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Presently, there are no valid biomarkers to identify individuals with eating disorders (ED). The aim of this work was to assess
the feasibility of a machine learning method for extracting reliable neuroimaging features allowing individual categorization of
patients with ED. Support VectorMachine (SVM) technique, combined with a pattern recognitionmethod, was employed utilizing
structural magnetic resonance images. Seventeen females with ED (six with diagnosis of anorexia nervosa and 11 with bulimia
nervosa)were compared against 17 bodymass index-matched healthy controls (HC).Machine learning allowed individual diagnosis
of ED versus HC with an Accuracy ≥ 0.80. Voxel-based pattern recognition analysis demonstrated that voxels influencing the
classification Accuracy involved the occipital cortex, the posterior cerebellar lobule, precuneus, sensorimotor/premotor cortices,
and the medial prefrontal cortex, all critical regions known to be strongly involved in the pathophysiological mechanisms of ED.
Although these findings should be considered preliminary given the small size investigated, SVManalysis highlights the role of well-
known brain regions as possible biomarkers to distinguish ED from HC at an individual level, thus encouraging the translational
implementation of this new multivariate approach in the clinical practice.

1. Introduction

Eating disorders (ED) are typically adolescent-onset psychi-
atric conditions that cause serious disturbances to everyday
diet, such as eating extremely small amounts of food or
severely overeating. Female gender has been demonstrated as
a potent risk factor for eating disorders [1], but how much
this association can be attributed to biological rather than
social factors is uncertain [2]. The most investigated clinical
phenotypes of ED are anorexia nervosa (AN) and bulimia
nervosa (BN). AN is a serious mental disorder that leads to
death in approximately 10% of cases [3]. According to the new
DSM-5 criteria, to be diagnosed as having AN a person must
display (a) persistent restriction of energy intake relative to
requirements leading to a significantly low body weight; (b)

intense fear of gaining weight or becoming fat, even though
they are underweight; and (c) disturbance in theway inwhich
one’s body weight or shape is experienced, undue influence
of body weight or shape on self-evaluation, or denial of the
seriousness of the current low body weight. Otherwise, BN is
characterized by frequent episodes of binge eating followed
by inappropriate behaviors such as self-induced vomiting to
avoid weight gain. DSM-V criteria reduce the frequency of
binge eating and compensatory behaviors that people with
BN must exhibit, to once a week from twice weekly as
specified in DSM-IV.

To date, individual diagnosis of ED is based only on a
clinical interview complemented by physical, psychopatho-
logical, and behavioral examinations aimed at assessing the
existence of physical, emotional, behavioral and cognitive
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disturbances.However, EDdiagnosis is unstable, with clinical
features changing over time (i.e., weight normalization [11])
and often switching from anorexia to bulimia [4]. For this
reason, there is an urgent need to identify biomarkers which
may be used for helping and improving early diagnosis,
treatment planning, and monitoring of disease progression.
In the past 10 years, considerable effort has been expended in
developing advanced neuroimaging methods. As a result, a
plethora of functional and structural neuroimaging studies
have been performed to unravel the pathophysiological
mechanisms of ED [5–9]. Whereas the vast majority of these
studies reported in AN patients global reductions of total
gray and white matter [10], as well as cortical thickness [11],
a number of recent studies have emphasized regional group
differences.What has been proposedwas that ANpatients are
characterized by widespread brain abnormalities involving
(a) the mesolimbic regions (striatum, hippocampus, amyg-
dala, and cerebellum), (b) the dorsolateral prefrontal cortex,
(c) the visual cortex, and (d) the cerebellum [12]. Otherwise,
neuroimaging literature about BN summarizes the presence
of specific involvement of the reward neural system (ventral
striatum, nucleus caudate, anterior cingulate cortex (ACC),
orbitofrontal cortex (OFC)), hypothesizing that during binge
eating a person must consume greater quantities of food to
achieve the feeling of satisfaction, like an addict [13–15].

Although significant results have been achieved, the
disadvantage of these studies is that they reported neurobi-
ological abnormalities comparing patients and controls at a
group level, with consequently limited clinical translation at
the individual level. For this reason, attention has recently
turned toward alternative kinds of analyses of neuroimaging
data. In the last few years, there has been growing interest
within the neuroimaging community in classification meth-
ods, including machine learning methods. These techniques
are based on algorithms able to automatically extractmultiple
pieces of information from image sets without requiring a-
priori hypotheses of where they may be found on images.The
aim of these methods is to maximize the distance between
image groups in order to classify individual structural or
functional brain images. Several studies have assessed the
clinical relevance of these techniques showing very promising
findings mainly in the neurological realm. For instance,
machine learning techniques are able to identify very reli-
able imaging biomarkers allowing individual diagnoses of
Alzheimer’s disease [16, 17], Mild Cognitive Impairment
[18], and Parkinson’s disease [19, 20] with an Accuracy of
above 90%. In the psychiatric realm, this kind of advanced
neuroimaging method is in its relative infancy. Although
some interesting applications have been made in patients
with posttraumatic stress disorders [21], depression disorders
[22], and first-episode psychosis [23], there are no studies
investigating the potential role of these methods in ED.

For this reason, this study was aimed at employing a vali-
dated supervised machine learning method to define reliable
neuroimaging biomarkers useful to distinguish individual
with diagnosis of ED patients from healthy controls (HC) by
means of structural T1-weighted magnetic resonance images
(MRIs). This method makes uses of Principal Components
Analysis (PCA) in order to extract the most informative

features from MR images [24], while the Support Vector
Machine (SVM) approach was used to perform classification
[25]. Maps of voxel-based pattern distribution of structural
brain differences were generated. These maps show the sig-
nificance of each image voxel for SVM group discrimination.

2. Methods

2.1. Participants. From 2011 to 2012, a total of 103 patients
presenting a first diagnosis of ED were enrolled in this study.
All patients were diagnosed by two psychiatrists specialized
in ED using the Structured Clinical Interview for Diagnosis
(SCID) forDSM-IV-TR. After reviewing the diagnostic infor-
mation, the psychiatristsmade a final diagnosis of ED subtype
and proposed the patient’s participation in this research
project. Inclusion criteria were as follows: (1) age range from
18 to 40 years, (2) being female, and (3) right-handedness.
Exclusion criteria were as follows: (1) neurological illness
(such as Epilepsy or mental retardation); (2) Axis II disorders
(using the SCID-II for DSM-IV-TR) to exclude comorbidity
with personality disorders; (3) presence of brain lesions
as well as history of cerebrovascular disease, head trauma,
or hypertension; (4) psychotropic medication; (5) drug or
alcohol abuse; (6) claustrophobia; and (7) past recovery
from ED symptoms or psychiatric disorders. After a careful
evaluation of these criteria, 17 females with ED were eligible
for this study.This group included 11 patients fulfilling DSM-
IV criteria for BN and six patients fulfilled DSM-IV criteria
for AN restrictive-type. Duration of illness was rather short
for all patients (mean duration: 16 ± 5months).

ED patients were compared with a group of HC. Eighty-
one healthy volunteers were recruited by local advertise-
ments. Inclusion criteria for the HC recruitment were as fol-
lows: (1) no previous histories of neurological or psychiatric
diseases or abnormal brain MRIs and (2) being within the
normal range on the Italian version ofMinnesotaMultiphasic
Personality Inventory-2 (MMPI-2) [26]. From this large
group, we only enrolled subjects having similar demographi-
cal characteristics of those detected in ED patients. Particular
attention was paid to potential confounding factors, such as
BMI, previously demonstrated to influence brain anatomy
[27]. Thus, ED and HC individuals were individually pair-
matched by a computer-generated program, according to
their age, educational level, and BMI (±2) (for further
information, see Supplementary Materials available online
at http://dx.doi.org/10.1155/2015/924814). A total sample of
seventeen female HC was then enrolled in this study.

All participants gave written informed consent to par-
ticipate in the present study, approved by the Local Ethical
Committee according to the Declaration of Helsinki.

2.1.1. Psychiatric Assessment. Before entering the study, par-
ticipants completed a battery of self-evaluation question-
naires that included the following.

Eating Disorders Inventory-2 (EDI-2). It is a worldwide
validated questionnaire that provides a multidimensional
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evaluation of the psychological characteristics of AN and BN
[28].

Traumatic Experiences Checklist (TEC). It is a self-report
measure addressing potentially traumatizing events [29].
Different scores can be calculated including a cumulative
score and scores for emotional neglect, emotional abuse,
physical abuse, sexual harassment, sexual abuse, and bodily
threat from a person.

Dissociative Experiences Scale v. II (DES-II). It is a lifetime
28-item, self-rating questionnaire developed specifically as a
screening instrument to identify subjects that are likely to
have dissociative symptoms [30].

Somatoform Dissociation Questionnaire-20 (SDQ-20). It is a
self-rating scale developed to the investigated somatic com-
ponent of dissociation. The SDQ-20 discriminates between
dissociative and affective disorders (mood and anxiety dis-
orders) and psychotic symptoms, but a cut-off score is not
available [31].

Parental Bonding Instrument (PBI). Perceived parental rear-
ing styles were assessed using the Italian version of PBI. PBI
is a self-reporting scale with 25 items to rate paternal or
maternal attitude during the first 16 years and has four items
comprising care and overprotection factors [32].

Eating Attitude Test-26 (EAT-26). It is a 26-item self-rated
questionnaire for evaluating ED-related symptoms [33]. The
results are presented as a total score (range, 0–78).

Body Image Dimensional Assessment (BIDA). The BIDA is a
silhouette-based scale that starts from neutral figural stimuli
and attributes a direct quantitative value to the subject’s own
current and ideal body image, the most sexually attractive
figure, and the most common figure of same-gender-and-age
fellows [34].

Finally, for assessing anxiety symptoms, we employed
the Hamilton rating scale for anxiety (HAM-A), whereas for
defining depression status we employed the Beck Depression
Inventory (BDI).

2.1.2. MRI Acquisition. Brain MRI was performed according
to our routine protocol by a 3 T scanner with an 8-channel
head coil (Discovery MR-750, GE, Milwaukee, WI, USA).
Structural MRI data were acquired using a 3D T1-weighted
spoiled gradient echo sequence with the following param-
eters: TR: 9.2ms, TE: 3.7ms, flip angle 12∘, and voxel-size
1 × 1 × 1mm3. Subjects were positioned to lie comfortably
in the scanner with a forehead-restraining strap and various
foam pads to ensure head fixation. All acquired images were
visually inspected by expert physicians and neuroradiologists
to ensure that none showed signal artifacts.

2.2. Classification of MRI Studies: The Machine Learning
Method. Weemployed a validated supervisedmachine learn-
ing method [20] for the individual differential diagnosis of

ED. PCA was applied to whole-brain structural T1-weighted
MRIs in order to extract the most informative features for
class discrimination, while a SVM algorithm [25] was used
to perform classification.

2.2.1. Image Preprocessing. Using the “Tools For NIfTI And
ANALYZE Image” toolbox (http://www.mathworks.com/
matlabcentral/fileexchange/8797), original images were
imported into the Matlab platform (Matlab version R2011b,
The MathWorks, Natick, MA).

Image preprocessingwas achieved bymeans of theVBM8
toolbox [35] implemented in the SPM8 software package [36].
This step involved (1) reorientation; (2) cropping; (3) skull-
stripping; (4) spatial nonlinear normalization to the MNI152
reference space; (5) smoothing using a Gaussian kernel with
full-width at half maximum of 8 × 8 × 8mm. Resulting
nonmodulated whole-brain images were used as input to the
feature extraction procedure. Final volume size was of 121 ×
145 × 121 voxels. VBM8 was also employed to automatically
calculate the total gray matter (GM) and white matter (WM),
as well as cerebrospinal fluid (CSF) volumes.

It is worth noting that all images were visually controlled
after each step of the preprocessing flow in order to identify
possible problems occurring as a consequence of the applied
operations.

2.2.2. Feature Extraction. After preprocessing, PCA was
applied to structural T1-weighted MRIs considering whole
brain, in order to select themost informative features for class
discrimination [24, 37]. PCAmainly consists of two steps: the
first step is the application of an orthogonal transformation
to the dataset, which results in a set of values of linearly
uncorrelated variables, or eigenvectors, called “principal
components”; extracted principal components are ordered
by their variance. The maximum number of eigenvectors
that can be extracted with a nonzero associated eigenvalue is
related to the lower sample dimension of the dataset. In this
case, the number of extracted eigenvectors with a nonzero
associated eigenvalue can at most be equal to𝑁− 1,𝑁 being
the number of subjects involved.

The second step is the projection of the dataset itself into
the PCA subspace, which heavily decreases the number of
features to be handled. Features resulting from this analysis
are called PCA coefficients, and they are the ones used
for classification in place of the original dataset [38]. For
group comparison, we also studied the percentage of retained
variance as a function of the number of considered principal
components.

Obtained PCA coefficients were finally ordered according
to their Fisher Discriminant Ratio (FDR), with the aim of
identifying themost discriminative PCA coefficients. Indeed,
FDR provides information about the class discriminatory
power of a given component, that is, the ability of each
component to separate the samples belonging to the two
classes. FDR was calculated as follows:

FDR =
(𝜇
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− 𝜇
2
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being the mean and the variance of the 𝑖th class,
respectively.

2.2.3. Classification Algorithm. SVM algorithm was used to
perform classification [20, 25, 39]. Given a set of training data,
each piece consisting of an input vector 𝑥

𝑖
𝑅
𝑁 (where 𝑖 runs

from 1 to the number 𝑁 of samples) and the corresponding
label 𝑡

𝑖
{±1}, the task of the SVM is then to compute the

optimal separating hyperplane between the two training
classes that will be able to classify unseen examples (𝑥, 𝑡) in a
correct way.This is done in terms of distance between classes;
that is, the optimal separating hyperplane is computed so
that its distance from the two training classes to be divided
is maximized. The optimal separating hyperplane will then
be used as a decision function to classify unseen data as
belonging to one of the two training classes. Mathematically,
the decision function is defined as follows:

𝑦 (𝑥) =

𝑁

∑

𝑛=1

𝑎
𝑛
⋅ 𝑡
𝑛
⋅ 𝑓 (𝑥, 𝑥

𝑛
) + 𝑏. (2)

𝑁 is the number of samples belonging to the training set; 𝑎
𝑛

is a weight constant; 𝑓(𝑥, 𝑥
𝑛
) is the kernel function; 𝑏 is a

threshold parameter. Using this decision function, class 𝑦(𝑥)
for unseen data (𝑥, 𝑡) can be predicted.

The implementation of the SVM classification algorithm
was carried out using the biolearning toolbox in Matlab.
Original datasets were divided into two discrimination
groups: ED versus HC. The extracted PCA coefficients and
the corresponding labels were used as features to train the
classification algorithm [20]. A number 𝑘 of PCA coefficients
was used, where 𝑘 runs from 1 to the total number 𝑁PC of
extracted PCA coefficients. A linear kernel was chosen for
two reasons: (1) it is able to improve generalization ability;
(2) it is the only kernel function that allows the computation
of weights and, thus, the generation of voxel-based pattern
distribution maps of brain structural differences.

2.2.4. Performances of the Classifier. In order to evaluate the
performance of the supervised machine learning method,
subjects were randomly divided into 20 subsets, each one
containing the same proportion of class labels. Evaluation
was performed via 20-fold Cross-Validation (CV), by which
in turn the training of the classifier was performed using 19
subsets and the testing was performed using the remaining
one.This procedure was then repeated 20 times, until all sub-
sets were used once as testing set. In addition, classification
performance was also evaluated by 10-fold CV.

Accuracy, Specificity, and Sensitivity were computed over
the first 𝑘 PCA coefficients, where 𝑘 runs from 1 to the total
number𝑁PC of extracted PCA coefficients, as follows:

Accuracy
𝑖

=
𝑁CC
𝑁
,

Specificity
𝑖

=
𝐴CC
𝐴CC + 𝐵IC

,

Sensitivity
𝑖

=
𝐵CC
𝐵CC + 𝐴 IC

,

(3)

where 𝑁 is the total number of images which underwent
classification;𝑁CC is the total number of Correctly Classified
(CC) images; 𝐴CC is the number of CC images belonging to
the first group; 𝐴 IC is the number of Incorrectly Classified
(IC) images belonging to the first group;𝐵CC is the number of
CC images belonging to the second group; 𝐵IC is the number
of IC images belonging to the second group. It is worth noting
that for each round of CV, image preprocessing and feature
extraction were performed separately on the training and
the testing sets. Accuracy was evaluated as a function of the
number of employed PCA coefficients.

2.2.5. Voxel-Based Pattern Distribution. For each discrimi-
nation group, maps of voxel-based pattern distribution of
brain structural differences were generated. These maps
show how significant each image voxel is for SVM group
discrimination [20]. In the training phase, in fact, SVM
assigns a specific weight to each sample (i.e., the vector of
extracted PCA coefficients of each subject) in the training
set, this weight reflecting the importance of that sample for
group discrimination. In our case, deriving discriminative
voxels basing on the SVM weights cannot be done in a direct
way, because we use PCA coefficients as input to the SVM
instead of image voxels. In order to do this, an intermediate
step was needed, that is, back-projection of each sample (i.e.,
PCA coefficients) from the PCA space to the voxel space.
Through this operation, we obtained a back-projected image
of the brain of each subject in the voxel space. Finally, maps
of values showing the importance of each voxel for group
discrimination based on the SVMweights were then obtained
by multiplying each back-projected brain of the training set
with the corresponding weight assigned by SVM and by
summing the results on a voxel basis [16, 20].

However, the multivariate SVM algorithm was not
designed to provide single features and their importance. As
a consequence, the method to derive discriminative features
from the SVMmodel is a tweak that should be used with cau-
tion, because the interpretation of weights assigned by SVM
during the training phase could lead to incorrect conclusions.
In order to avoid this, we applied the method proposed
by Haufe and colleagues to compute activation patterns for
backward models [40]. This method ensures the correct
interpretation of weights assigned by SVM. Accordingly, in
addition to theweightmap, we obtained amap of voxel-based
pattern distribution ofMR image differences between ED and
HC.

Both the weight map and the voxel-based pattern dis-
tribution obtained using the method proposed by Haufe
and colleagues [40] were normalized to a range between 0
and 1, expressed by a proper color scale and superimposed
on a standard stereotactic brain for spatial localization.
This approach allowed the identification of new MR-related
biomarkers for the diagnosis of ED patients (see Supplemen-
tary Materials for further information).

2.2.6. Statistical Analysis. Statistical analysis was performed
with STATISTICA Version 6.0 (http://www.statsoft.com/).
Assumptions for normality were tested for all continuous
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variables by using theKolmogorov-Smirnov test. All variables
were normally distributed, except for educational level.Then,
Unpaired 𝑡-test and Mann-Whitney 𝑈 test were applied
appropriately to assess potential differences between groups
for all demographic clinical and MRI variables. All statistical
analyses had a 2-tailed alpha level of <0.05 for defining
significance.

3. Results

3.1. Clinical Data. Compared with age-/sex-/BMI-matched
controls, ED patients did not show global anatomical atro-
phies in white or graymatter brain volumetry. At a behavioral
level, ED group displayed a well-known psychopathological
profile (Table 1 and Supplementary Materials). In particular,
EDI-2 demonstrated that ED patients had higher scores for
(a) drive for thinness scale (𝑡 = 4.45; 𝑝-level < 0.00001);
(b) bulimia scale (𝑡 = 2.69; 𝑝-level = 0.01); (c) interoceptive
awareness scale (𝑡 = 3.81; 𝑝-level = 0.0006); (d) asceticism
scale (𝑡 = 3.81; 𝑝-level = 0.0006); (e) body dissatisfaction (𝑡 =
3.5; 𝑝-level = 0.001); (f) interpersonal distrust scale (𝑡 = 2.07;
𝑝-level = 0.04); and (g) impulse regulation scale (𝑡 = 2.46;
𝑝-level = 0.02). Otherwise, no significant differences were
detected for Perfectionism, Ineffectiveness, Maturity Fears,
and Social Insecurity scales, in agreement with previous
studies [13].

3.2. The Machine Learning Method. Among MR images
acquired for this study, no images were excluded from the
subsequent analysis due to problems with image quality or
problems occurred during preprocessing. As a representative
example, 1st and 2nd extracted PCA coefficients that showed
the highest FDR are plotted in Figure 1(a) for the ED versus
HC group discrimination (data from a single round of CV).
In this case, the number of subject involvedwas equal to 31 (16
ED, 15 HC). The total number of extracted PCA coefficients
was equal to 30.The analysis of variance for the ED versusHC
group discrimination showed that the percentage of variance
retained by the first principal component was equal to
27.0%, while the number of extracted principal components
accounting for 50% and 95% of the whole variance was 6 and
27, respectively.

Table 2 shows FDR values of the 30 features (PCA
coefficients) used for the EDversusHCgroup discrimination.
Data from a single round of CV are shown as a representative
example. As it can be seen, in this case the 8th PCA coefficient
showed the highest FDR value, thus resulting the most
important feature for group discrimination.

In Figure 1(b), 1st and 2nd extracted PCA coefficients that
showed the highest FDR (i.e., after FDR raking) are plotted
jointly with 1st and 2nd extracted PCA coefficients (before
FDR ranking). As it is shown in this plot, FDR allows finding
those features for which discrimination between groups is
maximized.

3.3. Classification Algorithm. Figure 2 shows the decision
function resulting from the SVM training phase for the ED
versus HC group discrimination (1st and 2nd components
with highest FDR).

Table 1: Demographic characteristics.

Variables ED (𝑛 = 17) HC (𝑛 = 17) 𝑃-level
Demographical data

Age (years) 30.2 ± 5.6 30.1 ± 5.5 0.95
Educational level
(years) 17 (13–21) 17 (13–21) 0.88

BMI 23.6 ± 8.2 24.1 ± 4.8 0.79
MRI data

Total GM Volume 587.3 ± 37.5 608.88 ± 42.1 0.11
Total WM Volume 486.5 ± 63.1 489.6 ± 41.6 0.86
Total CSF Volume 188.3 ± 28.7 187 ± 23.2 0.88

Clinical data
HAMA 14.6 ± 13 4 ± 2.2 0.04∗

BDI 16.8 ± 10.1 6.3 ± 4.7 0.0004∗

DES 14.32 ± 12.4 5.12 ± 4 0.007∗

EAT-26 23.3 ± 14.4 6.35 ± 3.2 0.00004∗

SDQ-20 28.64 ± 14.8 20.6 ± 1.1 0.03∗

BIDA 29.9 ± 19.4 19.9 ± 11 0.24
Clinical data EDI-2 scale

Drive for thinness 9.4 ± 6.3 1.2 ± 1.3 0.0001∗

Bulimia 3.47 ± 4.5 0.1 ± 0.5 0.01∗

Interoceptive
awareness 7.9 ± 6.2 0.7 ± 1.2 0.0006∗

Asceticism 5.6 ± 3.8 2 ± 1.1 0.0006∗

Body dissatisfaction 12.9 ± 7.2 6.1 ± 2.9 0.001∗

Perfectionism 4.3 ± 3.9 3.3 ± 3.1 0.41
Interpersonal distrust 3.6 ± 3.1 1.4 ± 1.2 0.04∗

Impulse regulation 3.67 ± 4.9 0.6 ± 1.4 0.02∗

Ineffectiveness 3.5 ± 5.2 1.2 ± 2.6 0.12
Maturity fears 5.2 ± 3 3.94 ± 2.6 0.13
Social insecurity 3.53 ± 3.2 2.1 ± 2 0.22
Data are given as mean values (SD) or median values (range) when appro-
priate.
BMI: Body Mass Index; GM: gray matter; WM: white matter; CSF: cere-
brospinal fluid; PBI: parental bonding instrument; STAI: State-Trait Anxiety
Inventory; HAMA: Hamilton rating scale for anxiety; BDI: Beck Depression
Inventory; DES: Dissociative Experiences Scale; EAT-26: eating attitude
test-26; SDQ-20: Somatoform Dissociation Questionnaire-2; BIDA: Body
Image Dimensional Assessment; EDI-2: Eating Disorder Inventory-2. Total
brain MRI parameters have been calculated using VBM8 tool. ∗Significant
difference.

3.4. Performances of the Classifier. When considering 20-
fold CV approach, Accuracy, Specificity and Sensitivity of
the classifier for ED versus HC group discrimination were
calculated over a number of PCA coefficients ranging from
1 to 32. When using 31 PCA coefficients, Accuracy, Specificity
and Sensitivity reached their best values of 0.85, 0.73 and 0.93,
respectively.

Figure 3 shows Accuracy, Specificity and Sensitivity as a
function of the number of employed PCA coefficients for
the ED versus HC group discrimination. As expected, the
performance of the classification algorithm increases with the
number of employed PCA coefficients.
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Figure 1: Plot of the PCA coefficients that showed the highest FDR (a) and joint plot of the PCA coefficients before (triangles) and after
(circles) FDR ranking (b) for the ED versus HC group discrimination (1st and 2nd components). Data from a single round of CV are shown
as a representative example.
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Figure 2: Decision function for the ED versus HC group discrim-
ination (1st and 2nd components with highest FDR). Data from a
single round of CV are shown as a representative example.
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Figure 3: Accuracy, Specificity, and Sensitivity of classification as
a function of the number of employed PCA coefficients for the ED
versus HC group discrimination (20-fold CV).

When considering 10-fold CV approach, Accuracy, Speci-
ficity and Sensitivity of the classifier for ED versus HC
group discrimination were calculated over a number of PCA
coefficients ranging from 1 to 30. In this case, when using
21 PCA coefficients, Accuracy, Specificity and Sensitivity
reached their best values of 0.80, 0.72 and 0.96, respectively.

3.5. Voxel-Based Pattern Distribution. Figure 4 shows the
voxel-based pattern distribution map of brain structural
differences between ED patients and HC. The pattern of
differences emerged mainly in the occipital cortex and the
posterior cerebellar lobule. Moreover, other brain regions
involved in regulation of emotional processing known to be
damaged in ED patients were detected: precuneus, sensori-
motor and premotor cortices as well as the ACC and OFC.

4. Discussion

The pathophysiological mechanisms underlying ED remain
a matter of debate. In the last few years, several meta-
analyses have tried to summarize the large amount of evi-
dence coming from behavioral and neuroimaging realms,
providing different key of lectures. At a behavioral level,
taking into account the clinical heterogeneity of ED sub-
types, a large amount of literature highlights the AN-related
psychopathology characterized by excessive Perfectionism,
cognitive-behavioral rigidity, asceticism, ruminations, obses-
sions about food and excessive concerns about weight and
shape, whereas BN patients would seem to be character-
ized by an impulsivity trait with a combination of height-
ened sensitivity to reward and impaired inhibitory control
[15, 41, 42]. As concerns neuroimaging findings, although
important pathological markers have been found describing
neurobiological differences between AN and BN subtypes,
the majority of these findings has never been translated
into clinical practice. For this reason, the implementation
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Figure 4: Voxel-based pattern distribution map of brain structural differences between ED patients and healthy controls (sagittal view,
threshold = 50%). Voxel-based pattern distribution (normalized to a range between 0 and 1) is expressed according to the color scale and
superimposed on a standard stereotactic brain for spatial localization.

Table 2: FDR values of the 30 features (PCA coefficients) used for
the ED versus HC discrimination.

PCA coefficient (#) FDR
1 0.2052
2 0.0172
3 0.0021
4 0.1286
5 0.0005
6 0.0786
7 0.1484
8 0.3923
9 0.0354
10 0.0137
11 0.0919
12 0.3376
13 0.1057
14 0.0002
15 0.0128
16 0.0176
17 0.0279
18 0.0188
19 0.0206
20 0.0511
21 0.0369
22 0.0001
23 0.0200
24 0.0052
25 0.1839
26 0.0431
27 0.0015
28 0.0250
29 0.0321
30 0.0171
Data from a single round of CV are shown as a representative example.

of supervised whole-brain automatic classification methods
may become an essential step for improving clinical manage-
ment of psychiatric patients in longitudinal and prospective

studies [43]. SVM has been proposed as a new approach for
identifying sensitive biomarkers (or combinations of them)
that allow for automatic discrimination of individual subjects.
In this work we proposed, for the first time, a SVM algorithm
that, working on structural neuroimaging data at a whole-
brain level, reached an optimal individual classification in
the comparisons between ED patients with controls. The
strengths of this work were: (a) the detected pattern of neural
abnormalities that allowed the SVM approach to reach this
great Accuracy involved well-known brain regions strongly
involved in the pathophysiological mechanisms of ED [5–
9, 12]; (b) the classification Accuracy in the discrimination
of all individual ED patients with respect to controls was
equal or higher than those detected in previous studies
employing machine learning to classify other psychiatric
disorders: ∼80–85% in schizophrenic patients [21], 81% in
depression disorders [22] and∼75% in first-episode psychosis
[23]; (c) the employment of HC matched for BMI, a critical
variable known to influence brain anatomy [27] and sparsely
controlled in other neuroimaging studies investigating ED
patients.

Pattern recognition analysis used to classify ED patients
from HC depicted mainly the involvement of the: (a)
cerebellum, (b) reward-related cortical regions, (c) occipital
cortex and (d) sensorimotor cortex. (a) The cerebellum is
a multidimensional brain region involved in a plethora of
motor, cognitive and emotional functions. Recent studies
have also highlighted the role of the cerebellum in visceral
and autonomic regulation, specifically the cerebellar vermis,
which has a role in feeding behavior and appetite regulation
[44, 45]. This region is extensively connected with limbic
brain structures, such as the hippocampus, parahippocampal
gyrus, amygdala, thalamus, cingulate and prefrontal cortices
[46]. The involvement of the cerebellum (mainly the vermis
subregion) in ED has been consistently demonstrated in sev-
eral structural neuroimaging studies describing the presence
of GM volume loss mainly in AN [47–49]. Moreover a recent
resting state fMRI study [13], demonstrated the presence
of altered intrinsic connectivity of the cerebellar vermis in
both AN and BN patients. These authors hypothesized that
this dysfunctional neural pattern might be related to some
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psychopathological aspects of ED (i.e., the drive thinness)
that is pathologically altered in all ED patients. (b)The ACC,
together with the OFC, are two regions taking part in the
ventral limbic circuit, together with the amygdala, insula
and ventral striatum, which are important for identifying the
emotional significance of appetizing stimuli for inhibiting
impulsive behaviors [14] and regulating reward systems [50].
The current neuroimaging literature mainly highlights the
role of this neural network in pathophysiological mecha-
nisms of BN, in which the alterations of mesolimbic reward
response mechanisms could explain the lack of control and
the impulsivity that are often present in BN patients and that
are neurophysiologically expressed through dysfunctional
activities in the ACC and OFC regions [15, 41]. However,
fronto-striatal neural circuit dysfunctions related to altered
reward processing have also described in AN patients [51],
thus raising a different perspective in which stimuli that are
otherwise aversive for healthy controls (e.g., self-starvation,
emaciated body image) are considered rewarding and activate
relevant reward linked brain regions in AN patients. (c)
The involvement of the visual cortex is another key site
associated with ED. Although altered functional activity of
the occipital lobe has been reported in both AN and BN
individuals [52], body image disturbance is fundamentally
considered one of the core characteristics of AN. Several
neuroimaging studies have described the neurobiological
correlates of this symptom, defining the presence of a specific
neural network involved in body processing: the fusiform
area, the inferior temporal sulcus and the primary visual
cortex. Recent evidence [53] demonstrated altered effective
connectivity between these regions in AN patients during
the viewing of bodies. (d) Finally, abnormal neural changes
in the precuneus and sensorimotor/premotor cortices have
been already described in both AN and BN patients [6, 13,
53]. Friederich et al. [41] showed that, using body images
of slim fashion models to induce a self-other body shape
comparison, AN patients had a higher activation of the
premotor cortex. Again, Amianto et al., [13] found altered
gray matter volume in the paracentral lobule, precuneus
and somatosensory regions when comparing AN and BN
patients, as well as the whole ED group, with respect to
controls. Altered neural changes in brain areas involved
in sensorimotor functions and visuo-proprioceptive infor-
mation processing may either represent the physiological
consequence of physical hyperactivity typical of ED patients
[13] or as a dysfunction related to the body awareness. Body
awareness is a complex cognition underpinned by aspects
of visual perception, proprioception, and touch [54]. The
processing of the body image concept requires integration
of the different types of body-related perceptual experience
and processing of information related to peripersonal space.
The presence of altered anatomical changes in these regions
together with visual cortex, has been interpreted as a dys-
functional processing of somatosensory information about
the perceived body size [6, 55].

One important limitation of this study needs to be
considered in discussion of our data: the clinical subtypes of
the enrolled ED and the size of these groups. Considering
a hypothetical structure of ED as a spectrum (in line with

the trans-diagnostic approach of the DSM-V), in this study
we enrolled the two extremes of the model. ED is not a
uniform disorder characterized by a high heterogeneity in
clinical phenotypes. For instance, the 60% of those who
exhibit pathological ED behaviors but who do not meet
the full criteria for AN or BN, are instead diagnosed as
“eating Disorder Not Otherwise Specified” [56]. Again, the
diagnosis is further complicated by the presence of other
major psychiatric conditions [57], by disease duration [47]
and severity of illness [58]. All this evidence highlights that
our findings cannot be generalized to all ED populations.
Moreover, the small sample size of AN patients as well as the
fact that we only included outpatients with a lower disease
duration and with mild severity of illness (BMI ∼ 17) might
have affected the magnitude of our classification Accuracy.
Therefore, to sustain the usefulness of SVM application
in clinical practice of ED, further studies are warranted
employing a larger and heterogeneous sample. Despite this
methodological limitation, it is important to highlight that
the severe inclusion criteria employed in this study, albeit
with a restricted sample selection, eliminated potential con-
founders (i.e., BMI), thus helping with the interpretation of
the results.

In conclusion, our study demonstrates for the first time
that using standard morphological brain images, SVM is
able to extract neuroimaging biomarkers, which allow to
accurately classify individuals with ED. Although we used
this method in a diagnostic perspective, the rationale for
applying machine learning methods in this psychiatric realm
is to allow inferences to be made at the level of the individual
for monitoring disease progression as well as improving
prevention and treatment decisions. We believe that our
preliminary findings offer new avenues for encouraging the
application of these multivariate neuroimaging approaches
in clinical practice, mainly to differentiate different ED
phenotypes.
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