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Abstract

In this Methods article, we discuss and illustrate a unifying, principled way to analyze response

time data from psychological experiments—and all other types of time-to-event data. We advo-

cate the general application of discrete-time event history analysis (EHA) which is a well-

established, intuitive longitudinal approach to statistically describe and model the shape of

time-to-event distributions. After discussing the theoretical background behind the so-called

hazard function of event occurrence in both continuous and discrete time units, we illustrate

how to calculate and interpret the descriptive statistics provided by discrete-time EHA using two

example data sets (masked priming, visual search). In case of discrimination data, the hazard

analysis of response occurrence can be extended with a microlevel speed-accuracy trade-off
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analysis. We then discuss different approaches for obtaining inferential statistics. We consider the

advantages and disadvantages of a principled use of discrete-time EHA for time-to-event data

compared to (a) comparing means with analysis of variance, (b) other distributional methods

available in the literature such as delta plots and continuous-time EHA methods, and (c) only

fitting parametric distributions or computational models to empirical data. We conclude that

statistically controlling for the passage of time during data analysis is equally important as exper-

imental control during the design of an experiment, to understand human behavior in our exper-

imental paradigms.
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Since the publication of the subtraction method (Donders, 1969) and the additive factors

method (Sternberg, 1969), analysis of variance (ANOVA) has become the standard data

analysis method in psychology and cognitive (neuro)science for the analysis of response

times (RTs). Following these approaches, many researchers interpret differences in RTs

between experimental conditions on a difference scale that is assumed to directly capture

the time requirements of additional cognitive operations. However, differences in mean RT

can only be interpreted that way when assuming that the nature of cognitive processing is

captured by the serial information processing framework. Even though the serial informa-

tion processing framework has been criticized repeatedly in the literature (Cisek & Kalaska,

2010; Eriksen & Schultz, 1979; McClelland, 1979; Pieters, 1983; Sch€oner et al., 2016),

ANOVA continues to be the most popular method to analyze RTs to this day.
As discussed by Van Gelder (1995), there is a viable alternative view on the nature of

cognitive processing: Cognition is the behavior of a dynamical system. To understand the

behavior of a dynamical system, it is crucial to track its output over time (Sch€oner et al.,

2016). We therefore promote and illustrate the use of a well-established longitudinal or

distributional technique known as event history analysis (EHA) for analyzing time-to-

event data such as RTs. EHA (also known as survival, hazard, duration, transition, and

failure-time analysis) is the name of the standard set of statistical methods for studying the

occurrence and timing of events in many scientific disciplines (Allison, 2010; Singer & Willett,

2003). While EHA is already applied in many areas of the human sciences, including devel-

opmental psychology (Ha et al., 1997), clinical psychology (Corning & Malofeeva, 2004;

Greenhouse et al., 1989; Willett & Singer, 1993), social psychology (Griffin, 1993; Keiley &

Martin, 2005; N�u~nez-Ant�on & Orbe, 2005; Steele et al., 1996, 2004; Stoolmiller & Snyder,

2006), organizational psychology (Morita et al., 1989), and even cognitive psychology

(Chechile, 2006; Pannasch et al., 2001; Panis & Wagemans, 2009; Torfs et al., 2010;

Wenger & Gibson, 2004; Yang & McConkie, 2001), an introduction to EHA that focuses

on its relevance for cognitive (neuro)scientists is still warranted as its use is currently still

rather rare. As we will see later, the use of a more advanced and well-established analysis

method can maximize the return from the collected data, which is important in view of the

costs and time required to run an experiment (Whelan, 2008).
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To apply EHA, we must be able to define the event of interest (any qualitative change that
can be situated in time), to define time point zero, and to measure the passage of time
between time zero and event occurrence in discrete or continuous time units. While sociol-
ogists are interested in the occurrence and timing of events such as marriage and divorce—
note that some people never marry—and biostatisticians in death, experimental psycholo-
gists are interested in events such as button presses (RT analysis), saccade onsets (saccade
latency analysis), fixation offsets (fixation duration analysis), and so forth. Typically, time
point zero is defined as target display onset time in RT and saccade latency studies. However,
sometimes the time of the last response can be defined as time zero for the next response, for
example, when studying perceptual dominance durations in studies using ambiguous figures.
The onset of fixation is time zero for fixation duration analysis.

The structure of this Methods article is as follows. First, we introduce and explain the
concept of hazard, in continuous and discrete time units. Next, we illustrate how to calculate
the descriptive statistics in discrete time using a life table, and we discuss two example data
sets. We then describe different approaches for obtaining inferential statistics. We end with a
discussion of the (dis)advantages of discrete-time EHA, compared with other existing dis-
tributional methods.

The Continuous-Time Hazard Rate Function of Event Occurrence

Luce (1986) mentions that there are several different, but mathematically equivalent, ways to
present the information about a continuous random variable T denoting a particular per-
son’s RT in a particular experimental condition, including (a) the cumulative distribution
function F(t)¼P(T � t), (b) its derivative F’(t) known as the probability density function f(t),
(c) the survivor function S(t)¼ 1 – F(t)¼P(T> t), and (d) the hazard rate function k(t)¼ f(t)/
[1 – F(t)]¼ f(t)/S(t).

In principle, we may present the data as estimates of any of these functions and it should not

matter which we use. In practice, it matters a great deal, although that fact does not seem to have

been as widely recognized by psychologists as it might be. (Luce, 1986, p. 17)

EHA has been developed to describe and model the hazard function of event occurrence (for
RT data, the event is a button-press response). For continuous RT data, hazard quantifies
the instantaneous risk that a response will occur at time point t, given that it has not occurred
before time t. In other words, it quantifies the likelihood that a response we are still waiting
for at time t will occur within the next instant. Just as speed is defined as a rate—the distance
covered per unit time—so too is the continuous-time hazard k(t). For example, if time is
measured in seconds and k(3.0)¼ 2, then the instantaneous rate of event occurrence equals
two events per second after 3 seconds of waiting time. There are at least five reasons why
statisticians and mathematical psychologists recommend focusing on the hazard function in
practice, when dealing with a finite sample of time-to-event data.

First, the hazard function of response occurrence is one of the most diagnostic functions
when describing the distribution of a sample of time-to-event data (Allison, 2010; Luce, 1986;
Townsend, 1990). For example, “the hazard function itself is one of the most revealing plots
because it displays what is going on locally without favoring either short or long times, and it
can be strikingly different for f’s that seem little different” (Luce, 1986, p. 19). To illustrate
this, Figure 1 shows the F(t), f(t), S(t), and k(t) for four theoretical waiting-time distribu-
tions. In contrast to k(t), all F(t) and S(t) distributions look vaguely alike, and we cannot
easily describe salient features other than the mean and standard deviation. Also, the density
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function f(t) conceals what is happening in the right tail of the distribution (Luce, 1986). As

discussed by Holden et al. (2009), “probability density functions can appear nearly identical,

both statistically and to the naked eye, and yet are clearly different on the basis of their

hazard functions (but not vice versa). Hazard functions are thus more diagnostic than den-

sity functions” (p. 331).
Second, because RT distributions may differ from one another in multiple ways,

Townsend (1990) developed a dominance hierarchy of statistical differences between two

arbitrary distributions A and B. For example, if FA(t)>FB(t) for all t, then both cumulative

distribution functions are said to show a complete ordering. Townsend (1990) showed that a

complete ordering on the hazard functions—kA(t)> kB(t) for all t—implies a complete order-

ing on both the cumulative distribution and survivor functions—FA(t)>FB(t) and SA(t)<
SB(t)—which in turn implies an ordering on the mean latencies—mean A<mean B. In

contrast, an ordering on two means does not imply a complete ordering on the corresponding

F(t) and S(t) functions, and a complete ordering on these latter functions does not imply a

complete ordering on the corresponding hazard functions. This means that stronger con-

clusions can be drawn from data when comparing the RT hazard functions using EHA. For

example, when mean A<mean B, the hazard functions might show a complete ordering (i.e.,

for all t), a partial ordering (e.g., only for t> 300 ms, or only for t< 500 ms), or they may

cross each other one or more times.
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Figure 1. Four views on four different waiting-time distributions in continuous time. The hazard rate
function k(t) (A), the cumulative distribution function F(t) (B), the survivor function S(t) (C), and the
probability density function f(t) (D) are shown for each of four theoretical probability distributions (different
colors: exponential, Weibull, gamma, log-normal). While the hazard rate function for the exponential is flat, it
keeps increasing for the Weibull, it increases to an asymptote for the gamma, and it reaches a peak and then
gradually decreases to an asymptote for the log-normal.
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Third, EHA does not discard right-censored observations when estimating hazard func-

tions, that is, trials for which we do not observe a response during the data collection period

so that we only know that the RT must be larger than some value. This is important because

although a few right-censored observations are inevitable in most RT tasks, a lot of right-

censored observations are expected in experiments on masking, the attentional blink, and so

forth, for example.
There are other types of censoring. Left censoring occurs when all that is known about an

observation on a variable T is that it is less than some value. Interval censoring combines

right and left censoring so that all you know about T is that a<T<b, for some values of a

and b (Allison, 2010). Random censoring occurs when observations are terminated for

reasons that are not under the control of the experimenter.
Importantly, all standard statistical methods for time-to-event data require that random

censoring be noninformative: For example, a trial that is censored at time c should be

representative of all those trials with the same values of the explanatory variables that sur-

vive to c (Allison, 2010). For example, the occurrence of an equipment error during a trial

will introduce random censoring that is uninformative. However, when estimating the hazard

of correct response occurrence, error responses introduce random censoring (and vice versa)

that is very likely informative, because response channels are known to compete with one

another (Burle et al., 2004; Eriksen et al., 1985; Praamstra & Seiss, 2005). We therefore never

recommend to describe or model the hazard of correct response occurrence independently

from the hazard of error response occurrence but to extend the hazard of response occur-

rence with conditional accuracy functions (see later).
The most common type of right-censoring is “singly Type I censoring” that applies when

the experiment uses a fixed response deadline for all trials. “Type I” means that the censoring

time is fixed and is under the control of the experimenter, and “singly” refers to the fact that

all observations have the same censoring time (Allison, 2010). Discarding such trials—or

trials with very long RTs in case the experimenter waits for a response on each trial—may

introduce a sampling bias that results in underestimation of the mean. In contrast, EHA can

include the data information from all trials when estimating the descriptive statistics.
Fourth, hazard modeling allows incorporating time-varying explanatory covariates such as

heart rate, electroencephalogram (EEG) signal amplitude, gaze location, and so forth

(Allison, 2010) which is useful for cognitive psychophysiology (Meyer et al., 1988). For

more information, see Singer andWillett (2003, pp. 426–442) and Allison (2010, pp. 243–246).
Finally, hazard is more suited as a measure of the concept of processing capacity, that is,

the amount of work the observer is capable of performing within some unit of time (Wenger

& Gibson, 2004). The hazard function can capture the notion of the instantaneous capacity

of the observer for completing the task in the next instant, given that the observer has not yet

completed the task.

The Discrete-Time Hazard Probability Function of Event Occurrence

Unfortunately, estimating the shape of the continuous-time hazard rate function for one

observer in one experimental condition is not straightforward because one needs at least

1,000 trials for example (Bloxom, 1984; Luce, 1986; Van Zandt, 2000). However, by shifting

to discrete time, we can trade-off some temporal resolution for increased applicability of

EHA in RT studies that typically collect less than 1,000 trials per condition per participant.

In this Methods article, we therefore focus on the application of discrete-time hazard analysis

to RT data, which is straightforward, easy, and intuitive and allows for flexible statistical

Panis et al. 5



modeling by logistic regression which is highly familiar to psychologists (Allison, 1982, 2010;

Singer & Willett, 1991, 2003; Willett & Singer, 1993, 1995).
In Figure 2A, four hypothetical discrete-time population hazard functions are plotted

with time divided in 10 discrete bins (1–10). Each function was constructed by selecting a

series of 10 real numbers from the interval [0,1] with replacement, with the only restriction

that once “1.0” is selected then the following numbers are set to “missing data”—the reader

can construct her or his own example functions. Each hazard function completely describes

the shape of a distribution of discrete waiting times. For example, the four theoretical

functions in Figure 2A could reflect the true RT distributions of a single participant in

four experimental conditions (studied with a small-N design; in which a large number of

observations are made on a relatively small number of experimental participants, Smith &

Little, 2018); in this example, time might have been measured in discrete time bins of 50 ms

each, with a censoring time of 500 ms. Or they might reflect the true distributions of the time

it takes to earn a first doctoral degree measured in years for four groups of 100 participants

with certain personality characteristics (large-N design), with a censoring time of 10 years. In

each case, h(t) gives the conditional probability that the event of interest occurs in bin t given

that it has not yet occurred before, or h(t)¼P(T¼ t|T � t), where T is a discrete random

variable denoting the rank of the time bin in which the event occurs. The discrete-time

hazard function of event occurrence thus tells us the probability that the event we are still

waiting for (at the start of bin t) will actually occur in bin t.
Figure 2C displays the corresponding discrete-time survivor functions, or S(t)¼P

(T> t)¼ [1 – h(t)] * [1 – h(t–1)] * . . . * [1 – h(1)], which gives for each bin the probability
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Figure 2. Four views on four different waiting-time distributions in discrete time. The hazard probability
function h(t) (A), the cumulative distribution function F(t) (B), the survivor function S(t) (C), and the (sub)
probability mass function P(t) (D) are shown for each of four hypothetical conditions (different colors).
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that the response does not occur before the end of bin t. The survivor function is the com-
plement of the cumulative distribution function (Figure 2B), or S(t)¼ 1 – F(t)¼ 1 – P(T � t).
Figure 2D shows the corresponding probability mass functions, or P(t)¼P(T¼ t)¼ h(t) * S
(t�1).

We constructed the hazard functions in Figure 2A in such a way that they show some
symmetry. For example, Condition 1 (black line) might represent a neutral priming condition
and Conditions 2 and 3 a congruent and incongruent priming condition, respectively. Let us
assume for simplicity that each bin is 1 second wide and that the censoring time equals 10
seconds so that we have the following sequence of bins: (0,1], (1,2], . . . , (9,10]. For example,
the discrete-time hazard for bin 2 in the neutral condition equals .20 (for bins 1–3, the hazard
functions for the first three conditions lie on top of each other). In other words, given that
time has passed until 1 second after target onset without response occurrence, then there is a
conditional probability of .2 that the response occurs sometime during the next second, that
is, in the second bin or time segment (1,2]. In short, h(2)¼ .2. When the waiting time has
increased to 2 seconds, h(3)¼ .4, and so forth.

If we now compare Conditions 2 and 3 (green and red lines), we see a large positive
priming effect in hazard for time segment (3,6] followed by a smaller negative (i.e., inverted)
priming effect for time segment (7,8]. Note that while the hazard functions for Conditions 2
and 3 cross two times, the S(t) and F(t) functions do not cross, because they cumulate the
(complement of the) current and previous hazard values. This implies that also quantile plots
and delta plots—and other types of visualization based on plotting and comparing quantiles
from F(t)—would not be able to reveal the crossing that is visible in hazard.

Similarly, note that the symmetry present in the hazard functions for the first three
conditions is also absent in the P(t) functions. As a matter of fact, if we would only study
P(t), we might conclude incorrectly that the late negative priming effect lasts longer than the
early positive priming effect. However, the P(t) values do not give any information on the
time course of event occurrence because they denote the probability that the event occurs in
bin t given that it can occur in any (previous, current, or future) bin. In other words, they
simply tell you how many percent of all trials will experience the event in bin t. Note that the
P(t) values in Figure 2D do not sum to 1 for Conditions 1 and 3, which is why these are
called subprobability mass functions (Chechile, 2003); also, the corresponding h(t) and F(t)
functions do not reach 1, and the S(t) functions do not reach zero.

Obtaining Descriptive Statistics for Discrete Time Units: The

Life Table

To calculate the descriptive statistics—functions of discrete time—for a finite time-to-event
data set, one has to set up a life table. In the context of a small-N design, the life table
summarizes the history of event occurrences for a combination of participant and experi-
mental condition. To set up a life table, you need to determine the censoring time and divide
it up into a sequence of contiguous time bins. The fixed censoring time point is typically the
response deadline used, or a time point after which you expect no useful responses anymore
in any trial of any condition. In this section, we shortly discuss real data from two published
experiments using a small-N design, one on masked priming, and one on visual search.

Masked Priming

Panis and Schmidt (2016) asked participants to perform speeded keypress responses to the
direction of a 94 ms double arrow target (left/right), within 600 ms (Figure 3A). The central
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target could be preceded by a central 13 ms double arrow prime that was followed by a 94-ms

pattern mask. The factors prime type and mask type were manipulated factorially. The prime

could point in the same direction as the target (CONgruent), in the opposite direction

(INCONgruent), or no prime was presented (NP). The mask stimulus could be response-

relevant (REL), response-irrelevant (IRREL), a set of random lines (LIN), or no mask was

presented (NM). Consistent with the literature, the mean correct RT (Figure 3B) and mean

error rates (Figure 3C) show a positive priming or congruency effect (PCE) of about 100 ms

and 20 percentage points when no mask was presented, but the reversed effect in the presence

of relevant or irrelevant masks: a negative congruency effect (NCE) of about –40 ms and –10

percentage points.
Table 1 presents the life table for the data of a single participant in condition NP-NM (no

prime, no mask). The first 600 ms after target onset are divided into 15 bins of 40 ms indexed

by t¼ 1 to 15. After counting the number of responses in each bin, one can then directly

estimate the discrete-time hazard probability function of response occurrence: h(t)¼P(T¼ t |

T � t), where T � t denotes the event that the response does not occur before the start of bin
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Figure 3. Masked priming example. (A) Trial and mask designs used in Experiment 1 of Panis and Schmidt
(2016). A trial with a congruent prime and a relevant mask is shown. Insets show three mask types. Time on
the x axis is measured in milliseconds relative to target onset. (B) Mean correct RT. (C) Mean error rate.
Error bars represent� 1 SEM corrected for between-subject variation.
NP¼ no prime; CON¼ congruent prime; INCON¼ incongruent prime; NM¼ no mask; REL¼ relevant
mask; IRREL¼ irrelevant mask; LIN¼ random lines mask.
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t. For each bin t, the sample-based estimate of h(t) is obtained by dividing the number of
observed responses in bin t by the risk set of bin t, which is the number of trials that are still
response-free at the start of bin t. Note that the four right-censored observations—trials
without response occurrence for which we only know that RT must be larger than 600 ms—
do contribute to the risk set of each bin (ignoring such trials creates a sampling bias). Also
note how the standard error of h(t) tends to increase as the waiting time increases, because
the risk set is becoming rather small for later time bins.

Because we are dealing with two-button discrimination data, the h(t) analysis of response
occurrence is extended with an analysis of conditional accuracy, that is, the microlevel speed-
accuracy trade-off function (Allison, 2010; Pachella, 1974; Wickelgren, 1977). The condi-
tional accuracy function, or ca(t)¼P(correct|T¼ t), is the conditional probability that an
observed response is correct given that it occurs in bin t and is estimated by dividing the
number of correct responses in bin t by the number of observed responses in bin t (Table 1).
By using h(t) functions in combination with ca(t) functions, one can provide an unbiased,
time-varying, and probabilistic description of the latency and accuracy of any sample of
(right-censored) event times.

Sample-based estimates of h(t), S(t), P(t), and ca(t) are shown for one participant in
Figure 4, for two mask conditions (none and relevant) and three prime types (No Prime,
CONgruent, INCONgruent). We refer to each bin using its endpoint, for example, the
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Figure 4. Sample-based estimates for Participant 6 in Experiment 1 of Panis and Schmidt (2016). For each
combination of mask type (no mask and relevant mask) and prime type (congruent, no prime, incongruent),
the estimated discrete-time hazard function h(t) is plotted (A), together with the survivor function S(t) (B),
the (sub)probability mass function P(t) (C), and the conditional accuracy function ca(t) (D). Time axes are
relative to target onset. Error bars represent� 1 standard error of the respective proportion.
CON¼ congruent prime; NP¼ no prime; INCON¼ incongruent prime.
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hazard estimate for bin (240,280] is h(280). Figure 4 offers a fascinating view into the micro-

genesis of primed responses. In the no mask conditions (left panels), response onset is much

earlier when primes are present, and the upswing in response hazards is at first identical for

consistent and inconsistent primes. If such an early response is emitted, it is always correct

for congruent primes and always incorrect for incongruent primes, as shown by the ca(t)

functions. This clearly indicates that these initial responses are triggered exclusively by the

prime without any contribution from the target (the crucial prediction of the rapid-chase

theory of response priming; Schmidt et al., 2006, 2011, 2015).
Once the waiting time has reached 280 ms after target onset without response occurrence,

response hazards continue to increase temporarily for congruent primes but start to decline

for incongruent primes and eventually even reach zero: in bin (360,400] after target onset, no

responses are emitted when the prime is incongruent. In our view, this temporary decline in

hazard reflects—at least initially—response competition from the target, which is becoming

overtly available in bin 280 and activates the opposite (correct) response as the prime. In

other words, this is the phase where the target starts taking over response control from the

prime. After bin 400, h(t) starts to increase again in the incongruent condition, and if such a

late response is emitted, it is always correct. Thus, the response conflict has been resolved in

favor of the target, and these late responses are controlled entirely by the target’s identity.
But something else is going on in the relevant mask condition (right panels). The first

overt responses only appear around 320 ms after target onset. Overall, response hazards

increase faster in incongruent than in congruent trials (with the no-prime condition in

between), demonstrating a reversed priming or NCE in response occurrence. Moreover,

the earliest emitted responses are typically correct in incongruent trials and typically incor-

rect in congruent trials: a complete reversal of the pattern in the no mask condition. When

the target information becomes available, it now delays responses in the congruent condition

around 360 ms after target onset. Following this temporary dip, h(t) sharply increases, and

all responses emitted after 480 ms are correct.
The hazard functions for congruent and incongruent trials thus show a partial ordering

(i.e., only for t> 280 ms in the no mask condition, and for t> 320 ms in the relevant mask

condition). In other words, the hazard functions reveal the onset time, duration, and shape of

the behavioral effect. The differences in means also typically underestimate the duration of

the effect in terms of hazard. For example, the within-trial duration of the PCE when the

mask is absent is at least 200 ms (5 bins) and that of the NCE when the mask is relevant is at

least 160 ms (4 bins). Also, plotting hazard and conditional accuracy functions can reveal

important interindividual differences and the time-locking of effects to stimuli or other

events. For example, Panis and Schmidt (2016) compared the dynamics of the priming

effect in the ca(t) functions for the six different participants and found a high similarity

(Figure 5A): Every participant showed a temporary PCE in the no mask condition and a

temporary NCE in the various masking conditions. Figure 5B shows the result of a second

experiment where the prime-mask and mask-target stimulus-onset-asynchronies (SOAs) were

varied independently. The plot shows that three distinct states can be identified when the

prime-mask SOA is long (conditions “long–short” and “long–long”): a PCE state time-

locked to prime-onset, an NCE state time-locked to mask onset, and an “all correct” state

time-locked to target onset. Note that the same three states have been observed in the

Lateralized Readiness Potential by Ja�skowski et al. (2008) and Eimer and Schlaghecken

(1998). Crucially, the NCE appears �360 ms after mask onset in every condition, an estimate

very similar to the 350 ms estimate obtained by looking at pointing movement trajectories

(Schmidt et al., 2015).
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Panis and Schmidt (2016) concluded that the NCE is neither caused by automatic self-
inhibition of the primed response due to backward masking nor by updating
response-relevant features of the mask, but by active, selective mask-triggered inhibition.
The mask thus acts as a stop-signal within the current task context that initiates selective
inhibition of the premature prime-triggered response, which temporarily disinhibits the
opposite response (thrust reversal; Schmidt et al., 2015). Importantly, these distributional
results are compatible with a computational model of the basal ganglia, a subcortical col-
lection of nuclei that are involved in response gating and (selective and global) response
inhibition (Wiecki & Frank, 2013).

Figure 5. Sample-based ca(t)-state transition plots. For each participant, bin, and mask type (A, Experiment
1) or SOA combination (B, Experiment 2), we first coded the type of difference in observed performance in
ca(t) between congruent (CON) and incongruent (INCON) prime conditions and then applied a color code
(green¼ evidence for PCE; pink¼ evidence for NCE; cyan¼ no evidence for either). Specifically, for bins
where responses are observed for both CON and INCON: “P”: ca(t)¼ 1 for CON and ca(t)¼ 0 for
INCON; “p”: CON minus INCON � .2; “N”: ca(t)¼ 0 for CON and ca(t)¼ 1 for INCON; “n”: CON minus
INCON � –.2; “all”: ca(t)> .8 for both CON and INCON. For bins where responses exclusively occur in
either CON or INCON: “cc”: ca(t)¼ 1 for CON and no responses for INCON; “ii”: no responses for CON
and ca(t)¼ 0 for INCON; “ic”: ca(t)¼ 0 for CON and no responses for INCON; “ci”: no responses for
CON and ca(t)¼ 1 for INCON. Remaining bins: “x”: no responses observed in CON and INCON; “?”: other
cases. The reader can compare the codes for Participant 6 in Figure 5A (relevant and no mask) with
Figure 4D.
NM¼ no mask.
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Visual Search

Panis et al. (2020) reanalyzed the benchmark visual search data sets collected by Wolfe et al.
(2010). For example, in the color-orientation conjunction search task, 10 participants
searched a single display for a red vertical rectangle among green vertical and red horizontal
rectangles. Four different set sizes (target plus distractors; 3, 6, 12, or 18) were randomly
intermixed. Participants pressed one key if the target was present (50% of trials) and another
if the target was absent. They were instructed to respond as quickly and correctly as possible
and received feedback after each trial. Accuracy and RT in ms were recorded. Each partic-
ipant provided approximately 10 blocks of 400 trials, leading to about 500 trials per partic-
ipant and search condition. Figure 6 shows the data for one representative participant in the
color-orientation conjunction search task with a set size of 18 objects, using bins of 40 ms
and a censoring time of 2,400 ms.

First, there is only a partial ordering of the hazard functions with respect to the effect of
target presence (only for t< 600 ms), and the hazard functions are relatively flat for the right
tail of the RT distributions. Second, false alarms occur mostly early in time, while misses
occur mostly for medium-latency responses. The miss rate peaks around 600 ms after search
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Figure 6. Visual search example. The data for one representative participant in each of the target-present
and target-absent conditions of the color-orientation conjunction search task with set size 18 of Wolfe et al.
(2010) are plotted as (A) hazard function h(t), (B) survivor function S(t), (C) (sub)probability mass function P
(t), and (D) conditional accuracy function ca(t). Both insets in Figure 6B show example displays. The target is
a vertical red object. The passage of time is measured discretely using bins of 40 ms starting at search display
onset. The vertical lines in Figure 6B show the estimated median response times for the target-present and
target-absent conditions. The gray surface areas are used for interpretation (see main text). Error bars
represent� 1 standard error of the respective proportion.
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display onset. As far as we know, none of these features of visual search behavior are
predicted by current cognitive models of visual search (Panis et al., 2020).

One tentative interpretation of these data is based on the idea that behavior at any point
in time is determined not only by the outcome of the ongoing search process but also by
response biases and reactive cognitive control processes (Panis et al., 2020). For example,
we can distinguish five phases in the time-dispersed behavior of this observer (the gray
surface areas in Figure 6 mark phases two and four). First, if the waiting time has increased
until 360 ms after search display onset, then h(400) is higher for target-present than target-
absent trials, and all emitted responses are correct for target-present, but incorrect for target-
absent trials. The earliest responses thus show a strong yes-bias, regardless of target presence.
Kiss et al. (2012) concluded that the attentional selection of targets that are defined by a
combination of features—here: “red” and “vertical”—is a two-stage process: Attention is
initially captured by all target-matching features but is then rapidly withdrawn from dis-
tractor objects that share some but not all features with the current target. This suggests that
at the end of the initial feedforward sweep of processing right after display onset, all elements
in the search display will have captured attention to some extent, each signaling the presence
of target features such as red and/or vertical in the conjunction search task. This explains the
presence of the early yes-response bias. We also assume that the target is indeed found on a
few of the target-present trials (e.g., those where the target is very salient due to spatial
grouping processes), which explains the higher hazard for target-present trials. If no early
response occurs, however, time passes on, and the search continues.

Second, in the time range 400–480 ms, hazard further increases for both conditions, while
ca(t) quickly increases above chance level for target-absent trials and starts to slightly
decrease for target-present trials. Thus, while the search process might finish on a subset
of trials in this time range, Panis et al. (2020) suggested that online error-monitoring pro-
cesses can detect the task-interfering yes-response bias in the earliest response tendencies and
that reactive cognitive control processes such as active and selective response suppression
kick in (Panis & Schmidt, 2016). The active and selective suppression of the premature yes-
response tendency can result in a temporary disinhibition of the competing no-response,
which would lead to an overt no-response if a momentary threshold is crossed on some
trials. Thus, in those trials where the search process has not yet finished, this suppression can
lead to overt misses in target-present trials, and it can explain the sharp increase in ca(t) for
target-absent trials, which is presumably too early to reflect pure correct rejection decisions.

Third, in the time range 480–560 ms, performance is optimal in the sense that (a) hazard is
at its highest level so far, and (b) conditional accuracy is high for both target presence
conditions. Around this point in time after display onset, behavior is thus determined
mostly by the outcome of the search process. However, for a subset of trials, no overt
decision is made and time passes on.

Fourth, in the time range 560–640 ms, the difference in hazard disappears, and a no-bias
develops as the miss rate reaches a maximum, and there are no false alarms. In other words,
if the waiting time has increased until 560 ms, then hTP(600) equals hTA(600), and
caTP(600)¼ .8 while caTA(600)¼ 1. Thus, for the more difficult search trials, the suppression
effects accumulate—causing hazard to decrease and the miss rate to peak in the target-
present condition, while more and more correct rejection decisions occur when the target
is absent.

Finally, after 640 ms, hazard functions are flat and most emitted responses are correct. In
other words, the system quits the search and finally transitions to a state with flat hazard
functions without a systematic effect of target presence. Horizontally shaped hazard func-
tions point to exponentially distributed RTs. Based on the findings of Shenoy et al. (2013),
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we assume that these flat right tails reflect RT outliers during decision making. Shenoy et al.
(2013) described neuronal motor activity in macaque monkeys from a dynamical systems
perspective by studying single-trial neural trajectories in a state space. They found that the
neural state wanders before falling back on track in RT outlier trials so that the monkey
hesitated for an abnormally long time before movement onset. Interestingly, Thompson et al.
(1996) found that much of the RT variance in search tasks is due to postperceptual motor
processing, perhaps to provide the adaptive advantage of allowing for subsequent visual
processing and cognitive factors to alter the response choice before an irrevocable commit-
ment is made. For example, one might keep inspecting a few more items even though the no-
response is already selected in the target-absent condition. Similarly, one might explicitly
compare the presumed target with a few surrounding distractors to confirm target presence,
even though the yes-response is already selected in the target-present condition.

Both these and other discrete-time EHA studies of simultaneous masking (Panis &
Hermens, 2014), object recognition (Panis et al., 2017; Panis & Wagemans, 2009; Torfs
et al., 2010), spatial cueing (Panis, 2020; Panis & Schmidt, 2020), and priming
(Wolkersdorfer et al., 2020) teach us three things: (a) Mean performance measures conceal
crucial information about behavioral dynamics such as premature response activation, time-
locking, response suppression, and how performance changes as time passes by within and
across trials, (b) RT and accuracy data reflect different aspects of the time-dispersed decision
process (Mulder & van Maanen, 2013), and (c) sometimes one can identify subsets of par-
ticipants that display qualitatively different behavior (Miller & Schwarz, 2018; Panis, 2020;
Panis et al., 2020).

Note that when you measure time in continuous units, the survivor function S(t) can be
estimated nonparametrically using the Kaplan–Meier method (Kaplan & Meier, 1958).
Estimates of the hazard rate function can be obtained based on Kaplan–Meier but are
typically smoothed to some extent because they tend to be very choppy when not based
on sufficient data (Allison, 2010).

Obtaining Inferential Statistics

There are several approaches for obtaining inferential statistics (Allison, 2010; Austin, 2017).
When you simply want to compare survival functions between two groups in continuous
time (large-N design), the log-rank and the Wilcoxon tests are available (the latter puts more
weight on earlier points in time).

When you want to study how hazard depends on various predictors, you can fit regression
models to the data (Singer & Willett, 2003). An example discrete-time hazard model with
three predictors (TIME, X1, X2) and the complementary log-log (cloglog) link function can
be written as follows:

cloglog h tð Þ½ � ¼ ln �ln 1� h tð Þ½ �ð Þ ¼ ½a0ONEþ a1ðTIME� 1Þ
þ a2ðTIME� 1Þ2 þ a3ðTIME� 1Þ3� þ ½b1X1 þ b2X2 þ b3X2ðTIME� 1Þ�:

The main predictor variable TIME is the time bin index t (see Table 1) that is centered on
value 1 in this example. The complementary log-log link is preferred over the logit link when
events can occur in principle at any time point within a bin, which is the case for RT data
(Singer & Willett, 2003). The first set of terms within brackets, the alpha parameters mul-
tiplied by their polynomial specifications of (centered) time, represents the shape of the
baseline cloglog-hazard function (i.e., when all predictors Xi take on a value of zero). The
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second set of terms (the beta parameters) represents the vertical shift in the baseline cloglog-
hazard for a 1 unit increase in the respective predictor. Predictors can be discrete, continu-
ous, and time-varying or time-invariant. For example, the effect of a 1 unit increase in X1 is
to vertically shift the whole baseline cloglog-hazard function by b1 cloglog-hazard units.
However, if the predictor interacts linearly with time (see X2 in the example), then the
effect of a 1 unit increase in X2 is to vertically shift the predicted cloglog-hazard in bin 1
by b2 cloglog-hazard units (when TIME–1¼ 0), in bin 2 by b2þ b3 cloglog-hazard units
(when TIME–1¼ 1), and so forth. To interpret the effects of the predictors, the parameter
estimates are exponentiated, resulting in a hazard ratio (due to the use of the cloglog link).

In the case of a large-N design without repeated measurements, the parameters of a
discrete-time hazard model can be estimated using standard logistic regression software
(after expanding the typical person-trial-oriented data set into a person-trial-bin-oriented
data set; Allison, 2010). When there is clustering in the data, as in the case of a small-N
design with repeated measurements, the parameters of a discrete-time hazard model can be
estimated using population-averaged methods (e.g., Generalized Estimating Equations),
Bayesian methods, or generalized linear mixed models (Allison, 2010). Examples of the
latter can be found in Panis (2020), Panis et al. (2020), Panis and Schmidt (2016, 2020),
and Wolkersdorfer et al. (2020). Finding the best random effects structure to generalize
beyond the sample is an active area of research (Barr et al., 2013; Cunnings, 2012;
Matuschek et al., 2017; Zuur & Ieno, 2016). Note that in case of a small-N design, EHA
allows one to test if and how individual performance changes on multiple time scales (e.g.,
within-trial, across-trial, across-block).

When you treat time continuously, you can fit parametric models (e.g., a lognormal
hazard model, an exponential hazard model, and so forth; Figure 1), semiparametric
models such as the Cox regression model that ignores the shape of the hazard function
and only tests the beta parameters, or piecewise exponential models (Allison, 2010). A piece-
wise exponential model is useful when (a) event times are measured precisely, (b) you want to
estimate the shape of the hazard function, and (c) you do not want to impose a parametric
model: Time is divided into intervals, and the hazard rate is assumed to be constant within
each interval (i.e., exponentially distributed RTs within each interval).

The use of rather complex regression models to analyze hazard and conditional accuracy
functions, and the employment of stepwise techniques to find the best model, harbor the
danger of over- or underfitting the data, especially when the model is tested with the same
data to which it was fitted. P values from such models have to be treated with the appro-
priate caution. Therefore, a third approach to obtain inferential statistics is to define differ-
ent parameters of the descriptive functions (e.g., onset thresholds, divergence and
convergence points, inflection points, and so forth) and to use robust techniques such as
bootstrapping and jackknifing to compare and test their distributions (Ulrich &Miller, 2001;
Wilcox, 2011).

We can shortly illustrate a very simple and immensely useful jackknifing procedure sug-
gested by Ulrich and Miller (2001). Consider the data in Figure 4A (left panel), where we
found that the hazard function for incongruent trials experiences a temporary drop in per-
formance (Panis & Schmidt, 2016). If we know from previous experiments that such effects
can take place in a certain time window, we can use that window as a region of interest
(ROI). The jackknifing procedure now consists of extracting subsamples of the data, each of
which contains the average curve for the incongruent trials within the ROI except for one
participant. Each subsample excludes a different participant so that we have as many sub-
samples as participants (N). The advantage is that each subsample contains a relatively
smooth curve that is based on N – 1 participants. It is therefore much easier to extract

16 i-Perception 11(6)



parameters of interest from each subsample curve than trying the same for the noisy data of
single participants. For example, we can easily find the bottom of the dip in hazard in
incongruent trials and extract its time (or amplitude, or both) for each subsample. Those
N values can now be put into a table and used for standard ANOVA. Of course, the mean of
the subsample curves will be identical to the mean of the individual participants’ curves, but
the variance will be too small because each participant is included N – 1 times. Therefore, all
F values have to be corrected by dividing them by a factor of (N – 1)2, and the p values have
to be recalculated accordingly (for proofs, see Ulrich & Miller, 2001).

Discussion

The Theoretical and Statistical Advantages of EHA

Many experimental psychologists are still reluctant to embrace EHA and to stop using
ANOVA when dealing with time-to-event data. In part, this is due to historical reasons.
The computer metaphor of cognition—serial information processing via consecutive
stages—was developed by Donders (1969) and became very popular from 1960 onward
(Sternberg, 1969, 1984, 2013). During the past decades, however, various distributional
methods have been advertised to move beyond the mean (Balota & Yap, 2011;
Ridderinkhof, 2002; van Maanen et al., 2019; VanRullen, 2011).

Nevertheless, while many still assume that RTs reflect the cumulative duration of all time-
consuming cognitive operations involved in a task (e.g., Liesefeld, 2018; Song & Nakayama,
2009), the results from various discrete-time event history and conditional accuracy analyses
show that fast, medium, and slow RTs can actually index different sets of cognitive oper-
ations (Figures 4 and 6; cf. van Zoest et al., 2010). Statistically controlling for the passage of
time on multiple time scales during data analysis is therefore equally important as experi-
mental control during the design of an experiment, to understand human behavior in our
experimental paradigms (Panis, 2020; Panis & Schmidt, 2016, 2020).

The distributional data in Figures 4 to 6 are consistent with a dynamic systems approach
to cognition according to which cognition involves sequential transitions between stable
sensory, motor, and central states (Sch€oner et al., 2016). To understand the behavioral
output of the brain, we must therefore measure quantities—h(t) and ca(t)—that track the
motor states over time to study how long they last, how they are replaced by new states, and
whether and when different manipulations affect them, to try to infer the spatial-temporal
interplay between different cognitive component processes. Averaging these processes over
time to look at mean RTs only sometimes preserves the crucial information in the time
course of motor activity. More often than not, mean performance measures paint a picture
that distorts, conceals, or even reverses the actual dynamical events. One example is the
analysis in Figure 5B, which reveals a sequence of positive priming followed by a negative
compatibility effect (Panis & Schmidt, 2016). An analysis in terms of mean error rate would
necessarily miss at least one of these phases because the effect in mean error rate can only be
positive or negative, but not both. It may even miss both phases if integration over time leads
to an average that is too small to be significant.

Statistical reasons in favor of EHA include the ability to deal with right-censored obser-
vations and time-varying covariates and the fact that hazard provides exactly the kind of
information we want to extract from RT data: the instantaneous likelihood of event occur-
rence given no previous events. We thus recommend to always first plot the h(t) and ca(t)
functions of each individual (small-N design) or group of experimental units (large-N design)
before making any further data-analytic or computational modeling decision. This practice
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would also inform the field about the various shapes the hazard function can take on in

different contexts—a big unknown—and this will help in choosing which (combination of)

parametric functions we might want to fit to the data, and in knowing how complex our

computational models have to be to capture the behavioral dynamics observed empirically

(Holden et al., 2009; Townsend & Ashby, 1983; Wickens, 1982).
Issues about bin size optimality play a secondary role at this moment in time in our view,

because by working in discrete time—or using interval-censored data—we can make an

informed trade-off between the availability of temporal information (smaller bins increase

temporal resolution) with the feasibility to perform expensive data collection efforts (small

bins can only be used with a large number of repeated measurements in case of a small-N

design). In other words, the number and sizes of the time bins used for the analyses can be

optimally adapted to each situation, depending on the duration of the data collection period,

the rarity of event occurrence, the shape of the empirically observed hazard function, and

whether one is using a large- or small-N design (Smith & Little, 2018).
As a standard method, EHA offers a unifying and principled approach to the analysis of

time-to-event data that can be flexibly combined with other tools used by cognitive (neuro)

scientists. For example, by transforming a sample of time-to-event data into time-series

data—h(t) and ca(t) functions—one puts the analysis of behavior on the same footing

with respect to time as physiological data such as EEG. Incorporating time-varying cova-

riates (e.g., occipital EEG power in the alpha band) in hazard models of behavioral (or

neural) event occurrence extends the set of current approaches to perform cognitive psycho-

physiology (Meyer et al., 1988). Also, combining EHA with transcranial magnetic stimula-

tion (TMS) allows to read out the time-dispersed effect of a timed TMS pulse in the h(t) and

ca(t) functions to answer the question: “When is area x necessary for task y?”
Finally, as explained by Kelso et al. (2013), it is crucial to first have a precise description of

the macroscopic behavior of a system (here: h(t) and ca(t) functions) in order to know what to

derive on the microscopic level. For example, fitting parametric functions or computational

models to data without studying the shape of the h(t) and ca(t) functions can miss important

features in the data (Panis et al., 2020; Panis & Schmidt, 2020). Due to the advantages of EHA,

we recommend that it is used more often in future empirical and simulated RT studies. R code

to calculate the descriptive statistics and the inferential statistics used by discrete-time EHA for

a factorial within-subject design can be downloaded here: https://www.researchgate.net/publi

cation/304069212_What_Is_Shaping_RT_and_Accuracy_Distributions_Active_and_Selective_

Response_Inhibition_Causes_the_Negative_Compatibility_Effect.

Discrete-Time EHA Versus Other Distributional Methods

Continuous-Time EHA. Discrete-time methods treat time-to-event data as interval-censored

data while continuous-time methods use the exact event times. While learning the discrete-

time methods first will ease the learning of the more complex continuous-time methods, they

also have a lower temporal resolution. Thus, although statistical modeling of continuous

time-to-event data requires specialized software to either fit parametric hazard models that

are rather restrictive in the shapes they allow (e.g., a Weibull hazard model), or semipara-

metric hazard models that completely ignore the shape of the hazard function, their use

might be warranted in particular circumstances. Allison (2010) provides a useful list of

considerations when choosing between discrete- and continuous-time methods to perform

an EHA. An overview of R functions for a continuous-time EHA can be found here: https://

cran.r-project.org/web/views/Survival.html.
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Quantile Plots and Classic Delta Plots. A quantile plot visualizes a set of quantiles (e.g., the nine

deciles) as a function of quantile order. A classic delta plot for RT compares two conditions

by subtracting corresponding quantiles and plots each of these (e.g., nine) differences (y axis)

as a function of the average of both quantiles in question (x axis). This way we can easily

examine in which range of RTs the effect in F(t) is large or small, positive or negative.

However, if participants vary strongly in the identity of the time bin in which their fastest

emitted responses occur, then quantiles will be very variable among participants, and aver-

aging them will result in a blurring of effects that might otherwise be time-locked to the onset

of a stimulus, for example—and effect sizes can also be attenuated. Therefore, we recom-

mend simply plotting the difference in hazards or conditional accuracies for each bin (as in

Panis, 2020, Panis & Schmidt, 2020).
Procedures such as Vincentizing (construction of average RT distributions from the aver-

age of their quantiles) that are assumed to normalize the RT distributions across participants

(Ratcliff, 1979) have not been evaluated positively (Rouder & Speckman, 2004). Instead, we

believe that if, for example, the range of RTs and the time course in hazard of an effect are

different across participants, then this is theoretically interesting and requires a substantial

explanation. Even if it is possible to somehow average those distributions, that does not

mean that the underlying processes should be lumped together. Note that individual differ-

ences (e.g., in working memory capacity, the time required to stop a response, and so forth)

can be taken into account by adding relevant predictors to the participant level of a multi-

level hazard model, thus allowing for participant effects and cross-level interactions.

Possible Disadvantages of Discrete-Time EHA. There are also possible disadvantages of discrete-

time EHA.
First, the person-trial-bin-oriented data set can become very large.
Second, one needs to explore a few bin sizes to find the optimal size for a particular data

set. The optimal bin size will depend on the censoring time, the overall rarity of event

occurrence, and the number of repeated measures or trials (small-N design) or the number

of participants (large-N design). Note that the time bins do not have to be all of equal size

(Panis, 2020).
Third, in hierarchical data from a small-N design, there are two sources of noise: within

and between participants. For a distributional analysis, it is important to have enough

repeated measures per participant and condition (preferably at least 100) to minimize the

influence of within-participant noise. Between-participant variation is a different matter: It

can be due to noise but also due to characteristic differences between individuals (e.g., in

speed, capacity, or strategy). Again, high measurement precision in single participants and

the incorporation of covariates at the participant level in a multilevel model is the only way

to deal with this. Power contours can be used to estimate how many repeated measures are

required to reach 80% power for a given sample size N, and vice versa (Baker et al., 2020; see

their paper for a useful online tool).
In general, analyzing single participants should be regarded as a safeguard against inter-

preting spurious effects in the pooled data that are actually only generated by a minority of

participants while at the same time refraining from overinterpreting the individual data

patterns. Note that systematic effects will be visible for a majority of participants, while

occurrences due to noise will not.
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Recommendations for Experimental Design of RT and Other Time-to-Event Data Studies

Two general recommendations can be made from the viewpoint of EHA when designing RT
studies. First, always use the same fixed response deadline in each trial, for example, 500 ms
for single-button detection and 800 ms for an easy two-button discrimination task. Because
hazard analysis deals with right-censored observations, there is no need to wait for very slow
responses that are considered meaningless and would be trimmed anyway. Also, using rather
short and fixed response deadlines will lead to individual distributions that overlap in time,
which is important for h(t) and ca(t) modeling (Panis & Schmidt, 2016). Furthermore, if you
wait for a response in each trial and let the overt response end the trial, then you allow
participants to have control over the trial (and experiment) duration, which can be avoided
(or systematically controlled).

Second, try to design as many trials as possible per condition because then you can use
small bins and still obtain stable h(t) and ca(t) estimates (i.e., use a small-N design; Smith &
Little, 2018). Also, designing 100 trials per condition, for example, will not result in a large
increase in experiment duration as the response deadline and thus trial duration can be kept
short (see Panis & Schmidt, 2016). Note that many more trials are needed if you want to
characterize the detailed shape of the right tail of a RT hazard distribution, especially in
continuous time.

Conclusions

RT and accuracy distributions are a rich source of information on the time course of cog-
nitive processing. The changing effects of our experimental manipulations with increases in
waiting time become strikingly clear when looking at response hazards and microlevel speed-
accuracy trade-off functions. Indeed, working with hazard and conditional accuracy func-
tions, you will discover a whole new layer of the data, and presumably the one where the
processes live that actually interest you. An EHA of time-to-event data can strongly con-
strain the choice between cognitive models of the same psychological phenomenon. Due to
the theoretical and statistical advantages of EHA, the fundamental simplicity of the method,
and the availability of free software, there is currently no reason anymore to not start using
EHA for time-to-event data.
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