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Gear‑like rotatable optical trapping 
with radial carpet beams
Jamal Bayat1, Faegheh Hajizadeh1,2*, Ali Mohammad Khazaei1 & Saifollah Rasouli1,2*

Optical tweezers have become a powerful tool in the fields of biology, soft condensed matter physics, 
and nanotechnology. Here, we report the use of recently introduced radial carpet beams (RCBs) in 
the optical tweezers setup to trap multiple particles. An RCB is produced by diffraction of a plane or 
Gaussian beam from an amplitude radial grating. Because of the radial symmetry of the grating, all 
the diffraction orders are propagated along the optical axis and are used for trapping. Based on the 
number of grating spokes, the produced RCB has a definite number of high-intensity spots on the 
transverse plane located over a circular ring. These high-intensity spots of the beam provide multi-
traps when it passes through an objective lens and have enough gradient force to trap polystyrene and 
silica particles. Moreover, the diffracted light from the grating has this property to transfer the angular 
momentum. We show that the multi-trapped birefringent particles could rotate in their own traps 
when polarization of the trapping RCB to be circular. In addition, the orbital rotation of the particles is 
simply executable by manually rotating the grating in its plane around the optical axis.

One half of the Nobel Prize in Physics 2018 has been awarded to Arthur Ashkin for his invention of ’optical 
tweezers’ that is widely used in manipulating micro- to nanoparticles, atoms, molecules, and biological cells. 
Arthur Ashkin reported the detection of optical scattering and gradient forces on micron sized particles in 19701. 
A major success took place in 1987 when Ashkin used tweezers to capture living bacteria without sacrificing 
them2,3. In the optical tweezers, the optical pressure of the light beam provides the force that is necessary for 
the particle movement4. So far, many scientific insights were obtained from the manipulation of microscopic 
systems using single or two discrete beams optical traps5,6,7,8,9,10,11,12,13. However, converting the single beam opti-
cal tweezers into multifunctional optical traps by grabbing a complex system at different points simultaneously, 
would provide valuable applications such as: nanofabrications, investigation of interacting colloidal particles in 
a potential energy pattern, and optical actuators for lab-on-a-chip technologies14. Multiple optical traps can be 
created by various approaches such as optical holography15,16,17, by a single fast scanning trap integrated with 
the bilateral confocal scanning laser microscope18, or using a phase mask which needs a careful adjustment of 
the optical setup19.

A general alternative to generate multiple-beam optical tweezers is to use Spatial Light Modulators (SLM) 
such as Digital Micro Devices (DMD) and Liquid crystal SLM to modify the laser wavefrom20. They significantly 
expand the potentials of multiple trapping by a single beam even for single neutral atoms21, however generating 
large numbers of the traps typically result in low diffraction efficiency and unwanted diffraction orders22.

The usage of light diffraction for beam shaping could be considered in another way. For instance, the dif-
fraction of plane and Gaussian beams from radial gratings presents interesting physical effects. As recently 
proposed, the diffraction of a plane wave from radial amplitude and/or phase gratings reveals a complete set of 
radial beams so called “Combined half-integer Bessel-like beams” where in some special cases they named “radial 
carpet beams (RCB)”23. In a couple of recently published works the theory of diffraction of a plane wave from 
radial gratings has been presented both by the Fresnel integral and wave equation methods. We also formulated 
the diffraction of vortex beams from radial gratings and proposed an intensity-based method for wavelength 
alteration and optical communication24. The RCBs were used for information transmission25. In another work 
by adding an azimuthally periodic term, say a radial phase grating function, into the argument of a linear phase 
grating, generation of varied RCBs over different diffraction orders of the linear phase grating with controlled 
intensity sharing among the generated RCBs was investigated26.
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In this Letter, we introduce a simple, high-efficient, low-cost, and reliable method for annular multiple trap-
ping in 2D via diffraction of a Gaussian beam from an amplitude radial grating. Simply, by rotating the radial 
grating, the resulted multiple traps rotate around the optical axis, simultaneously.

Methods
Here we briefly present the theoretical approach on the diffraction of a Gaussian beams from radial gratings and 
the experimental details of the optical setup.

Theoretical approach.  The theory of diffraction of plane and Gaussian beams from radial gratings are 
presented in Refs.23,24. For an amplitude radial grating with binary profile having m = 10 spokes illuminated by a 
plane wave or Gaussian beam the calculated intensity pattern immediately after the grating and the correspond-
ing resulted radial carpet patterns at a propagation distance 120 cm are shown in Fig. 1. On the diffraction pat-
terns there are m main intensity spots around a circle surrounding the patternless central area. As is apparent, 
for the case of Gaussian beam, the intensity of the main lobes are dominate and at the same time the intensity of 
the lateral spokes drops to zero as the radius increases. This feature candidates the use of such diffraction pattern 
for multiple trapping.

Experimental setup.  The used optical tweezers setup, schematically shown in Fig. 2, is implemented on an 
inverted microscope (Olympus IX71). The trapping laser beam is a near-infrared laser ( � = 1064 nm , Coher-
ent). The laser beam, first is expanded and collimated by a telescopic system, and impinges on an amplitude 
radial grating having binary profile and 10, 15, 20, or 50 spokes. The amplitude radial gratings are simply printed 
on plastic papers. The beam waist on the grating was about 6 mm. At a distance 140 cm from the grating, resulted 
petal-like light field passes through an annular aperture, and a very clear petal beam is produced. It should be 
noted that, unlike the case of plane wave illumination of the radial gratings, in the diffraction of a Gaussian 
beam from a radial grating the resulted diffraction pattern changes very slowly under propagation. This effect 
does not appear in small paths such as the length of the laser path before the objective. With the aid of a positive 
lens with 50 cm focal length and a high-NA objective (Olympus, 100 ×, oil immersion, NA = 1.3) in confocal 
arrangement, the diameter of the resulted petal beam reduces. This positive lens focuses the laser beam onto the 
back pupil of the microscope objective, therefore the laser beam is collimated inside the sample chamber. The 
diffracted pattern coupled into the optical path of the microscope using a dichroic mirror. To maintain polariza-
tion of the beam in circular state after passing through dichroic mirror, we used a set of half and quarter wave 
plates to compensate the polarization change occurred by the dichroic mirror on the beam. The collimated petal 
beam with reduced diameter passes through the chamber. The sample chamber was implemented at the focal 
plane of the objective. The chamber was mounted on a piezo stage (PI-527.2cl, Physik Instrumente) which allows 
nanoscale lateral positioning. The sample chamber was made by a coverslip and a microscope slide, spaced by 
means of two stripes of a double-sided tape. The particles used in this work were polystyrene beads (Bangs Lab.) 
with mean diameters of 1.09 μm, 2.54 μm silica particles, and up to 6 μm vaterite particles. Successive images of 
the trapped particles were recorded by a CCD camera and stored in a computer.

Figure 1.   (a) The intensity pattern immediately after an amplitude radial grating having binary profile with 10 
spokes illuminated by a plane wave and (b) the calculated intensity of the resulted RCB at propagation distance 
120 cm. (c, d) The same patterns when a Gaussian beam having a radius of 2 mm illuminates the same radial 
grating. All lengths are in millimeters.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:11721  | https://doi.org/10.1038/s41598-020-68695-8

www.nature.com/scientificreports/

Result
The use of radial carpet beams in multiple trapping.  In Fig. 3 the experimentally produced radial 
carpet patterns, say the multi-traps, at the input plane of L1 lens in Fig. 2 (first column) and at the focal plane 
of the objective lens (second column) are illustrated. The third column shows the trapped polystyrene particles 
in two dimensions with a diameter of 1.09 μm in the vicinity of the top surface of the sample chamber (because 

Figure 2.   Experimental setup; BE, M, HWP, QWP, L, DM, and QPD are the beam expander, mirror, half and 
quarter wave plates, lens, dichroic mirror, and quadrant photo diode, respectively.

Figure 3.   Generated radial carpet patterns by the diffraction of a Gaussian beam from different radial 
amplitude gratings having binary profile and different spoke numbers at a distance 120 cm from the grating 
(first column) and at the focus of the objective lens (second column). Different images of the trapped 
polystyrene particles with a diameter of 1.09 μm (third column) and 2.54 μm silica particles (forth column). The 
laser power in each individual trapping spot at the sample is indicated in the second column.
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the particles are suspended in the aqueous medium, and as the laser beam pushed them upwards, the particles 
were attached to the upper wall of the chamber). The fourth column shows 2D trapping images of 2.54 μm silica 
particles at the chamber floor. Silica particles settled at the bottom of the chamber due to their high density. It 
should be noted that, by increasing the laser power, the scattering force can overcome to the weight force and 
particles can be pushed to the upper wall. Here, high concentration samples of the particles were prepared due 
to the need for a number of particles to be trapped.

By inserting a circular aperture after L1 lens, shown in Fig. 2, we allow only the main spots of the radial 
carpet pattern enter to the trapping system. This guarantees to have a very clear ring pattern inside the chamber. 
In Fig. 4, the same patterns and trap images of Fig. 3 are shown when a stop circular aperture was used before 
L1 lens. In this case, it is seen that only the main spots of the generated radial carpet patterns pass through the 
aperture and the particles trapped on the annular ring. By implementing the grating on a rotatable holder, we 
rotate the grating around its axis, and as a result the diffracted carpet pattern and trapped particles rotate around 
the beam axis, manually. Visualizations 1 and 2 show tapping and annular rotating of 2.54 μm silica particles 
in 15 intensity main spots. The video speed is three times faster than the real-time. As could be observed in the 
videos, each particle was trapped in one laser spot and the rotation speed of the grating is such that the particles 
follow their own trap and do not jump between neighboring potential wells. The threshold of particle escape 
from a trap occurs at a frequency of about 0.12 Hz. The laser power of the beam in visualizations 1 and 2 is about 
1.6 mW per each spot.

Successive images of the trapped particles in a time interval 10 minutes were recorded and used to estimate 
the stiffness of the optical traps. The frame rate of the CCD camera was 100 fps and 60,000 images were taken 
from each trap. Using MATLAB software, the center of mass of four trapped particles shown in the inset of Fig. 5c 
were determined at successive frames. We estimate the stiffness of the traps by determining the corner frequen-
cies of the power spectra of the particles positions. Figure 5a shows the distribution of the center of mass of the 
particle 1, shown in the inset of Fig. 5c, in Cartesian coordinates. The size of the trapped silica particles was 2.54 
microns. In Fig. 5b, the histogram of the center of mass of particle 1 in two directions are shown. Figure 5c and 
d show the corresponding power spectra in two perpendicular directions. In the last row, Fig. 5e, represents the 
radial distribution of the trapped particle relative to the center of the ring for positions 1–4. Figure 5f shows 
the tangential distribution of the center of mass for the trapped particles at the positions 1–4 in relative to their 
equilibrium locations. Figure 5g represents the distribution of the similar trapped particles in polar coordinates.

We estimate the trap stiffness using power spectrum of the displacement distributions for the particles trapped 
in four distinct intensity spots marked with yellow circles in the inset of Fig. 5c. Each experiment was repeated 
two times and the mean value of trap stiffness 0.35 fNnm is obtained using a MATLAB code27. The total power of the 
radial beam at the sample (after objective) was 37 mW and the share of each spot was about 3.7 mW. In addition 
to the power spectrum analysis, the width of the position distribution is used to calibrate the optical trap by the 

Figure 4.   The same patterns and trap images of Fig. 3 when a stop circular aperture was used before the L1 
lens shown in Fig. 2. The laser power in each individual trapping spot at the sample is indicated in the second 
column. See also Visualizations 1 and 2 that they show tapping and annular rotating of the trapped particles.
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equipartition theorem. The trapping stiffness obtained by the equipartition theorem has less than 21% different, 
compared to the power spectrum method.

The angular momentum transferred by circularly polarized beam is able to rotate an optically trapped birefrin-
gent particle28. Here we investigate multiple trapping of the birefringent particles, vaterite particles, and observed 
the rotation of the trapped particles in their own locations when we changed polarization of the produced radial 
carpet pattern to a circular polarization. For this purpose, we used a pair of quarter and half wave plates after 
the radial grating in Fig. 2. Polarization of the laser beam was almost linear and after passing through the grat-
ing, as it has inhomogeneous structure, the beam gets a bit ellipticity. Visualization 3 shows axially rotation of 
trapped vaterite particles in their own locations by circularly polarized radial carpet beam. The power of each 
of the main spots containing the tail is about 4.5 milliwatts inside the chamber. In this visualization, the trapped 
vaterite particles, rotate at different frequencies due to their different geometry and size. For instance, there is a 
relatively large vaterite particle in the left side of the ring with an approximate diameter of 6 μm which rotates at 
a frequency of about 0.4 Hz, like a pyramidal particle which is trapped in the 30th second with the size of about 
3 μm in the right. In contrast, under the same conditions a cube-shaped particle trapped at 56th second in the 
bottom of the ring has a rotation frequency of about 2 times faster (0.8 Hz). Movie speed in the visualization 3 
is two times faster than in real-time.

Discussion
Below, we describe what we believe is the first experimental demonstration of the RCB applied to the trapping of 
multiple particles in an optical tweezer system, and compare our method with the other diffraction-based meth-
ods that generally use pixelated SLM devices to generate a desired phase or amplitude aperture. In principal, the 
far-field diffraction pattern of an aperture includes several intensity spots that used for multiple trapping. As an 
SLM has a periodic structure in two directions, when a given phase or amplitude structure is imposed on it and a 

Figure 5.   (a) CCD-measured center of the mass trajectory and (b) position distribution of a trapped 2.54 μm 
silica bead during a time interval of 10 mins. (c, d) show the corresponding power spectra in x and y directions, 
respectively. The inset shows locations of four selected traps in the radial carpet pattern with 10 main spots, used 
for calibrating the trapping stiffness. Distribution of radial position (e) and tangential position (f) of the trapped 
particles in positions 1–4. (g) Position distribution of the similar trapped particles in polar display.
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collimated laser beam illuminates that, the far-field diffraction pattern (or equally the spectrum) of the imposed 
aperture is replicated by the impulses of the SLM26. Each impulse corresponds to a diffraction order of the SLM. 
In other words, rather than producing a copy of the desired diffraction pattern, it is replicated over all diffraction 
orders of the SLM. Indeed, when generating large arrays of traps with SLMs, this feature reduces the diffraction 
efficiency. Moreover, generating unwanted zero-order and higher-orders accompanying any desired diffraction 
pattern are clearly issues, while one diffraction order of the SLM is usually utilized for multiple trapping22. In 
contrast, in the diffraction of a plane or Gaussian wave from an amplitude radial grating, there is no different 
diffraction orders and the entire diffracted beam is propagated around the optical axis. The diffraction pattern 
has a shape-invariant form under propagation, its divergence is less than the divergence of the conventional 
beams like a Gaussian beam, and its divergence is also less than the divergence of the far-field diffraction from 
conventional apertures. Due to these features, the resulted diffraction pattern has been called ’nondiffracting 
and accelerating RCB’. These features provide the use of entire transmitted power of the laser beam through the 
radial grating (50%) for multiple trapping. (For further details, see Refs.23,24). Moreover, the SLM-based multiple 
traps not only suffer from the pixel diffraction problems and require a specific optical alignments, they are also 
partly expensive. In contrast, the proposed method for creating multiple traps is low cost and the needed radial 
grating could be simply designed with the most computer softwares and printed on a piece of glass or a plastic 
paper with a commercial printer. Optically trapping and rotating particles in a gear-like/ring patterns could have 
a significant impact on a variety of contexts such as producing micromechanics29 and assembling a micro-gear/
ring with the desired number of particles to produce mechanical micro-optic pumps30. Optical trapping and 
rotation on a ring can force even large particles to spin and can be used for manipulation living cells31.

Conclusion
In summary, we have successfully used the radial carpet patterns produced in the diffraction of a Gaussian beam 
from a binary amplitude radial grating for multiple trapping of particles over an annular array, in which all the 
trapped particles can rotate together over the optical axis by rotating the radial grating over its axis, manually. 
We also show that if polarization of the produced radial carpet light field to be circular, the trapped birefringent 
particles will rotate in their own traps. This method of multiple trapping is very simple, low cost, and does not 
need complicated devices such as spatial light modulators (SLM)32,33,34,35 or fast scanning devices18. In comparing 
with the SLMs, as the diffraction pattern from a radial grating is not divided into different diffraction orders, 
here working with low power lasers is possible. We believe that our findings would have significant impact on 
the multiple optical trapping. Another candidate for multiple trapping and manipulating of the particles in a 2D 
array of intensity spots is the use of diffraction of a vortex beam from 2D gratings in the Cartesian coordinates36. 
This work is under study and results will appear elsewhere.
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