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ABSTRACT 

Extraction of medication information embedded in clinical text is important for research using electronic health records (EHRs). 

However, most of current medication information extraction systems identify drug and signature entities without mapping them 

to standard representation. In this study, we introduced the open source Java implementation of MedEx, an existing high-

performance medication information extraction system, based on the Unstructured Information Management Architecture 

(UIMA) framework. In addition, we developed new encoding modules in the MedEx-UIMA system, which mapped an extracted 

drug name/dose/form to both generalized and specific RxNorm concepts and translated drug frequency information to ISO 

standard. We processed 826 documents by both systems and verified that MedEx-UIMA and MedEx (the Python version) 

performed similarly by comparing both results. Using two manually annotated test sets that contained 300 drug entries from 

medication list and 300 drug entries from narrative reports, the MedEx-UIMA system achieved F-measures of 98.5% and 97.5% 

respectively for encoding drug names to corresponding RxNorm generic drug ingredients, and F-measures of 85.4% and 88.1% 

respectively for mapping drug names/dose/form to the most specific RxNorm concepts. It also achieved an F-measure of 90.4% 

for normalizing frequency information to ISO standard. The open source MedEx-UIMA system is freely available online at 

http://code.google.com/p/medex-uima/.  

 

 
INTRODUCTION 

 

Electronic Health Records (EHRs) are becoming an enabling resource for drug outcome studies.1 However, medication data are 

often recorded in heterogeneous formats in EHRs. With the increased use of computerized provider order entry (CPOE) systems, 

electronic prescribing (e-prescribing) tools, and electronic medication administration record systems (e-MARs), medication 

records in the EHR are increasingly available as structured entries. However, much current and historical medication information 

is still embedded in narrative text entries within clinical documentation, patient problem lists, or communications with patients 

through telephone calls or patient portals, especially in the outpatient settings. Therefore, natural language processing (NLP) 

methods that can extract medication information from clinical narratives and encode them into standard representations have 

received great attention, as detailed below.  

 

Early studies primarily focused on extracting drug names from clinical notes. In 1996, Evans et al. built the CLARIT2 system to 

extract the drug name and dosage phrases in discharge summaries and reported an accuracy of 80%. Chhieng et al.3 reported a 

precision of 83% by using a string matching method to identify drug names in clinical records. In 2009, Jagannathan et al.4 

evaluated the performance of four commercial clinical NLP systems on medication information extraction (including drug names, 

strength, route, and frequency).  These systems demonstrated high F-measures (93.2%) for capturing drug names, but lower F-

measures (85.3%, 80.3%, and 48.3% respectively) on retrieving strength, route, and frequency. In 2009, Informatics for 

Integrating Biology and the Bedside (i2b2), an NIH-funded National Center for Biomedical Computing (NCBC) based at 

Partners Healthcare System in Boston, organized an clinical NLP challenge to extract medication names and their associated 

signature fields including dosage, mode, frequency, duration, and reason from hospital discharge summaries.5 Twenty teams 

from twenty-three organizations and nine countries participated in the challenge. A variety of medication information extraction 

systems were developed and included systems using rule-based,6 machine learning based,7,8 and hybrid approaches,9 with 

overall promising results.  

 
Despite the active NLP work on medication extraction, most of existing systems output medication related entities as textual 

fields, without mapping to standard representations such as RxNorm10 for drugs and ISO 8601 standard for frequency 

information. One study done by Levin and colleagues11 developed an effective rule-based system to extract drug names from 

anesthesia records and map to RxNorm concept unique identifiers (RxCUIs), with 92.2% sensitivity and 95.7% specificity. 

However, this study focused on encoding drug ingredients/brands only. In the example “Cetirizine 5 mg oral tablet”, Levin’s 

system will only encode the drug name “Cetirizine” (RxCUI 20610). However, an RxNorm concept actually can include three 

components: drug name (generic or brand), dose, and form. For the above example, a more specific RxCUI (1014676 – 

“cetirizine hydrochloride 5 MG Oral Tablet”) could be assigned. With available drug dose and form (and/or route) information 

extracted by NLP systems, more specific RxCUIs can be assigned to medications in clinical text, which can be useful for other 
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computerized applications. For example, the dose form (e.g., intravenous vs. oral vs. topical) can imply very different indications 

and side effects. Frequency information is also important for medications and different string variants can often represent the 

same frequency (e.g., “two times a day” is equivalent to “b.i.d”). Therefore, normalization of drug frequency information is 

needed. However, few clinical NLP systems provide normalized frequency values. In the 2012 i2b2 NLP challenge on temporal 

information extraction, temporal expressions including frequency were normalized based on the ISO 8601 standard as in the 

TIMEX312 tag, which is the part of TimeML, a formal specification language for events and temporal expressions. To the best of 

our knowledge, TIMEX3 normalization has not been applied to the extraction of drug frequency information in clinical text.  

 
In previous work, we developed MedEx,13 a Python-based NLP system which could extract drug names and signature 

information with over 90% F-measure in discharge summaries and clinical visit notes from Vanderbilt University Hospital. We 

applied an extended version of MedEx to the 2009 i2b2 NLP challenge on medication extraction; it was ranked as the second best 

system among twenty entries.6 We also developed simple normalization modules for dose and frequency, and integrated them 

with MedEx to calculate daily dose of tacrolimus14 and weekly dose of warfarin.15 In this study, we re-implemented MedEx in 

Java, based on the Unstructured Information Management Architecture (UIMA),16 which is a component software architecture 

for development, discovery, composition, and deployment of multi-modal analytics for unstructured data. We name the new 

system “MedEx-UIMA” and it is freely available as open-source software. We also developed two new components in MedEx-

UIMA and evaluated them herein: 1) encoding drugs to specific RxNorm concepts and 2) normalizing frequency to TIMEX3 

format. 

 
METHODS 

 

As shown in Figure 1, the MedEx-UIMA system consists of two main components: 1) an information extraction module, which 

extracts medication related fields from clinical text; and 2) a standardization module that encodes drug name/dose/form 

information into RxCUIs and normalizes frequency information to the TIMEX3 format. The information extraction module 

basically is a Java implementation of the previous Python version of MedEx, with additional changes in transformation and 

disambiguation. The RxCUI encoding and frequency normalization are new functionalities of MedEx-UIMA. They are the 

primary focus of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. An overview of the MedEx-UIMA system  

 
The UIMA implementation of MedEx  

Using on the UIMA framework, we re-built the MedEx in Java as a pipeline-based system, where we defined classes including 

Sentence Boundary Detector, Tokenizer, Section Tagger, Semantic Tagger, Parser and Encoder. One significant change to the 

new MedEx-UIMA system is that we applied the Drools rule engine (http://www.jboss.org/drools/) to handle heuristic rules 

used in semantic tagging for tag transformation and word sense disambiguation. The rule-engine separates rule management from 

the workflow, thus making it possible for non-technical users to modify rules needed for specific tasks. The encoder is a new 

component in MedEx-UIMA, which maps drug name, dose, and form information to most specific RxNorm concepts and 

normalizes frequency information to TIMEX3 format.  

 
Mapping drug name, dose, and form information to RxNorm concepts 

When encoding drug information extracted from clinical text using RxNorm, there are two primarily options: 1) least-specific: 

map drug names only, e.g., to generic names such as “cetirizine”; or 2) most-specific: map to more specific RxNorm concepts 

that could contain drug name (either generic or brand), dose, and form information, such as “Cetirizine 5 MG Oral Tablet.” In 

MedEx-UIMA, we provide both types of RxCUIs for a given drug entity. It is straightforward to map drug names to least specific 

 Extraction 

Rule engine based 

transformation and 

disambiguation  

Semantic Parsing 

Dictionary based 

semantic tagging 
Standardization 

Mapping to 

RxCUIs 

Normalizing 

to TIMEX3 

 

Drug name 
Dose 
Form 
Route 
Frequency 
…… 
 

Standardize

d outputs of 

medications 

Clinical 

notes 

MedEx-UIMA 

38



  

RxCUIs (the generic ingredient). We created a mapping between brand names and generic names based on RxNorm relationships 

and built a simple dictionary lookup function to map extracted drug names to their corresponding generic name RxCUIs. 

 

Determining the most specific RxCUIs based on extracted drug name, dose, route, and form information is more challenging. We 

developed a rule-based approach for this task, which consists of four steps: 

1. Normalize drug information extracted by MedEx: Five fields extracted by MedEx including drug name, dose, dose 

amount, route, and form are used to generate normalized fields of drug name, dose, and form. The normalization 

process is based on heuristic rules and manually created knowledge bases. In the example of “Cetirizine 5000 mcg 

tabs”, MedEx will recognize “cetirizine” as a drug name, “5000 mcg” as the dose, and “tablet” as the form. The 

normalization program will produce normalized results as (Generic name: cetirizine), (Dose: 5 mg), and (Form: tablet), 

which can then be mapped to the RxNorm entry. In this example, rules for conversion between different units in the 

dose field and knowledge for recognizing “Tab” and “Tablet” as synonyms were used in the normalization process. We 

have developed knowledge bases about synonyms and route-form mappings for normalizing drug forms.  

2. Normalize drug information of RxNorm concepts: For each RxNorm term, we process it using the same procedure as in 

step 1 and generate normalized fields for drug names, dose, form etc.   

3. Generate RxNorm candidate entries: For a given drug entry, we search all RxNorm concepts and generate a list of 

candidate concepts containing the same normalized drug name. 

4. Rank RxNorm candidate concepts by calculating similarity scores between the normalized drug entry and candidate 

concepts: Once the drug name, dose and form information is normalized, we concatenate them in an order to generate a 

string. We then calculate weighted Jaccard Similarity17 scores between a drug entry string and all its corresponding 

candidate string. The Jaccard Similarity is defined as the ratio between the number of common words in both two 

strings, multiplied with the weight of each word, and the number of words in any of two strings ,multiplied with their 

weight. We assign different weights to different drug fields to reflect their search priorities. For example, the default 

weight of any word is “1”. But we assign a higher weight (e.g., 1.8) to the dose field, as the same dose is a strong 

indicator. The RxNORM concept with the highest similarity score with the drug entry is then selected as the most 

specific RxNORM code.   

 

Figure 2 shows an example of searching the most specific RxNORM codes. As shown in the figure, “Augmentin 200-28.5 MG 

Oral Tablet” is the input sentence. Drug (Augmentin), dose (200-28.5 MG) and form (Oral Table) are extracted and normalized 

by MedEx. After searching the drug name “Augmentin”, multiple RxNORM candidate entries are generated, including 

“Augmentin, 200 mg-28.5 mg oral tablet, chewable”, “Augmentin, 200 mg-28.5 mg/5 mL oral powder” etc. All RxNORM 

candidate entries are normalized in the same way. Then we calculate Jaccard similarity between the string “Augmentin 200-28.5 

MG Oral Tablet” and each of the RxNORM candidate strings. The one with highest similarity score is then selected as the most 

specific RxNORM entry. 

 
Normalizing drug frequency information to the TIMEX3 format 

The frequency normalization module was constructed on our temporal expression extraction system developed for the 2012 i2b2 

NLP challenge on temporal information extraction. The original system is a rule-based system developed in Python to extract 

three types of temporal expressions, including date, frequency and duration. We re-implemented the system in Java and extended 

it with new regular expression rules for handling additional drug frequency patterns observed in the development set. The 

following example shows how the rule-based system normalizes frequencies into TIMEX3 format. For the expression “three 

times per week”, the frequency normalization module first detects the normalizable components using the rule “(%NumWord) 

(%TIMES) (%PER) (%DayUnit)”. Strings starting with “%” are predefined patterns using regular expressions, where 

“NumWord” is a lexicon of all the possible numbers in English words, “TIMES” is a lexicon of all the possible expression for 

times (e.g., “times”, “x”), “PER” is a lexicon of all the possible expression for every (e.g., “every”, “per”, “each”), and 

“DayUnit” is a lexicon of all the possible units of days (e.g., “day”, “week”, “month”). Once the regular expression is triggered, 

the normalization rules will be applied to normalize the NumWord “three” into “3”, DayUnit “week” into “W” to generate the 

normalized value “R3P1W”, where R stands for “Repeat” and P stands for “Period.” One difference between our drug frequency 

normalization and the i2b2 challenge guidelines was that we do not average a range (e.g., the i2b2 guidelines normalize “three to 

four weeks” into “P3.5W”; however, our system normalizes it as “P3-4W”) 

 
Evaluation  

We first compared the performance of the MedEx-UIMA with the previous Python-based MedEx system (MedEx-Python). We 

processed 826 clinical notes from the 2010 i2b2 challenge using both MedEx-Python and the MedEx-UIMA systems. We then 

took the outputs of MedEx-Python as the gold standard and calculated precision/recall/F-measure of MedEx-UIMA against the 

gold standard. In addition, we reviewed 100 randomly selected discrepant drug entities by the two systems and counted the 

number of correct samples by MedEx-UIMA.   

 

To develop and evaluate the encoding modules for drug name and frequency information, we created manually annotated 

datasets. We first used the dataset from the 2009 i2b2 clinical NLP challenge, which was to extract medication information from 

discharge summaries. The i2b2 dataset contains 251 discharge summaries collectively annotated by challenge participants, in 

which drug names and associated strength, route and frequency information were identified. We randomly divided the dataset 
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into two subsets: 126 notes as the development set and 125 notes as the test set. From the development set, we collected all i2b2 

annotated drug entities and annotated 300 randomly-selected distinct drug entities. These 300 drug entities (with their sentences) 

were used to develop our system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. The example of determination of most specific RxNORM code 

 

 
From the test set, we also collected all drug entities and randomly selected 300 drugs for annotation, which served as the 

independent test set to evaluate our system. For each drug entity in the development and test set, the original sentence containing 

the drug as well as drug name, dose, and route fields extracted by the i2b2 challenge, were presented to a medical domain expert 

for manual review. To encode RxNorm concepts, the annotator searched RxCUIs using RxNav, which is graphical search 

interface for RxNorm concepts. For frequency normalization, the annotator manually entered the normalized value for each 

frequency expression. In addition to the i2b2 dataset, which primarily contains drug entries in clinical narratives, we generated 

another test set containing more structured medication data. We randomly selected a list of 300 medications entries from 

computerized order entry system at UT Physician, a clinic of University of Texas Health Science Center at Houston, and 

manually annotated them with RxNORM codes following the same procedure. 

 

We evaluated the performance of our system by reporting standard precision, recall, and F-measure on the independent test sets. 

For the first dataset, as the i2b2 challenge included drug classes such as “antibiotics”, not all 300 drug entities in the test set can 

be coded by RxNorm concepts. Based on manual review, 270 drugs in the test set were classified as codable drugs. Among 270 

codable drugs, true positives were defined as samples that were extracted by MedEx-UIMA and assigned correct RxCUIs. Recall 

was defined as the ratio between the number of true positives and the total number of codable drugs (270). Precision was defined 

as the ratio between the number of true positives and the number of codable drugs recognized by MedEx-UIMA. Similar 

definitions were used to measure precision and recall for frequency normalization as well. There were 243 frequency expressions 

in the independent test set. To be qualified as true positives, a frequency expression must be recognized by MedEx-UIMA and 

assigned the correct normalized values in the TIMEX3 format. For the medication list from UT Physician, all three hundred 

medication entries were codable.  

 
RESULTS 

 

When the outputs of MedEx-Python served as gold standard, the MedEx-UIMA achieved a precision of 95.8%, a recall of 98.0%, 

and an F-measure of 96.9%, for recognizing all drug related fields including name, dose, route, frequency etc. Manual review of 

100 discrepant results by two systems showed that 42% were judged better in MedEx (Python), and 58% were judged better in 

MedEx-UIMA. Thus, overall we estimate that MedEx-UIMA slightly outperforms the original version of MedEx in precision. 

 

Table 1 shows the performance of MedEx-UIMA on extracting and encoding medication information using the independent test 

set. For mapping drug names to generic ingredients (least specific RxCUIs), on both the medication list and clinical narratives, 

Semantic tagging component 

Augmentin 200-28.5 MG Oral Tablet 

Drug: Augmentin  
Dose: 200-28.5 MG  
Form: Oral Tablet 

Augmentin, 200 mg-28.5 mg oral 
tablet, chewable 

Augmentin, 200 mg-28.5 mg/5 mL 
oral powder reconstitution 

Augmentin Oral Product 

Augmentin 200mg Chewable Tablet 

Candidates: 

0.947 

0.825 

0.684 

0.45 

Normalization 

Similarity Calculation 

Similarity 
Score 

… 
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the system achieved F-measure (98.5% and 97.5% respectively), which was consistent with previously reported high 

performance of MedEx on recognizing drug names. Mapping to the most-specific RxCUIs (taking dose and form into 

consideration) was more challenging: MedEx-UIMA achieved a precision of 85.8% and recall of 85.0% on drugs from 

medication list and 89.3% and 87.0% on drugs from clinical narratives. For frequency normalization, our system reached a high 

F-measure of 90.4% (precision 91.9% and recall 88.9%) on clinical narratives.   

 
Table 1. Evaluation results of MedEx-UIMA on extracting and encoding drug and frequency information 

Tasks Precision Recall F-measure 
Drug encoding - least-specific RxCUIs   (Clinical 

narratives) 

98.8% 

 

96.3% 97.5% 

Drug encoding - most-specific RxCUIs   (Clinical 

narratives) 

89.3% 

 

87.0% 88.1% 

Frequency normalization 
(Clinical narratives) 

91.9% 88.9% 90.4% 

Drug encoding - least-specific RxCUIs 

(Medication list) 

99.0% 98.0% 98.5% 

Drug encoding - most-specific RxCUIs 

(Medication list) 

85.8% 85.0% 85.4% 

 
DISCUSSION 

 

In this study, we re-implemented MedEx, a high performance medication information extraction system, in Java using the UIMA 

framework. Evaluation showed the MedEx-UIMA system had similar high performance on recognizing drug related entities as 

MedEx (Python version). We also extended the encoding function of MedEx-UIMA to map drug names to generic ingredients 

and also the most specific RxNorm concepts, and developed a module to normalize frequency expressions to the standard 

TIMEX3 format. Our evaluation using a test set from the 2009 i2b2 challenge demonstrated that MedEx-UIMA can extract and 

encode drug name and frequency information with good performance. Such standard medication information extracted from 

clinical text can not only facilitate EHR-based clinical and translational research, but can also benefit computerized clinical 

applications such as clinical decision support systems and medication reconciliation processes. More importantly, MedEx-UIMA 

is available to the public as an open-source system, which can be freely downloaded from Google Code at 

http://code.google.com/p/medex-uima/.  

 

We analyzed errors in mapping drug name/dose/form to RxNorm Concepts. Recall errors were often caused by unrecognized 

synonyms, abbreviations, or misspelled words. For example, “MVI” is a common abbreviation for “Multi-Vitamins”; but it could 

not be mapped to the expanded name by MedEx-UIMA, thus no RxCUI could be assigned. Precision errors had two primary 

causes. One is related to insufficient rules or knowledge for normalizing drug name, dose, and form information extracted by the 

NLP system. For example, “regular insulin” was not mapped because we did not add the fact of “regular insulin” = “insulin” to 

our knowledge base. The other regards selecting the correct RxCUI from multiple candidate concepts. Our current approach 

relies on simple string matching between drug name, dose, and form fields. More sophisticated code selection methods will be 

investigated in future development. For example, we plan to look into information retrieval methods to rank candidate concepts 

based on the querying drug string.  

 

This study has limitations. One of them is the annotation process, which only involved one annotator, with some oversight and 

review of unclear cases by a board-certified internist. We plan to recruit multiple annotators for future development so that we 

can reduce bias introduced by annotation. The evaluation of drug name encoding and frequency normalization was based on 

selected drug entities at sentence level. In the future, we plan to further evaluate the performance of MedEx-UIMA at the clinical 

document level.  Another limitation is that only documents from the i2b2 challenge were used; future studies should examine 

more documents types from other institutions. 

 

CONCLUSION 

 

In this study, we developed MedEx-UIMA, an open source medication information extracting and encoding system based on the 

existing MedEx system. It not only recognizes medication related entities with high performance, but also encodes drug names to 

specific RxNorm concepts and frequency information to ISO standard. Such a tool will have broad uses in various clinical 

settings, as well as EHR-based clinical and translational research.   
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