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Abstract

Androgen insensitivity syndrome (AIS) is a rare disease associated with inactivating mutations of AR that disrupt male sexual
differentiation, and cause a spectrum of phenotypic abnormalities having as a common denominator loss of reproductive
viability. No established treatment exists for these conditions, however there are sporadic reports of patients (or
recapitulated mutations in cell lines) that respond to administration of supraphysiologic doses (or pulses) of testosterone or
synthetic ligands. Here, we utilize a novel high content analysis (HCA) approach to study AR function at the single cell level
in genital skin fibroblasts (GSF). We discuss in detail findings in GSF from three historical patients with AIS, which include
identification of novel mechanisms of AR malfunction, and the potential ability to utilize HCA for personalized treatment of
patients affected by this condition.
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Introduction

Androgen action is mediated by the intracellular androgen

receptor (AR), a transcription factor member of the nuclear

receptor superfamily. While in the cytoplasm under baseline

conditions, upon addition of agonist AR translocates to the

nucleus, where it interacts with coregulators and promoters/

enhancers of AR-responsive genes, and regulates transcription.

AR action is a conditio sine qua non for the normal development and

function of the entire male genital tract; conversely, varyingly

degrees of impaired AR action from mutation is causative in

individuals affected by androgen insensitivity syndrome (AIS)

[1,2]. Three main clinical phenotypes in humans define AIS:

Complete, Partial and Minimal Androgen Insensitivity (CAIS,

PAIS and MAIS), and they range from complete lack of

virilization of the internal and external genitalia (CAIS), to

intermediate virilization (PAIS), to apparently normal virilization

in infertile males (MAIS) [1]. A slightly more complex classifica-

tion, describing seven grades of abnormal virilization, has been

proposed by Quigley and collaborators [2]. A data-base of AR

mutations in AIS patients is published on-line (http://androgendb.

mcgill.ca/), and a large body of previous work has defined three

broad varieties of AR 3H-DHT binding abnormalities in

monolayer binding analyses: 1) absent binding (i.e. 3H-DHT

binding is undetectable) [3]; 2) qualitatively abnormal binding

[e.g., binding is normal but with qualitative abnormalities such as

increased ligand dissociation rate (the dissociation rate is

considered abnormal if ,60% of the specific androgen binding

remains after 3 hours) [4]; or thermolability (defined as a

reduction in specific androgen binding at 41uC compared to

37uC of greater than 40%) [5]]; or, 3) decreased binding (e.g.,

binding is detectable but below normal) [1]. The degree of

abnormality caused by each individual mutation is usually related

to the patient phenotype, the 3H-DHT binding characteristics,

and the amount of residual reporter gene activity present in cells

transfected with an AR carrying that particular mutation; in

general, in the more feminized phenotypes, lack of 3H-DHT

binding and abnormal transcriptional activity parallel increasing

AR malfunction.

Despite the clinical dogma that ‘‘AIS is not treatable,’’ some

sporadic PAIS and MAIS patients respond to endocrine

management consisting of pharmacologic doses of androgens

[6–9]. Further, in vitro analysis of some AR mutations with the

binding phenotype of normal 3H-DHT dissociation constant (Kd)

and maximal binding (Bmax), but increased ligand-receptor

dissociation rate can be normalized under certain culture
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conditions. For instance, such an AR containing a single amino

acid substitution (Y763C) and a reduced polyglutamine tract (Q12)

normalized its transcriptional activity when exposed to pharma-

cologic concentrations of androgens both in vitro [10] and in vivo

[6]. In other such CAIS or PAIS mutations, transcriptional activity

normalized either after administration of supraphysiologic con-

centrations of endogenous androgens (e.g., testosterone or

dihydrotestosterone, DHT), synthetic androgens (Mibolerone or

R1881), or after treatment with frequent pulses (up to every four

hours) of physiologic doses of DHT [11–13].

Our group has recently developed a high throughput micros-

copy-based technology to simultaneously analyze multiple AR

activities at the single cell level, an approach often referred to as

high content analysis (HCA). Our AR-oriented HCA involves

multi-parametric interrogation of cultured cells using automated

high magnification, high resolution imaging and immunofluores-

cence or green fluorescent protein-fused AR (GFP-AR) in

combination with use of a red fluorescent protein-based

transcriptional reporter protein [14–17]. Utilizing custom-devel-

oped image analysis routines, the datasets can be quantitatively

explored to yield a ‘‘multiplex’’ view of interrelated AR functions.

The image data mining yields information including (but not

limited to) AR expression, subcellular trafficking, reporter gene

activity, cell cycle position, mitotic index, and literally hundreds of

other measurements per cell [15].

We theorized that HCA of AR would be an ideal technology to

directly analyze patient-derived genital skin fibroblasts to identify

not only mechanisms associated with abnormal AR activities, but

also therapeutic options normalizing mutant AR functions. While

there are many AIS mutations described, those localized in the

LBD and associated with 1) normal Kd, 2) normal Bmax, and 3)

qualitative abnormalities of ligand-receptor interaction would be

the most amenable to normalization. We present here unique

cytological profiles generated by HCA from three historical

patients affected by CAIS or PAIS, which were complemented

by NH2-COOH-terminal domain interaction (NC-TDI) experi-

ments, and previously published ligand-binding studies [11]. All

patients carried AR mutations with the specifications listed above.

HCA revealed the type of functional defects associated with these

mutations, and ligand-dependent restoration of AR functions

using experimental conditions that increase the stability of the

ligand receptor complex in two of the three patients. Normaliza-

tion of AR function was associated in each case with improvement

of NC-TDI. These studies provide a proof-of-concept demonstra-

tion that specific clinical mutations of AR can be examined by

HCA for use in personalized medicine.

Methods

Cell Culture
Primary cultures of genital skin fibroblast from AIS patients

F764L, R840C and P766S, and six normal patients were established

as previously described [18], and maintained in MEM with 10%FBS

and 1% penicillin and streptomycin. HeLa cells were obtained from

the American Type Culture Collection (Rockville, MD) and were

maintained in DMEM supplemented with 5%FBS and 1% penicillin

and streptomycin. Control GSF cell lines were isolated at the time of

circumcision from the foreskin of male neonates with normal genital

development, after obtaining approval from the Baylor College of

Medicine Institutional Review Board. No further follow up on these

individuals is available, and it is assumed that normal pubertal

development will be completed, and that their AR sequence is wild

type. Patients with PAIS or CAIS were from the historical library of

AIS patients at UT Southwestern [1].

AIS Mutation Background and Clinical History
The mutations investigated in this study are AR-F764L, AR-

R840C, and AR-P766S. These mutations were previously

identified in patients affected by either PAIS, or CAIS, and

functionally characterized by using either patient derived genital

skin fibroblasts, or after transfection in CV1 or CHO cells [11].

The discrepancies between the coordinates of the mutations

reported in this paper and in the original publication [11] are due

to the use in this publication of the AR coordinates reported in the

AR mutation database online (http://androgendb.mcgill.ca/).

The discrepancies are due to the different number of glutamines

in the polyglutamine region of exon 1 that were reported in the

initial sequences of AR.

Mutation F764L
The F764L mutation was originally identified in a CAIS patient

of Dr. G. Costin (Los Angeles, CA) [11], and has also been

reported in other patients by two additional groups [19,20].

Biochemical studies in transfected CHO cells demonstrated

normal 3H-DHT Kd and Bmax (the Kd was 0.26 nM for the wild

type AR and 0.1 nM for mutant F764L, which is not considered a

meaningful difference), and abnormally elevated ligand dissocia-

tion rate [11]. Using DHT and the MMTV-luc reporter, the

F764L mutation demonstrated significantly decreased transcrip-

tional activity in transfected CV1 cells. Activity was rescued to

nearly 30% of control by the synthetic androgen Mibolerone [11].

Mutation R840C
This mutation has been identified in multiple patients with

PAIS [21–26]. Biochemical studies in transfected CHO cells

demonstrated normal 3H-DHT Bmax and Kd and presence of

thermolability [11]. When examined in transfected CV1 cells, the

transcriptional activity of the R840C mutated receptor was

decreased to 67% of control using DHT [11].

Mutations P766S
This mutation was identified in three patients with CAIS

[11,27,28]. Biochemical characterization in CHO cells revealed

normal Kd and Bmax, and abnormally elevated ligand dissociation

rate. Transcriptional activity was 9% of control in response to

DHT, but normalized at 120% of control in response to

Mibolerone [11].

This historical analysis showed that AR-R840C, AR-F764L and

AR-P766S shared these following common features; they were

point-mutations localized in the ligand binding domain with

normal 3H-DHT Kd and Bmax. According to the series of 130

families published by Dr. Griffin, these features are shared by 40%

of patients with AIS [1].

GFP-AR Expression Vectors and HeLa Stable Cell Lines
cDNA expression vectors for hAR harboring the AIS related

mutations were previously generated [11]. Generation of pEGFP-

AR fusion vectors with an NH2-terminal GFP tag and regulation

by the CMV promoter has been previously described [29]. pEGFP

vectors expressing AR harboring the various AIS mutations were

generated by replacing an EcoRI-Pvul cDNA fragment encoding

the LBD of pEGFP-AR by the same fragment of pAR-F764L,

pAR-R840C, pAR-P766S expression vectors.

A HeLa cell line stably expressing wild type GFP-AR was

previously described [15]. To generate similar cell lines expressing

the various AIS associated mutations, HeLa cells were transfected

with 1 mg/well pEGFP-AR plasmid DNA using BioRad Trans-

fectin reagent 1 day after plating in six-well plates. After 24 hours,

AR HCA in AIS Profiling
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cells were trypsinized and plated in medium supplemented with

1 mg/mL G418 (Invitrogen) in 10 cm tissue culture dishes. Clones

were selected, expanded, and analyzed by flow cytometry for GFP-

AR expression. Cells with low to moderate GFP-AR expression

were then single cell cloned and expression verified by western

blot; subsequently, GFP-AR expression was found similar to or

below the endogenous expression of AR in the LNCaP prostate

cancer cell line [15].

NH2-COOH-Terminal Domain Interaction (NC-TDI) Assay
An interaction between COOH terminal AF2 (activation

function 2) and NH2 terminal sequence F23XXLF27 is an

important step toward the activation of AR [30]. The NC-TDI

was measured using the reagents of the CheckMateTM/FlexiH
Vector Mammalian Two-Hybrid System, Promega (Madison,

WI). A segment containing AR 1-660 was fused to the VP16 TAD

domain of plasmid pFN10A, while segments AR 624-919 (wild

type or containing mutations F764L, R840C, and P766S) were

fused to the to the Gal4-DBD domain of plasmid pFN11A. The

NC-TDI assay was performed in a similar way as a standard

transactivation assay, except for the expression vectors that were

used. One day before transfection, 1.56106 Hela cells were seeded

into a 60 mm dish. Cells were co-transfected with 1.3 ug of

pFN11A-AR624-919, 1.3 ug of pFN10A-1-660, 1.3 ug of

pGL4.31 (containing five GAL4 binding sites upstream of a

minimal TATA box, which is upstream of a firefly luciferase gene

that acts as a reporter for interactions between proteins), and 1 ng

of phRL-TK carrying the Renilla luciferase gene. After 12 hours

of transfection, cells were trypsinized and equally seeded into nine

wells of a 12 well plate, with one well treated with vehicle and

others with various concentration of different ligand. After 24 h of

treatment, luciferase activity was assayed with the Promega Dual

Glo assay kit, using a luminometer (PerkinElmer). Data represent

the average6SD of three independent experiments, are expressed

as fold-induction compared with negative control, and represent

the units of firefly luciferase corrected for the units of renilla

luciferase detected in the same plate.

Preparation of Cell Lines and Experimental Procedure
To determine the global effect of the various AIS mutations on

AR signaling, each was analyzed using HCA. This technology

allows simultaneous quantification of AR protein expression,

nuclear translocation, subnuclear patterning, and transcriptional

activity [15]. The analysis was done in HeLa cell lines stably

transfected with wild type or mutant ARs fused with green

fluorescent protein, or using AR immunofluorescence in primary

cultures of genital skin fibroblasts generated from foreskin biopsies

of historical AIS patients, or of normal neonates undergoing

circumcision at birth. To prevent the effects of receptor over-

expression [15], stable HeLa cells were carefully selected to

express AR levels similar to LNCaP as previously described [15].

Prior to ligand treatment, HeLa cells were transfected with the

pARR2PB-dsRED2skl reporter plasmid, consisting of the AR

responsive promoter ARR2PB [31] driving expression of the red

fluorescent protein reporter dsRED2skl engineered to target

peroxisomes [15]. Stably transfected HeLa cells, containing wild

type or mutant ARs, and GSF cell lines were treated with DHT,

R1881 and Mb at concentrations ranging from 100 to 0.001 nM

for 24 hours.

High Throughput Microscopy – Sample Preparation
For studies utilizing HeLa GFP-AR cell lines, twenty-four hours

before transfection with pARR2PB-dsRED2skl, cells were plated

onto 100 mm plastic dishes in medium supplemented with 5%

charcoal-stripped and dialyzed-FBS. Transient introduction of the

pARR-2PB-dsRED2skl reporter construct was performed using

6.0 mg reporter plasmid and 6.0 mg carrier DNA (BlueScript,

Stratagene, San Diego, CA) using Transfectin (Biorad) following

standard protocols. After 8-hour incubation, DNA/lipid complex-

es were removed. Cells were then trypsinized and replated at

10,000 cells per well in Nunc poly-D-lysine treated 96-well optical

glass bottom plates and incubated an additional 12 hours to allow

for cell adhesion. Cells were then exposed to DHT, R1881 or

Mibolerone for 24 h. Compound dilutions and final addition to

multi-well plates were performed using a Beckman Biomek NX

robotic platform to ensure repeatability from experiment to

experiment. After incubation was complete, using the Biomek NX

robot, plates were washed with PBS and fixed for 20 min at RT in

4% formaldehyde prepared in CSK buffer (80 mM potassium

PIPES, pH 6.8, 5 mM EGTA, 2 mM MgCl2). After fixation, cells

were briefly permeabilized (5 min) with 0.5% Triton-X and

prepared for imaging by washing in PBS, aspirating the washed

solution, and adding a 1 ng/ml DAPI solution to stain DNA and a

generic protein stain (CellMask, Invitrogen) to facilitate cell and

nuclear image segmentation. Cells were imaged in PBS.

For studies utilizing GSF cell lines, cells were treated in an

identical manner except cells were not transfected with the

reporter construct. After ligand incubation was complete, cells

were fixed and endogenous AR was immunolabeled using the

Biomek NX liquid handling robot. Cells were initially washed in

PBS buffer and fixed for 30 min on ice in 4% formaldehyde

prepared in CSK buffer. After fixation, auto-fluorescence was

quenched using a 0.1 M NH4Cl solution for 10 minutes. Next,

cells were permeabilized (30 min) with 0.5% Triton-X. After

washing, cells were incubated for 30 minutes in 5% non-fat milk in

Tris buffered Saline (TBS)-Tween (Blotto) followed by an

overnight incubation in Blotto containing a 1 mg/ml anti-AR

mouse monoclonal antibody (AR ms IgG [32], a kind gift from Dr.

Dean Edwards, Baylor College of Medicine). The primary

antibody was labeled using an anti-ms IgG Alexa488 secondary,

fixed and prepared for imaging by washing in PBS, aspirated and

then washed, then adding a 1 ng/ml DAPI/CellMask solution.

Cells were imaged in PBS.

High Throughput Microscopy – Image Acquisition
Cells were imaged using the Cell Lab IC-100 Image Cytometer

(IC-100; Beckman Coulter) platform that consists of 1) Nikon

Eclipse TE2000-U Inverted Microscope (Nikon; Melville, NY); 2)

Chroma 82000 triple band filter set (Chroma; Brattleboro, VT); 3)

an imaging camera: Hamamatsu ORCA-ER Digital CCD camera

(Hamamatsu; Bridgewater, NJ); and 4) a focusing camera:

Photonics COHU Progressive scan camera (Photonics; Oxford,

MA). The microscope was equipped with a Nikon S Fluor 40X/

0.90NA objective and the imaging camera set to capture 8 bit

images at 262 binning (6726512 pixels; 26.0 mm2 pixel size) with

4 images captured per field (DAPI, GFP/A488, dsRED2skl,

A647). In general, 49 to 64 images were captured per well for

image analysis.

High Throughput Microscopy – Image Analysis
Fig. 1A shows examples of typical images obtained with the IC-

100 microscope of normal GSFs (L7728, M7118, A4676) or GSFs

from AIS patients [marked as GSF strain 571 (AR mutant F764L),

691 (AR mutant R840C) and 851(AR mutant P766S)], stained

with DAPI, AR, and CellMask solution, at concentrations of

Mibolerone of 0 and 100 nM. While our initial AR studies using

HTM were based upon CytoShop (Beckman-Coulter) [14,15,33],

these approaches were refined in the current work with the more

AR HCA in AIS Profiling
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robust server-client Pipeline Pilot image analysis platform (Basic

and Advanced Imagine Collections, Pipeline Pilot 7.5, Accelrys,

San Diego). Initially, the background signal was removed from all

images using plate- and channel-specific correction images,

generated by the sum projection of .600 randomly selected

images for each channel from the image set. This allows for a

pixel-by-pixel background subtraction that compensates any

consistent uneven background artifacts in the image set.

Furthermore, users are able to customize the degree of

background subtraction by applying a multiplier to each

correction image, useful for identification of objects such as nuclei

or cell borders. After background subtraction, nuclear masks were

generated using a combination of non-linear least squares and

watershed-from-markers image manipulations of the DAPI images

(Fig. 1B). Cell border masks were generated using the CellMask-

labeled images, and watershed-from-markers image manipula-

tions. Due to the spindly shape of the genital skin fibroblasts, a

maximal distance from the nucleus limit was placed on the

generated cell masks. Cell populations were filtered to achieve

uniformity, e.g., without cell aggregates, mitotic cells, apoptotic

cells, or cellular debris.

Applied gates were based upon 1) nuclear area; 2) nuclear

circularity [(4*p*area)/perimeter2]; and, 3) DNA content (DAPI

sum of pixel intensities) (Fig. 1B). AR expression was determined

by quantifying the sum of pixel intensities in the AR channel

within the defined cell region for each cell. AR nuclear

hyperspeckling is the statistical variance in AR pixel intensity

within the nuclear mask. Accumulation of the AR-sensitive

probasin transcriptional reporter was determined by measuring

the sum of pixel intensities in the dsRED2skl channel within the

cell region for each cell. Finally, the degree of AR nuclear

translocation was determined by measuring the percent of total

AR signal localized within the nuclear mask. EC50 values were

calculated by plotting a simple scatter plot of response versus

ligand concentration using the SigmaPlot four parameter logistic

curve-fitting algorithm. Due to the nature of the curve-fitting

algorithm, for those responses that did not plateau, the response

observed at the highest concentration was assumed maximal.

Changes in nuclear translocation with ligand treatment are

reported as the percentage point change in the percent of the

signal in the nucleus compared to untreated samples (i.e.

%Treated = 75.1, %Untreated = 35.2, %Response = 39.9). All other

responses with ligand treatment are reported at fold change

compared to untreated samples (i.e. ReporterTreated = 1000,

ReporterUntreated = 100, ReporterResponse = 10). Determination of

significant differences between compounds was accomplished by

first performing an ANOVA analysis followed by a post-hoc

multiple comparison analysis with significance set at ,0.05.

Pearson’s correlations analysis was performed to verify the

relationship existing between AR nuclear hyperspeckling and

transcriptional activation in HeLa cells. For each mutant and

ligand used, a strong positive correlation between these two

parameters was confirmed, with R2 values close to 1, regardless of

the ligand or AR construct used. An example of this analysis for

HeLa cells stably transfected with wild type AR, AR-F764L, AR-

R840C or ARP766S and treated with DHT is shown in Fig. 2. In

this experiment, the R2 value ranged between 0.85 and 0.999, and

p values were ,0.0001.

Results

NC-TDI of AR Mutants
NC-TDI is an important event in the regulation of AR activity

[34], and improper regulation of this interaction could be involved

in the abnormalities of the AIS mutations examined here. When

wild type AR was examined with T, DHT, R1881 and

Mibolerone used at 0.2–200 nM, all compounds were able to

induce an increase in luciferase activity at the lowest concentration

(0.2 nM; Fig. 3). The maximal responses of the tested compounds

ranged between a 3.2-fold increase and a 7.7-fold increase (T –

6.4, DHT – 7.7, Mb – 7.1, R1881 – 3.2). While the responses of

the weaker AR agonist T were dose-dependent, the three stronger

AR agonists (DHT, R1881, and Mb) lacked a dose-dependent

response, and reached their plateau at subnanomolar concentra-

tions. AR-F764L did not respond to T and DHT, however it

responded partially to R1881 (1.8-fold at 200 nM), and maximally

Figure 1. Androgen Receptor High Content Analysis (AR HCA). A, Sample of untreated or treated (with 100 nM Mibolerone) GSF images
captured with the IC-100 microscope showing three controls (L7728, M7118, A 4676), and three AIS patients [indicated as GSF strain 571 (AR mutant
F764L), 691 (AR mutant R840C) and 851(AR mutant P766S)]. For each experimental condition, the first rows show DAPI, AR, and cell mask staining. B:
Pipeline Pilot handling of the fluorescent images, starting from identification of the nucleus, of the cell mask, to computation of the green channel
(i.e. AR staining) features under various experimental conditions.
doi:10.1371/journal.pone.0008179.g001

AR HCA in AIS Profiling
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(3.1- fold at 200 nM) to Mibolerone. NC-TDI increased from 10%

to 50-60% of wild type receptor at 0.2 and 200 nM of Mibolerone,

respectively. Thus, increasing the concentration of Mibolerone to

suprasaturating concentrations elicited a partial rescue of NC-TDI

in mutant AR- F764L (Fig. 3). Analysis of AR-R840C resulted in

significantly larger induction of the NC-TDI response when

compared to wild type AR with any of the ligands tested. The

response was dose-dependent with T and DHT, while it saturated

at 2 nM with the synthetic androgens Mb and R1881 (Fig. 3). In

contrast, there was a clear dose-dependent response to all ligands

tested for AR-P766S. The common denominator of the

experiments with AR-P766S was that doses of 200 nM of T,

DHT, Mib or R1881 were able to rescue the NC-TDI response to

the levels observed with wt AR at concentrations of 0.2 nM (Fig. 3).

Image Based Analysis of Wild Type AR Functions
HeLa cells. Emphasizing the specificity and reproducibility of

the HCA approach, our previous GFPAR HeLa results [15] were

duplicated with all three ligands. As shown in Fig. 4 and Table 1,

DHT, R1881, and Mb induced a significant increase in the

percent of the GFP signal in the nucleus (by approximately 30%)

with nM EC50 concentrations (DHT - 10.5 nM, R1881 - 0.8 nM,

Mb - 1.1 nM). All three agonists induced significant hypers-

peckling compared to vehicle control by approximately 50-fold, at

EC50 concentrations that, in agreement with previous data [35],

were significantly higher than for nuclear translocation (DHT:

29.1 nM; R1881: 28.5 nM; and, Mb: 29.4 nM). Induction of

hyperspeckling by the three ligands was tightly correlated to AR

transcriptional activity, with similarly high increases in reporter

accumulation (an average of 100-fold induction for each ligand) at

similar EC50 concentrations as observed for the hyperspeckling

response (DHT: 39.2 nM; R1881: 30.1 nM; and, Mb; 31.6 nM).

GSF cells from normal individuals. To directly visualize

endogenous AR expression in GSF cell lines, our standard

GFP-based approach was modified to include anti-AR im-

munofluorescence (Fig. 1A, 5, and Table 2). To better facilitate

direct comparisons between the GSF cell lines, results were

normalized to percent change or fold-change from vehicle-treated

controls. When treated with the standard panel of AR agonists, the

six normal GSF cell lines (M6382, L7728, M7118, A4676, S8558,

B8906) all demonstrated a dose-dependent increase in the percent

of the AR signal found in the nucleus. The average percent

increase with DHT, R1881 and Mibolerone in nuclear

translocation was 20.163.7%, 16.464.0% and 19.462.5%, and

this was achieved at EC50 concentrations of 0.1560.14,

0.2260.16 and 0.04660.041 nM, respectively (Fig. 5, Table 2).

The average increases in nuclear hyperspeckling and total AR

signal were 8- and 2-fold, respectively, and this was achieved at

subnanomolar EC50 values of the three ligands (Fig. 5, Table 2).

Image Based Analysis of AR- F764L Function
HeLa. We next applied the same technique to HeLa cells

stably expressing the AR-F764L mutation (Fig. 4, Table 1). When

cells were treated with the panel of agonists, ARF764L

translocated into the nucleus with similar increases in the

percent of nuclear GFP signal as wild type receptor (DHT: q
38%; R1881: q 36%; and, Mb: q 31%). However, the responses

were observed at higher EC50 concentrations, with the greatest

shift for the endogenous ligand DHT (DHT: 49.6 nM; R1881:

10.0 nM; and, Mb: 2.4 nM). Surprisingly, the hyperspeckling

response demonstrated a clear distinction between the three

compounds; DHT produced a weak hyperspeckling response at

elevated ligand concentrations (15-fold increase; EC50: 142 nM),

R1881 induced a significantly stronger response at even higher

ligand concentrations (77-fold increase; EC50: 233 nM) while Mb

was able to induce the highest levels of hyperspeckling (132-fold

increase) at an EC50 concentrations of 114 nM. Similarly to wild

type AR, transcriptional activity correlated with hyperspeckling.

Figure 2. Correlation analysis between nuclear hyperspeckling and transcriptional activity. HeLa cells were stably transfected with wild
type AR (A), AR-P766S (B), AR-F764L (C) and AR-R840C (D) and analyzed. Each point of the regression curve was derived from stimulation with
logarithmic concentrations of DHT (10215 to 1026 M).
doi:10.1371/journal.pone.0008179.g002

AR HCA in AIS Profiling
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Induction of transcriptional activity was significantly stronger with

Mb than R1881 and DHT (DHT: 6-fold; R1881: 18-fold; Mb: 36-

fold), and occurred at higher EC50 concentrations than with the

wild type receptor (DHT: 102 nM; R1881: 160 nM; and, Mb:

87 nM).

GSF. When we examined the nuclear translocation response

in GSF cells harvested from a patient harboring the F764L

mutation (Figure 6, Table 3), both R1881 and Mb were able to

induce a normal response (17.0% and 20.9% increase), whereas

the effect of DHT was below the range found in normal samples

(6.5% increase). In addition, the minor DHT respon se required

significantly higher concentration (EC50 = 35.3 nM) than the

agonist-induced responses in normal GSF cell lines. When the

hyperspeckling response was examined (Figure 6, Table 3), a

similar pattern emerged. Both R1881 and Mb induced strong

responses, nearly equivalent to that observed in the normal GSF

controls (5.7- and 9.7-fold increase) whereas DHT was weak (1.8-

fold increase). Again, the necessary concentration to induce a

DHT response was higher (EC50: 83.7 nM) than those needed for

the R1881 (EC50: 3.9 nM) or Mb (EC50: 3.5 nM), although all

EC50 concentrations were higher than the range observed in the

normal GSF control samples. When ligand dependent stabilization

of the F764L receptor was examined in GSFs, only R1881 and Mb

induced responses within the normal range of wild type GSF cells

(e.g., a 1.3- to 2.6-fold increase in total AR signal). These results

indicate that GSFs harboring the F764L mutation exhibited

reduced responsiveness to the endogenous ligand DHT, and that,

across all simultaneously evaluated measurements, a nearly

complete pharmacological rescue was possible with synthetic

agonists, particularly Mibolerone.

Image Based Analysis of AR- R840C Function
HeLa. When HeLa cells stably expressing the R840C PAIS

mutation were treated with the panel of agonists (Fig. 4, Table 1),

they also demonstrated the ability to achieve increases in nuclear

translocation similar to the wild type receptor (DHT: q 21%;

R1881: q 29%; and, Mb: q 29%), and at similar EC50

concentrations (DHT: 6.7 nM; R1881: 2.2 nM; and, Mb:

0.37 nM). However, because the receptor is significantly more

cytoplasmic in the untreated state, the relative maximal nuclear

translocation appears reduced (Fig. 4, Table 1). There was

reduced ability to induce hyperspeckling (DHT: 7-fold increase;

R1881: 11-fold increase; and, Mb: 8-fold increase), however,

responses occurred at lower EC50 concentrations compared to the

wild type receptor (DHT: 7.6 nM; R1881: 11.7 nM; and, Mb:

4.3 nM). Transcriptional activation mirrored the hyperspeckling

results, with only minor increases (DHT: 9-fold; R1881: 14-fold;

Mb: 11-fold) at EC50 concentrations below those observed with

the wild type receptor (DHT: 7.8 nM; R1881: 9.1 nM; and, Mb:

8.0 nM).

GSF. All three compounds tested induced significant nuclear

translocation responses (14.8% to 17.5% increase), in the range

Figure 3. NH2-COOH-terminal domain interaction (NC-TDI) assay. A segment containing AR 1-660 was fused to the VP16 TAD domain of
plasmid pFN10A CheckMateTM/FlexiH Vector Mammalian Two-Hybrid System, Promega (Madison, WI), while segments AR 624-919 (wild type or
containing mutations F764L, R840C, and P766S) were fused to the to the Gal4-DBD domain of plasmid pFN11A. One day before transfection, 1.56106

HeLa cells were seeded into a 60 mm dish. Cells were co-transfected with 1.3 ug of pFN11A-AR624-919, 1.3 ug of pFN10A-1-660, 1.3 ug of pGL4.31
(containing five GAL4 binding sites upstream of a minimal TATA box, which is upstream of a firefly luciferase gene that acts as a reporter for
interactions between proteins), and 1 ng of phRL-TK carrying the Renilla luciferase gene. After 12 hours of transfection, cells were trypsinized and
equally seeded into nine wells of a 12 well plate, with one well treated with vehicle and others with various concentration of different ligand. After
24 h of treatment, luciferase activity was assayed with the Promega Dual Glo assay kit, using a luminometer (PerkinElmer). Data represent the
average6SD of three independent experiments, are expressed as fold-induction c/w negative control, and represent the units of firefly luciferase
corrected for the units of renilla luciferase detected in the same plate.
doi:10.1371/journal.pone.0008179.g003
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Figure 4. Dose-dependent effects of three AR agonists on AR nuclear translocation, nuclear hyperspeckling, and transcriptional
reporter gene activity. HeLa cells were stably transfected with wtAR (A), AR F764L (B), AR-R840C (C) and AR-P766S (D) and transiently transfected
with the reporter pARR2PB-dsRED2skl. Cells were maintained in 5% SD-FBS media for 12 hr and treated with the indicated compounds for 18 hr in
5%SD-FBS. Tested compounds given at logarithmic concentrations (10214 to 1025 M) include the following AR agonist: DHT (-#-),Mibolerone (-n-),
and R1881(-%-).
doi:10.1371/journal.pone.0008179.g004
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observed in normal GSFs, at EC50 of 0.14-0.61 nM (Fig. 6,

Table 3). In contrast, only a moderate response in hyperspeckling

was observed (2.8- to 3.9-fold increase), at normal EC50

concentrations (EC50: 0.38–0.47 nM). Ligand-dependent stabili-

zation of the receptor occurred with all three compounds in a way

that was similar to normal GSF samples (1.8- to 2.3-fold; EC50:

0.17–0.55 nM). In general, in this cell line the results indicate that

agonist binding to AR-R840C generates normal nuclear

translocation and receptor stabilization, but significantly reduced

ability of AR to establish subnuclear hyperspeckling [15].

Image Based Analysis of AR-P766S Function
HeLa. All three agonists induced significant nuclear

translocation, hyperspeckling and transcriptional activation of

AR-P766S to wild-type AR levels, however, these responses were

observed at significantly higher concentrations of ligand (Fig. 4,

Table 1). In contrast to the F764L mutation, differential ligand

selectivity was absent in AR-P766S.

GSF. All three agonists induced significant nuclear translo-

cation (14.3%–20.7%) when used at higher concentrations (EC50:

1.2–3.2 nM) in GSFs harboring the AR-P766S mutation (Fig. 6,

Table 3). This was associated with marked hyperspeckling

responses (8.0- to 11.4-fold increase; EC50: 5.1–15.7 nM), and

receptor stabilization (e.g., 1.8- to 2.2-fold increase; EC50: 2.7–

5.9 nM). Overall, GSF AR-P766S was similar to GSF AR-F764L.

It showed reduced ligand sensitivity, although responsiveness was

complete, and not ligand-specific.

Discussion

We hypothesized that AR point mutations localized in the

ligand binding domain and associated with normal 3H-DHT Bmax

and Kd may be reversible, and proved this by using the new AR

HCA technology and conventional assays, such as NC-TDI. HCA

not only proved to be a powerful tool to understand the functional

abnormalities of AR mutations directly in patient-derived

specimens, but was also utilized to predict clinical responses to a

variety of experimental treatments.

NC-TDI
Experiments were performed to establish if the three mutants

were affected by an impairment of the NH2-COOH terminal

interaction, and if so, if this impairment would be amenable to

normalization using conditions that enhance stability of binding,

for instance by increasing concentrations of natural or synthetic

AR agonists. NC-TDI was impaired in the two mutations

associated with increased ligand-receptor dissociation rate; AR-

F764L and AR-P766S. ARF764L demonstrated a ligand-

dependent partial rescue of NC-TDI to approximately 50% of

wild type, at high concentrations (e.g.: 200 nM) of Mibolerone,

but not of R1881 and DHT. AR-P766S demonstrated a

complete rescue of NC-TDI with all four ligands, in a way that

was proportional to the concentration used, and reached

complete normalization at 200 nM. These data confirmed that

notion that abnormal NC-TDI is a hallmark of increased ligand-

receptor dissociation rate [36], and suggested that a stabilization

of ligand-receptor interaction occurred at higher concentrations

of ligand. That NC-TDI recovery was only partial and ligand-

dependent in F764L was surprising. This observation may be

related to the fact that F764 makes direct ligand contact [37],

and its replacement by ligand may alter the conformation of the

ligand binding pocket which results in increased affinity for

ligands other than DHT. The R840C mutation demonstrated

increased NC-TDI’s with all ligands and concentrations tested

compared to wild type. We knew from the outset that AR-

R840C affected 3H-DHT binding causing thermolability, not

Table 1. Calculated Maximal and EC50 Responses of AIS Mutations in HeLa Cells.

Response Untreated DHTMax DHTEC50 R1881Max R1881EC50 MbMax MbEC50

HeLa Wild Type

Percent Signal in Nucleus 49.064.5 75.662.1 10.561.9 81.261.9 0.860.5 80.561.9 1.160.7

Hyperspeckling 20.5610.1 950643 29.164.1 1138666 28.564.1 1101661 29.465.2

Transcriptional Activity 1.064 10562 39.265.1 11261.5 30.164.4 11361.4 31.663.9

HeLa F764L

Nuclear Translocation 42.260.9 80.361.0 49.668.4 77.161.3 10.061.6 73.260.8 2.460.3

Hyperspeckling 7.361.8 11863 142617 561610 233616 96568 11464

Transcriptional Activity 2.660.7 14.560.9 72.6625.9 46.460.5 15067 92.962.2 87.5611.2

HeLa R840C

Nuclear Translocation 35.260.8 56.260.8 6.761.4 64.160.9 2.260.12 63.761.1 0.3760.12

Hyperspeckling 32.667.3 22267.0 7.661.3 361620 11.762.7 269620 4.362.0

Transcriptional Activity 3.26.74 28.560.8 7.861.0 44.061.7 9.161.5 35.361.4 8.061.6

HeLa P766S

Nuclear Translocation 43.261.2 79.262.1 151612 76.561.9 165615 78.961.5 165615

Hyperspeckling 12.662.3 752625 251633 801638 283621 785630 264610

Transcriptional Activity 1.163.1 9562.3 24369 10162 268619 9862.2 245615

Values calculated by applying the 4-parameter curve fit algorithm available in SigmaPlot to multiple replicate experiments and represent Mean6S.E.M. All data are
presented as absolute numerical measurements.
Calculated maximal responses from AR HCA. EC50 values are presented for Nuclear Translocation, Hyperspeckling and Transcriptional Activity after stimulation with
three AR agonists (DHT, Mibolerone and R1881) in HeLa transfected with wild type AR, AR-F764L, AR-R840C and AR-P766S. EC50 represents the nM concentration of
agonist that provokes a response halfway between the baseline and maximal induction. Maximal response achieved with each agonist for each HTM parameter is
expressed as % signal present in the nucleus for Nuclear Translocation, as fold-induction from time point 0 for Hyperspeckling and Transcriptional Activity.
doi:10.1371/journal.pone.0008179.t001
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Figure 5. Dose dependent effects of three AR agonists on AR nuclear translocation, nuclear hyperspeckling and total AR. Data of
fold-increase are presented from 6 genital skin fibroblasts cell lines obtained form normal individuals at the time of circumcision. Cells were
maintained in 5% SD-FBS media for 12 hr and treated with the indicated compound for 18 hr in 5%SD-FBS. Tested compounds given at logarithmic
concentrations (10214 to 1025 M) include the following AR agonist: DHT (-#-), Mibolerone (-n-), and R1881(-%-).
doi:10.1371/journal.pone.0008179.g005
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increased ligand-receptor dissociation rate. Thus, it should not

have been a surprise to find that NC-TDI was unaffected in AR-

R840C. The mechanism of androgen insensitivity in the context

of an AR mutation showing increased NC-TDI is unclear.

Because AF2 is important not only for NC-TDI, but also for p-

160 coactivators recruitment [38], it could be speculated that the

increased interaction between AF2 and the N-terminus observed

in AR-R840C may be associated with improper recruitment of

p-160 coactivators, and thus decreased AR transcriptional

activity. Finally, as the transient expression of the wt and

mutant AR fusions in the N-C assay precludes measurement of

absolute AR levels per cell, we cannot dismiss the possibility that

the observed increase in N-C interactions may be influenced by

stabilization of the LBD by a type, or concentration, of ligand.

Given the preponderance of our other data, this less interesting

possibility seems remote.

HCA Experiments in Hela Transfected with Wild Type AR
vs. GSF from Normally Virilized Individuals

HCA activities measured in primary GSF cultures from six

normal patients that were used as a control were within a relatively

small interval. These minor differences probably reflect a unique

intracellular equilibrium of molecules regulating AR activation, or

polymorphisms of the polyglutamine repeat of AR exon 1. It is also

possible that the different HCA activities observed in these cell

lines reflect different degrees of normal virilization that are present

in the general population.

A number of reproducible, cell line-dependent differences were

detected in the control groups between HeLa and GSF. First, as

previously described [15], EC50 for ligand-dependent nuclear

translocation were higher compared with hyperspeckling and

transcriptional activity in HeLa-AR cells using R1881 and

Mibolerone (by a factor of approximately 30-fold), or DHT (by

Table 2. Calculated Max and EC50 Responses of Normal GSF Cell Lines.

Response Untreated DHTMax DHTEC50 R1881Max R1881EC50 MbMax MbEC50

GSF M6382 (Normal)

Percent Signal in Nucleus 51.263.2 70.160.4 0.1460.01 70.060.9 0.08060.023 73.160.5 0.1260.01

Hyperspeckling 7.561.2 76.562.6 0.4560.10 77.761.6 0.3160.04 92.261.2 0.2160.02

Total AR 74.965.4 224625 0.4960.58 19169 0.1960.10 21067 0.1860.06

GSF L7728 (Normal)

Nuclear Translocation 50.262.1 65.060.5 0.04760.011 63.161.0 0.2660.13 69.160.5 0.01560.003

Hyperspeckling 25.063.7 162610 0.07760.044 12465 0.07760.036 12866 0.09760.030

Total AR 12.563.1 31.860.8 0.01260.004 33.661.4 0.2860.12 31.260.5 0.08460.013

GSF M7118 (Normal)

Nuclear Translocation 31.461.9 50.961.5 0.01360.009 47.260.8 0.1960.07 48.160.9 0.01360.007

Hyperspeckling 6067.1 606618 0.1260.03 560627 0.6760.20 586635 0.03060.016

Total AR 82610 13365 0.1660.10 13664 0.3660.15 13864 0.03360.01

GSF A4676 (Normal)

Nuclear Translocation 32.162.1 51.660.6 0.4960.13 49.261.4 0.1160.06 48.960.6 0.05260.016

Hyperspeckling 4366.2 469610 0.8460.17 473610 0.1460.03 464639 0.03260.023

Total AR 53614 12563 0.3360.14 10864 0.03060.010 12262 0.1460.04

GSF S8558 (Normal)

Nuclear Translocation 35.263.1 58.160.4 0.3160.05 47.260.8 0.1960.07 55.160.5 0.02860.006

Hyperspeckling 3566.6 374.568 0.9060.40 33766 0.9260.14 35567 0.1860.04

Total AR 5069 11162 1.060.2 11463 0.9560.21 11462 0.8560.22

GSF B8906 (Normal)

Nuclear Translocation 39.260.2 64.360.4 0.3260.03 61.560.5 0.5360.11 61.360.7 0.05160.017

Hyperspeckling 4565.2 40567 0.5360.08 34365 1.360.2 40166 0.1760.03

Total AR 5965 12361 1.760.3 11261 0.6360.08 12866 0.3860.09

Average Normal Response DHTChange DHTEC50 R1881Change R1881EC50 MbChange MbEC50

Nuclear Translocation (% Point change) 20.161.4 0.1560.06 16.561.6 0.2360.07 19.461.0 0.04660.016

Hyperspeckling (fold change) 9.660.7 0.4960.14 8.860.9 0.5760.20 9.561.0 0.1260.04

Total AR (fold change) 2.360.2 0.6160.26 2.260.2 0.4460.15 2.360.2 0.2860.12

Values calculated by applying the 4-parameter curve fit algorithm available in SigmaPlot to multiple replicate experiments. For individual cell lines, all data are
presented as absolute numerical measurements. For the average normal response, nuclear translocation is reported as the percentage point change from untreated
samples whereas hyperspeckling and total AR is reported as fold change from untreated samples.
Calculated maximal responses from AR HCA. EC50 values for Nuclear Translocation, Hyperspeckling and Total AR increase after stimulation with three AR agonists (DHT,
Mibolerone and R1881) in GSF from 6 normal individuals (M6382, L7728, M7118, A4676, S8558, B8906). EC50 represents the nM concentration of agonist that provokes a
response halfway between the baseline and maximal induction. Maximal response achieved with each agonist for each HTM parameter is expressed as % signal present
in the nucleus for Nuclear Translocation, as fold-induction from time point 0 for Hyperspeckling and Total AR content.
doi:10.1371/journal.pone.0008179.t002

AR HCA in AIS Profiling

PLoS ONE | www.plosone.org 10 December 2009 | Volume 4 | Issue 12 | e8179



a factor of approximately 3-fold). In contrast no such difference

was present in GSF cells. Second, the EC50’s for hyperspeckling

were lower in GSF compared with HeLa by a factor of

approximately 70-fold. Third, the fold-induction of hyperspeck-

ling (a surrogate of transcriptional activity) was lower by a factor of

5-fold in GSF cells compared to HeLa-AR. The reasons for these

discrepancies are not clear. The first discrepancy may be related to

decreased ability of ligand-bound AR to interact with the

machinery necessary for nuclear import in HeLa cells, or to the

presence of a competing androgen-binding protein in the cytosol

but not the nucleus of HeLa, so that higher concentrations of

androgen would be necessary to complete functions that take place

in the cytoplasm, such as nuclear import, but not in the nucleus,

such as hyperspeckling or transcriptional activity. The third

discrepancy may be related to decreased transcriptional activity in

GSF reported by others [39], or to the preponderance in these cell

lines of AR co-repressors [40].

AR-F764L
These studies have shown that the recovery of AR-F764 activity

(e.g.: 45% of control) occurs in a Mibolerone-dependent way.

Similar results were obtained in GSF containing ARF764L or

transfected HeLa; the main difference being that Mibolerone was

more effective in GSF, with a recovery of hyperspeckling, a

surrogate marker of transcription, at 100% of control levels. These

studies reconcile the CAIS phenotype of this patient with the fact

Figure 6. Dose dependent effects of three AR agonists on AR nuclear translocation, nuclear hyperspeckling and total AR fold-
increase. Data is presented from genital skin fibroblasts cell lines obtained from AIS patients with AR mutations AR-F764L (GSF571), AR-R840C
(GSF840) and AR-P766S (GSF851). Cells were maintained in 5% SD-FBS media for 12 hr and treated with the indicated compound for 18 hr in 5%SD-
FBS. Tested compounds given at logarithmic concentrations (10214 to 1025 M) include the following AR agonist: DHT (-#-), Mibolerone (-n-), and
R1881(-%-).
doi:10.1371/journal.pone.0008179.g006
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that at the critical time of genital differentiation the fetus was

exposed to the endogenous ligand DHT, which is inactive with

AR-F764L. A Mibolerone-specific recovery of function argues that

this agonist fits inside the mutated ligand-binding pocket of AR-

F764L more properly than the physiologic ligand DHT.

Stabilization of the receptor-ligand complex with high doses of

Mibolerone rescued NC-TDI to 50% of control, and this was

associated by improved ligand retention in the ligand-binding

pocket of the receptor, and by an increase in transcription.

AR-P766S
We observed complete recovery of AR NC-TDI and HCA

functions with pharmacologic concentrations of DHT, R1881 and

Mibolerone for mutant AR-P766S. Because the interaction

between ligands and AR-P766S was highly unstable at physiologic

concentrations, NC-TDI and transcription were compromised to

the point that the patient developed a CAIS phenotype.

Supraphysiologic concentrations of the three ligands improved

ligand-receptor stability, and normalized NC-TDI and transcrip-

tional activity to control levels.

AR-R840C
HCA analysis in HeLa and GSF cells showed that nuclear

translocation of AR-R840C could be almost normalized at higher

concentration of each ligand, however neither hyperspeckling nor

transcriptional activity were recovered. Because this mutation was

not associated with instability of receptor-ligand binding, lack of

response to experimental conditions coupled with increased

receptor-ligand stability was not surprising. As stated above, the

presence of increased NC-TDI may be associated with decreased

recruitment of coactivators and decreased transcriptional activity.

In conclusion these studies have generated several new

concepts. First, AIS mutations with normal Kd, Bmax, and

increased ligand dissociation rate can be rescued. In contrast,

other mutations with a slightly different phenotype (i.e. normal Kd,

Bmax, ligand dissociation rate, but abnormal thermostability) were

not rescued. Thus, to this point the biochemical signature of AR

mutations that can be rescued consists in normal Kd, Bmax, and

increased ligand dissociation rate. In support of these observations,

the PAIS patients who responded to treatment in the paper of

Grino [6,10] had an AR mutation with this biochemical signature.

Second: mutations with normal Kd and Bmax and increased ligand

dissociation rate are associated with decreased NC-TDI. NC-TDI

is a surrogate of ligand-receptor binding stability, thus such

mutations can be rescued by using conditions that increase ligand-

receptor binding stability, such as use of pharmacologic doses of

natural or synthetic ligands. Third: These studies prove the fact

that HCA can generate in a short period of time useful

information to direct personalized medicine for patients affected

by AIS. The extent that these studies can be generalized will be

determined by AR HCA studies of additional patients with similar

phenotypes.

How AR HCA Data Could Be Used in a Clinical Setting
More studies are needed with additional cell lines before direct

translation into clinical practice. Safety will be an important issue,

particularly for the synthetic agonists, which are not FDA-

approved. The CAIS phenotype of patients AR-P766S and AR-

F764L argues against treating these patients, because 100% of

them reared as females maintained throughout life a female

gender identity [41]. Nevertheless, the prediction is that significant

virilization may have occurred after observing the in vitro response

of AR-P766S and AR-F764L. PAIS patients would clearly be the

first beneficiaries of this technology. Whether the small improve-

ment in AR activity observed at pharmacologic doses of agonists

for AR-R840C would have resulted in an improvement of the

PAIS phenotype of this patient remains unknown; however,

experience with similarly undervirilized individuals argues that

even small responses improve the outcome of surgical repairs [6].

In conclusion, this work represents a step forward toward the

utilization of modern high-speed microscopic techniques for the

diagnosis and treatment of diseases related to AR. It will be

Table 3. Calculated Max and EC50 Responses of AIS GSF Cell Lines.

Response Untreated DHTMax DHTEC50 R1881Max R1881EC50 MbMax MbEC50

GSF 571 (F764L)

Nuclear Translocation 37.264.5 43.060.1 35.364.3 54.260.7 0.3560.13 58.160.2 0.4760.04

Hyperspeckling 72.167.6 13064 83.7618.4 411616 3.961.4 69969 3.560.4

Total AR 45.162.2 58.860.7 33.6610.0 73.262.9 3.262.8 99.462.0 3.460.9

GSF 691 (R840C)

Nuclear Translocation 20.161.1 37.660.8 0.5160.14 37.060.4 0.1460.02 34.960.3 0.6160.07

Hyperspeckling 15.364.1 51.261.2 0.4760.09 43.161.5 0.3860.13 59.261.8 0.4460.12

Total AR 40.161.9 78.662.8 0.3960.17 71.462.1 0.5460.20 93.065.2 0.5560.31

GSF 851 (P766S)

Nuclear Translocation 30.162.1 50.860.5 1.260.2 44.460.6 3.261.0 44.961.1 3.261.9

Hyperspeckling 25.160.9 28663 5.160.3 20166 15.763.3 22465 1362

Total AR 135632 294627 2.760.4 23965 5.962.9 28365 2.860.8

Values calculated by applying the 4-parameter curve fit algorithm available in SigmaPlot to multiple replicate experiments. All data are presented as absolute numerical
measurements.
Calculated maximal responses from AR HCA.
EC50 values for Nuclear Translocation, Hyperspeckling and Total AR increase after stimulation with three AR agonists (DHT, Mibolerone and R1881) in GSF from AIS
patients with AR mutations F764L, R840C and P766S. EC50 represents the nM concentration of agonist that provokes a response halfway between the baseline and
maximal induction. Maximal response achieved with each agonist for each HTM parameter is expressed as % signal present in the nucleus for Nuclear Translocation, as
fold-induction from time point 0 for Hyperspeckling and Total AR content.
doi:10.1371/journal.pone.0008179.t003
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interesting to expand these studies to include evaluation of more

global effects of AR rescue using different concentrations of ligand,

or with ligands other than the endogenous AR agonists. Future

investigation will continue to analyze AR malfunction in AIS and

other clinical conditions, such as prostate cancer, hypospadias,

cryptorchidism and sarcopenia.
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