
that molecular targets are not specific. Studies have shown that 
restoring balance between the host and microbiota can reduce 
the incidence of UC. However, it is impossible to completely 
restore the microbiota, and the removal of certain pathogenic 
bacteria is not sufficient to achieve a good therapeutic effect. 
Therefore, it is necessary to further understand the molecular 
basis of host and bacterial interaction and provide a good strat-
egy for the treatment of microbiota in the future.
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