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Abstract

The self is a multifaceted phenomenon that integrates information and experience

across multiple time scales. How temporal integration on the psychological level of

the self is related to temporal integration on the neuronal level remains unclear. To

investigate temporal integration on the psychological level, we modified a well-

established self-matching paradigm by inserting temporal delays. On the neuronal

level, we indexed temporal integration in resting-state EEG by two related measures

of scale-free dynamics, the power law exponent and autocorrelation window. We

hypothesized that the previously established self-prioritization effect, measured as

decreased response times or increased accuracy for self-related stimuli, would

change with the insertion of different temporal delays between the paired stimuli,

and that these changes would be related to temporal integration on the neuronal

level. We found a significant self-prioritization effect on accuracy in all conditions

with delays, indicating stronger temporal integration of self-related stimuli. Further,

we observed a relationship between temporal integration on psychological and neu-

ronal levels: higher degrees of neuronal integration, that is, higher power-law expo-

nent and longer autocorrelation window, during resting-state EEG were related to a

stronger increase in the self-prioritization effect across longer temporal delays. We

conclude that temporal integration on the neuronal level serves as a template for

temporal integration of the self on the psychological level. Temporal integration can

thus be conceived as the “common currency” of neuronal and psychological levels

of self.
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1 | INTRODUCTION

1.1 | Temporal integration and self-psychological
level

The “self” is a complex and multifaceted concept which includes a

strong temporal dimension (Ersner-Hershfield, Garton, Ballard,

Samanez-Larkin, & Knutson, 2009; Ersner-Hershfield, Wimmer, &

Knutson, 2008; Northoff, 2017; Wolff et al., 2019). One core tempo-

ral feature of the self is its ability to operate across, and thus integrate,

different time scales, entailing temporal continuity (Ersner-Hershfield

et al., 2009; Ersner-Hershfield et al., 2008; Northoff, 2017). While

both the physiological and psychological aspects of our body and the

environment change continuously, our self is characterized by stability

and endures nonetheless—the self thus provides temporal continuity

over both short and long timescales (e.g., Ersner-Hershfield

et al., 2009; Hershfield, 2011; Northoff, 2016, 2017; Schacter

et al., 2012). The central importance of the temporal continuity of our

self is further underlined by the fact that its disruption can lead to

major alterations in our mental life, as manifested in psychiatric disor-

ders like depression, mania, and psychosis or schizophrenia (Giersch &

Mishara, 2017; Martin et al., 2014; Martin, Franck, Cermolacce,

Coull, & Giersch, 2018; Martin, Giersch, Huron, & van Wassenhove,

2013; Northoff, 2007, 2014, 2016; Northoff et al., 2017). Together,

the self can be characterized by temporal continuity across different

time scales—the self is not bound to a specific time scale but is scale-

free (Huang, Obara, Davis IV, Pokorny, & Northoff, 2016; Wolff

et al., 2019).

The self has been shown to modulate behavioral responses

related to reward (de Greck et al., 2008, 2010; Yankouskaya, Bührle,

Lugt, Stolte, & Sui, 2020), attention (Sui, He, & Humphreys, 2012; Sui,

Rotshtein, & Humphreys, 2013; 2014; Humphreys & Sui, 2016), per-

ception (Sui et al., 2012, 2013), emotion (Northoff et al., 2009;

Yankouskaya et al., 2020), and decision making (e.g., Nakao

et al., 2019; Nakao, Bai, Nashiwa, & Northoff, 2013; Nakao, Ohira, &

Northoff, 2012). This has been described as the “integrative function

of self” featured by “self-expansion” of the self to different psycholog-

ical functions (Northoff, 2016; Sui & Humphreys, 2015). Importantly,

such integration and expansion is possible only by integrating the rela-

tively long time scales of self, as manifest in its temporal continuity,

and the much shorter time scales of various psychological functions

and external stimuli (Northoff, 2017). What is described on the psy-

chological level as the “integrative function of self” may thus, at least

in part, be based on temporal integration of these different time scales

(Himberger, Chien, & Honey, 2018; Northoff, 2017). However, such

temporal integration of different time scales on the psychological level

of self remains yet to be experimentally probed.

1.2 | Temporal integration and the brain

The brain's spontaneous activity exhibits oscillatory patterns, ranging

from ultrafast frequencies (40–180 Hz) to infraslow ones

(0.01–0.1 Hz; Buzsáki, 2006; Buzsáki & Draguhn, 2004). The power in

these frequency ranges increases with lower frequencies. Hence, the

power is strongest in the slowest frequencies and weakest in the

faster frequencies. It has been found that this pattern follows a power

law distribution (see below for details; Eke et al., 2000; Eke, Herman,

Kocsis, & Kozak, 2002; He, 2011, 2014; He, Zempel, Snyder, &

Raichle, 2010; Hiltunen et al., 2014; Huang et al., 2016; Linkenkaer-

Hansen, Nikouline, Palva, & Ilmoniemi, 2001). The relation between

different frequencies of neuronal activity can be described as being

scale-free or scale-invariant due to the fact that the relationship

between the power of the frequencies is the same regardless of what

range of frequencies one looks at (Chialvo, 2010; Eke et al., 2000,

2002; He, 2011, 2014; He et al., 2010).

Scale-invariance is closely related to temporal integration. Scale-

invariance denotes that statistical properties of a signal (in this case,

the relationship between power in different frequencies) are constant

no matter the size of the time scale examined, as such it signifies a

“continuity” of the neuronal activity analogous to the self's continuity

over different timescales discussed above. Furthermore, scale-free

activity in the brain is strongly associated with connections between

high and low frequencies through mechanisms such as cross-

frequency coupling (He, 2014; He et al., 2010). The importance of

scale invariance as a marker of neuronal activity is evidenced by the

fact that alterations in the scale-free neuronal activity have been

related to disorders such as Alzheimer's disease (Maxim et al., 2005),

schizophrenia (Sokunbi et al., 2014), and autism spectrum disorder

(Damiani, Scalabrini, Gomez-Pilar, Brondino, & Northoff, 2019; Dona,

Hall, & Noseworthy, 2017).

This scale-invariance or self-similarity can be measured in the fre-

quency domain and expressed by

P/1= fβ

P stands for power, which is proportional to the inverse of the

frequency (f ) raised to the power β (Eke et al., 2000, 2002; He, 2011,

2014). Throughout this paper we refer to β as the power-law expo-

nent (PLE) in order to avoid confusion with the β symbol we use for

regression coefficients later in the paper. This PLE parameter indicates

the degree of self-similarity: a value of 0 for this parameter would

indicate no structure being present, as in a white-noise signal

(He, 2014). We use the terms “scale-free,” “scale-invariant,” “fractal

scaling,” and “self-similarity” to all refer to this same inverse-power-

law relationship between power and frequency.

A closely related measure is the autocorrelation window (ACW).

ACW measures temporal integration in the time domain by way of

correlations across different time points (Gollo, Roberts, & Cocchi,

2017; Gollo, Zalesky, Hutchison, van den Heuvel, & Breakspear, 2015;

Himberger et al., 2018; Honey et al., 2012; Murray et al., 2014). To

compute the ACW, first an autocorrelation function is constructed by

correlating a time series with copies of itself, shifted in time with vari-

ous lags. This results in a correlation as a function of time lag. The

autocorrelation is one at lag zero, and decays at larger lags as the

shifted copies become less correlated with the original. The “width” of
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the autocorrelation function (i.e., the lag value at which the autocorre-

lation function reaches 0.5) measures how consistent the time series

is from time point to time point. ACW and PLE asses the same prop-

erty and are equivalent in the case of synthetic scale-free signals (Eke

et al., 2000, 2002). However, EEG signals contain numerous nonscale-

free processes as well as various neuronal (and non-neuronal) noise

sources, and these measures may be differentially affected by these

processes. Hence, we include both measures as indices of temporal

integration in this study.

1.3 | From brain to self-temporal integration as
their “common currency”

Recent studies in both fMRI (Huang et al., 2016) and EEG (Wolff

et al., 2019) show that interindividual variation in resting-state PLE

explains a high degree of interindividual variation in self-conscious-

ness. Higher PLE values in resting-state neuronal activity are related

to higher degrees of self-consciousness. The same EEG study

observed that the ACW also correlated with the degree of private

self-consciousness of an individual (Wolff et al., 2019).

These data suggest that PLE and ACW, as indexes of temporal

integration on the neuronal level (Gollo et al., 2015, 2017; Himberger

et al., 2018; Murray et al., 2014), are related to self-consciousness. In

addition to measures of self-consciousness, fMRI research has shown

that individual differences in resting-state PLE in cortical midline

regions are related to individual differences in task evoked activity in

response to self-related animate stimuli, but not to inanimate stimuli

(Scalabrini et al., 2017, 2019). This implies a form of self-specificity of

fractal structure in brain activity. The aforementioned relationship of

PLE with self-consciousness may also be particularly strong specifi-

cally in cortical midline regions, such as the perigenual anterior cingu-

late cortex (pACC) and posterior cingulate cortex (PCC), as these

areas are known to be involved in self-related processing (Murray,

Debbane, Fox, Bzdok, & Eickhoff, 2015; Northoff et al., 2006;

Northoff & Bermpohl, 2004; Van der Meer, Costafreda, Aleman, &

David, 2010).

More generally, Scalabrini, Mucci, and Northoff (2018) have

suggested that studying how resting-state activity related to the self-

interacts with external stimuli, that is, rest/self-stimulus interaction

(Northoff, Qin, & Nakao, 2010), can clarify the functional role of spon-

taneous brain activity for behavioral outcomes. However, specifically

whether resting-state temporal integration of different time scales on

the neuronal level mediates temporal integration on the psychological

level of self (with temporal integration providing their “common cur-

rency”; Northoff, Wainio-Theberge, & Evers, 2020), remains unclear.

1.4 | Aims and hypotheses

The main and overarching aim in the present study is to investigate

and connect temporal integration of self on both psychological and

neuronal levels. We hypothesized that temporal integration on the

psychological level of self, as tested by investigating the effects of

temporal delays on self-specificity judgments in the self-matching

task, is related to temporal integration on the neuronal level of the

brain's resting-state, as measured by PLE and ACW. For that purpose,

we recruited a group of healthy subjects to undergo an EEG resting-

state measurement and participate in a behavioral experiment

targeting temporal integration.

The first specific aim consisted of investigating temporal integra-

tion on the psychological level of self. We here rely on the well-

established perceptual matching task (Sui et al., 2012), which focuses

specifically on the integrative function of self: subjects are required to

connect and thus integrate two different stimuli (labels and geometric

shapes) in order to judge whether they match. This typically has

shown more efficient processing for self-related stimuli, measured as

increased accuracy or decreased response times, which has been ter-

med the self-prioritization effect (SPE; Sui & Humphreys, 2015). Fol-

lowing our focus on specifically the temporal integration of self, we

modified the perceptual matching paradigm by including a temporal

component in the form of different delays between the presentation

of shape and label. Accurate responses require one to integrate the

two stimuli over time whereas inaccurate responses indicate a failure

of this temporal integration. Based on the SPE we hypothesized a

higher level of accuracy in the self conditions and that this advantage

would be maintained over the different temporal delays. To assess the

role of cognitive functioning in this process, we also measured work-

ing memory and assessed learning effects.

The second specific aim was to investigate temporal integration

on the neuronal level and how that relates to temporal integration of

self on the psychological level. For that purpose, we recorded resting-

state EEG and used the above-mentioned measures, ACW and PLE,

as indices of temporal integration on the neuronal level. In recent the-

oretical work it has been proposed that interindividual differences in

self-related resting-state activity related are crucial for explaining indi-

vidual differences in behavioral outcomes (Scalabrini et al., 2018).

Based on this and previous empirical research (Huang et al., 2016;

Wolff et al., 2019), we hypothesized that interindividual variation in

resting-state ACW and PLE in specifically midline regions like pACC

and PCC is related to interindividual variation in changes of the SPE

over the different temporal delays. Specifically, we hypothesized that

higher degrees of temporal integration on the neuronal level, that is,

higher PLE and longer ACW, are related to larger SPEs over the longer

temporal delays. We hypothesized that this relationship is not related

to cognitive function, that is, working memory and learning effects.

2 | METHOD

2.1 | Participants

Thirty-one adolescents (mean age = 20.4 years, SD = 1.77; 17 females)

participated in this study. Participants were recruited primarily from

the University of Ottawa, and from the general population. The study

took place at The Royal Ottawa's Institute for Mental Health Research
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and lasted approximately 2 hr per participant, for which they were

financially compensated. The study was approved by The Royal

Ottawa Research Ethics Board (REB#2017019) and all participants

provided written informed consent prior to participation.

2.2 | Apparatus, stimuli, and procedure

2.2.1 | EEG resting-state measurement

First participants underwent an EEG resting-state measurement. For

this they were required to look at a gray screen with a white fixation

cross for 7 min. Participants were instructed to keep their eyes open

and to keep head movements to a minimum.

2.2.2 | Perceptual matching task

The perceptual matching task we used was a modified version of the

one developed by Sui, He, and Humphreys (Sui et al., 2012). Instruc-

tions were presented on screen and afterward participants completed

four blocks, each consisting of a learning and testing stage.

For each block, three geometrical shapes (circle, square, and trian-

gle) were assigned randomly to three personal labels (“You,” “friend,”

and “stranger”). These were presented as shape-label pairs to the par-

ticipants in text during the learning stage. Participants could take as

much time as they needed to memorize these associations (average

was 2 min). Afterward participants performed 100 trials in which a

shape-label pair was presented. The task for the participants was to

judge whether the presented pair was correct according to the associ-

ations memorized in the learning phase.

There were four conditions based on the delays between shape

and label. First, shape and label were presented simultaneously

(no delay) for 100 ms. Next, there were three different delays present

after the presentation of the shape and before the presentation of the

label. The delays were 40, 120, and 700 ms during which a central fix-

ation cross was displayed. We chose these delays as they represent

approximately one cycle length of the beta, alpha, and delta EEG fre-

quency bands, which have been found to be central in analyzing

human EEG data (Niedermeyer & da Silva, 1999). Moreover, these

delays are similar to the ones used by Janczyk and colleagues

(50–1,000 ms) in their investigation of the SPE (2018). These four

conditions were randomized (Figure 1).

All trials consisted of the following sequence: a jittered intertrial

interval (2–4 s, steps of 0.5 s) with a central fixation cross. Then the

shape-label pair was presented. In the no delay conditions both shape

and label were presented together for 100 ms. In the delay conditions

the shape was presented first for 100 ms and after a delay (40, 120,

or 700 ms) the label was presented for 100 ms. After the label was

presented, a blank screen was shown for a maximum of 1,500 ms dur-

ing which participants could respond.

Participants were instructed to respond as quickly as possible.

When they failed to do so within the 1,500 ms limit, the trial was reg-

istered as missing and the next trial started. This was done to ensure

rapid, spontaneous responses. Participants responded “correct” or

“incorrect” on each trial using the “n” and “m” keys on the keyboard;

which key corresponded to each response was counterbalanced

across participants.

All shape-label stimuli were generated randomly. Hence, we had

three within-subject variables: Self (self-associated shape or nonself,

that is, friend or stranger, associated shape), Matching (matching

shape-label pair with learned associations or nonmatching) and Delay

F IGURE 1 Example of experimental stimuli. (a) Example of stimuli in the no delay condition. The response screen lasts up to 1,500 ms and is
terminated by a response. (b) Example of stimuli in the delay conditions. The second screen is visible during the delay

4358 KOLVOORT ET AL.



(no delay, 40, 120, or 700 ms). This design resulted in 2 × 2 × 4 = 16

conditions.

2.3 | Data analyses

2.3.1 | Preprocessing of behavioral data

First we removed trials where the reaction time (RT) was shorter than

200 ms (Ratcliff, 1993). Then, as a standard way of dealing with out-

liers, we removed trials where the RT was lower or higher than 2 stan-

dard deviations from the mean RT of each participant within each

condition. In total this removed 5% of our data, well within the stan-

dards set for outlier removal in RT analysis (Ratcliff, 1993). For the

analysis of efficiency scores (see below) we used this dataset. For the

analysis of RTs, using a linear mixed effects regression model (hence-

forth LMM), only the correct responses were included. For the sepa-

rate analysis of accuracy using a logistic mixed effects model

(henceforth LogMM) we did not remove outliers based on RT (as they

are not outliers in accuracy) and recoded missed observations as

incorrect.

2.3.2 | Bootstrapping

We used a bootstrapping procedure in order to get a sense of the

central tendency of the responses (Davison & Hinkley, 1997; Sui

et al., 2012). For each condition 250 bootstrapped samples were cre-

ated by resampling the data with replacement. For each of these sam-

ples the mean RT and accuracy were calculated and plotted in order

to visualize both the mean and variance of the data for each

condition.

2.3.3 | Efficiency scores

We calculated efficiency scores for each participant within each con-

dition by dividing the mean RT by the proportion of correct responses

(Sui et al., 2013; Townsend & Ashby, 1983). This provided us with a

measure combining both aspects of participants' responses (accuracy

and RT) that indicates how efficient participants are in providing accu-

rate responses. For this measure lower values indicate more efficient

responses. Paired samples t-tests were used on order to examine the

within-subject effects on efficiency scores.

2.3.4 | Mixed effects model regressions (accuracy
and response times)

We analyzed accuracy and RTs separately using a mixed effects

regression approach. The mixed effects approach used here has sev-

eral advantages compared with, for example, ANOVA, including the

ability to flexibly calculate contrasts and to deal with unbalanced

repeated measures data (see Gueorguieva & Krystal, 2004; Quené &

Van den Bergh, 2008). We added subject into the model as a random

effect, a so-called “random intercept model,” which allows the model

to estimate a separate intercept for each participant and estimates

the effects of other variables relative to each individual's mean

response. In addition, we added all other experimental variables (Self,

Matching, and Delay) into the regression as fixed effects. We esti-

mated full factorial models, meaning that we estimated the main

effects of the experimental variables and all their interactions in the

regression models. This analysis was done using the lme4 package in

R (Bates, Mächler, Bolker, & Walker, 2014, RRID:SCR_015654).

Lastly, with this approach we can apply a similar analysis to both

RT and accuracy. For RT we will simply estimate a linear model (i.e., a

linear mixed model, henceforth LMM). Since accuracy is a binary

dependent variable, having a value of 0 for incorrect responses and a

value of 1 for correct responses, we use a logistic model for the accu-

racy data (Hosmer Jr, Lemeshow, & Sturdivant, 2013). Such a model

uses a logistic function to transform the predictions of the model into

a continuous distribution. In our case this distribution then represents

the probability a participant provides a correct response (accuracy = 1).

Hence the model we used is a logistic mixed effects model (hence-

forth LogMM).

In all regression analyses we use the variables Matching and Self,

where nonmatching and nonself conditions assign the variable as a

value of 0, while the matching and self conditions are coded with a

value of 1. Hence, the coefficients of these variables can be inter-

preted as the effect on the dependent variable of going from non-

matching to matching conditions (i.e., the matching effect), and as the

effect of going from nonself to self conditions (i.e., the SPE) respec-

tively. After first analyzing the behavioral responses in just the no

delay conditions, we will apply the model to all conditions and include

a variable Delay. The variable Delay was treated as a categorical vari-

able and dummy coded for the regression analyses.

In contrast to Sui and colleagues (e.g., Sui et al., 2012;

Yankouskaya et al., 2020), we do not perform our analysis of RT and

accuracy separately for the matching and nonmatching conditions.

Instead, we included a variable for Matching in our regressions so that

we can explore its interaction terms with other variables. Ultimately,

we used the estimated regression coefficients of the variables and

(polynomial) contrasts comparing different levels of the variables to

make inferences. Residual plots of all regression models were

inspected for violations of homoscedasticity and normality.

2.3.5 | Controlling for cognitive effects: Working
memory and learning

In order to control for working memory effects, participants did the

operation span task after the perceptual matching task. Based on the

operation span task, we calculated each individual's working memory

score using the partial-credit load scoring procedure (Conway

et al., 2005). Based on this we performed a median split, creating a

high and low WM group, and then compared their efficiency scores

KOLVOORT ET AL. 4359



using t-tests. To investigate the effect of working memory on accu-

racy and RT separately we added the working memory scores as a

continuous covariate to our regression models. We added the main

effect of working memory and its interactions with the self and delay

variable.

To test whether the SPE is influenced by learning and practice,

we used the trial number within each block as a covariate. As partici-

pants had to learn new associations each block, learning could only

affect behavior over the duration of a single block. We analyzed effi-

ciency scores, RTs, and accuracy separately. We calculated efficiency

scores for each participant separately for the first and last half of each

block and compared the different conditions using paired t-tests. For

accuracy and RT we included within-block trial number as a covariate

in the regression analyses.

2.4 | EEG data acquisition and analysis

EEG data was recorded using Ag/AgCl electrodes through a

64-channel Brain Vision Easycap (according to the International Ten-

Twenty System) referenced to the right mastoid. The data was sam-

pled at 1,000 Hz with DC recording. The EEG data preprocessing was

performed using the EEGLAB toolbox for MATLAB (version 14.1.1;

Delorme & Makeig, 2004, RRID:SCR_007292). The data was down-

sampled to 250 Hz and filtered with a low-pass filter at 50 Hz and a

high-pass filter at 0.5 Hz. Next, the data was cleaned using artifact

subspace reconstruction (EEGLAB plugin clean_rawdata) to remove

noisy channels (Chang, Hsu, Pion-Tonachini, & Jung, 2018). Further

artifacts were removed using independent component analysis (ICA),

performed using the EEGLAB software creating 62 independent com-

ponents. Next, we used the MARA implementation to automatically

reject noisy components (Winkler, Haufe, & Tangermann, 2011). All

removed channels were then spherically interpolated and all channels

were re-referenced to the average. Ten participants initially used a

different electrode cap in order to record functional Near Infrared

Spectroscopy (fNIRS) data; for these participants, any missing Easycap

electrodes were interpolated following preprocessing, and additional

electrodes from the fNIRS cap were removed.

The PLE was calculated using the enhanced periodogram method

described in Eke et al. (2000), termed lowPSDw,e. Parabolic windowing

and endmatching (described in detail in Eke et al., 2000) were first

applied to the EEG signal. The power spectral density (PSD) was then

estimated with Welch's method (Welch, 1967), and MATLAB's polyfit

function was used to fit a line to the power spectrum in the range of

our bandpass (0.5–50 Hz). The negative of the slope of this line was

then extracted as the PLE, representing the relationship between

power and frequency. One PLE value was extracted for each channel

and specific regions of interest (ROIs; see below).

In order to make our PLE calculation more robust, we used a

recently developed method, Irregular Resampling for Auto-Spectral

Analysis (IRASA; Wen & Liu, 2016), to separate fractal and oscillatory

components in the power spectrum. This allows us to associate SPE

with specifically the fractal component of the power spectrum, that is,

the fractal spectrum, as distinguished from the oscillatory component

and the nonseparated power spectrum, the latter of which we will refer

to hereafter as the mixed spectrum. Oscillations are a widely studied

and salient feature of EEG data (Buzsáki, 2006). However, when

attempting to assess scale-free activity, these oscillations are not of

interest and instead can bias the estimation. The IRASA method sepa-

rates these components by resampling the signal by a number of non-

integer factors. Scale-free activity is consistent across these samples,

while oscillations with specific frequencies are shifted. The median of

the resampled power spectra is taken as the fractal component, while

the residual power is taken as reflecting scale-dependent oscillatory pro-

cesses. Following a previous study (Muthukumaraswamy & Liley, 2017),

we computed the IRASA power spectrum in 10-s windows with no

overlap, using resampling factors ranging from 1.1 to 2.9 in steps of

0.05 (excluding 2). Due to the presence of filtering artifacts in the fractal

PSD (see Figures S4 and S5), the IRASA based PLE, henceforth fractal-

spectrum PLE, was estimated across a smaller range of frequencies

(2–25 Hz) than the mixed-spectrum PLE.

To ensure robustness of our findings in relation to temporal integra-

tion, we employed an additional index of temporal integration; the

ACW. As pointed out in the introduction, ACW (Himberger et al., 2018;

Honey et al., 2012; Murray et al., 2014) and PLE (Chialvo, 2010; Eke

et al., 2000, 2002; He, 2011, 2014; He et al., 2010; Linkenkaer-Hansen

et al., 2001) are analogous measures of temporal integration on the neu-

ronal level; they assess the same property (the fractal scaling of power

vs. frequency) in the frequency (PLE) and time (ACW) domains. These

two ways of viewing temporal integration, through the lenses of fre-

quency and time, are mathematically equivalent—the Wiener–Khinchin

theorem relates the autocorrelation function, used to calculate the

ACW, to the power-spectrum, used to calculate the PLE.

The ACW was calculated according to the methods of Honey

et al. (2012). The autocorrelation function was calculated on 20 s seg-

ments of the EEG signal, with 50% overlap. For each segment, the full

width at half maximum of the autocorrelation function was calculated,

and these values were averaged over all 20-s segments to produce

the ACW value for each electrode and ROI.

2.5 | Regions of interest

As previous studies highlight the central role of resting-state activity in

cortical midline structures like pACC and PCC for the self (Northoff &

Bermpohl, 2004; Northoff et al., 2006; van den Meer et al., 2010; Qin &

Northoff, 2011; Murray et al., 2015; Huang et al., 2016; Wolff

et al., 2019), we specifically analyzed ACW and PLE in these regions.

In order to create timeseries for those specific ROIs we used

exact Low Resolution Electromagnetic Tomography (eLORETA, RRID:

SCR_013830). eLORETA was used to compute the 3D intracerebral

distribution of sources of scalp-recorded electrical potentials (Pascual-

Marqui, 2007; Pascual-Marqui, Michel, & Lehmann, 1994). ROIs were

defined using the software's default Brodmann atlas: pACC

(Brodmann areas 10, 24, 32) and PCC (Brodmann areas 23, 29,

30, 31). We also computed time courses in three control regions:
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primary visual cortex (Brodmann area 17), primary somatosensory cor-

tex (Brodmann areas 1–3), and primary motor cortex (Brodmann area

4). Since the resultant time courses for each ROI reflect non-negative

current estimates, we log-transformed them and subtracted the mean

to make the time series more stationary and Gaussian to improve esti-

mation (Cramér, 1992). We then computed mixed-spectrum PLE and

ACW according to the methods described above. Fractal-spectrum

PLE was not computed, as no prominent oscillations were observed in

the eLORETA time series.

2.6 | Relationship between behavioral delay
effects and scale-free activity in resting-state EEG

Scale-free activity in the brain, as measured by PLE and ACW, can be

mechanistically related to behavioral effects with respect to time

(Kello et al., 2010; Linkenkaer-Hansen et al., 2001; Northoff, 2017;

Palva et al., 2013). Hence, we looked at the change in SPE due to the

delays as this captures how the effects of self and time interact. To

capture the individualized patterns of change in the SPE, that is, how

the SPE was modulated by introducing delays, we plotted each partici-

pant's mean SPE value as a function of the delay and then for each

participant fitted a line to their SPE values by minimizing the squared

error. The slope of this line, referred to henceforth as “SPE slope,”

indicates the change of the SPE due to the delays: a positive slope in

this line indicates that a participant's SPE increases with longer delays,

while a negative slope indicates that a participant's SPE decreases

when the delays are longer. This slope was used for the correlation

analyses with the neuronal data. We computed Spearman correlations

at each electrode and used a cluster-based permutation test (Maris &

Oostenveld, 2007) to correct for multiple comparisons. With the

cluster-based permutation tests we report the correlation coefficient

computed from the average signal of all channels. Additionally, we

employed partial correlations to control for cognitive effects due to

working memory and learning differences.

To further ensure that our methodology is appropriate and our find-

ings robust, we performed several control analyses. We calculated the

above correlations with PLE and ACW computed over different fre-

quency ranges, correlated the three measures of fractal structure

(mixed-spectrum PLE, fractal-spectrum PLE, and ACW), and controlled

the SPE slope correlations for parameters describing each subject's indi-

vidual alpha peak. These control analyses are reported in Figures S1-S3.

3 | RESULTS

3.1 | Psychological level of self I: No delay
condition

3.1.1 | Efficiency scores

First, we analyzed only the trials in which there was no delay between

the presentation of shape and label. Age and sex were found not to

affect these results, nor do they affect any of the results mentioned

later in the text, and as such they are not discussed further. Regarding

only the no delay condition, there are two within-subject variables:

Self (self/friend/stranger associated shape) and Matching (matching/

nonmatching shape-label pair).

Each point in Figure 2a represents the mean RT and accuracy of a

bootstrapped sample. The figure shows a clear SPE on both accuracy

and RT in the matching conditions, but not in the nonmatching condi-

tions. Moreover, it shows that the friend and stranger means and vari-

ances are similar in both the matching and nonmatching conditions.

Based on this and the fact that we are interested primarily in the self,

we grouped friend and stranger together as “nonself” in subsequent

analyses.

The mean efficiency scores (mean RT divided by the proportion

of correct responses) for each condition are displayed in Figure 2b.

Paired sample t-tests show that the SPE in the matching conditions is

highly significant t(30) = 3.55, p = 0.0013 (mean difference = 198.6),

but not in the nonmatching conditions (t(30) = −1.173, p = 0.25, mean

difference = −26.6).

3.1.2 | Accuracy

We then analyzed accuracy separately by fitting a logistic mixed

effects regression model, with self and matching and their interac-

tion as fixed factors and random intercepts by participant. Both the

main effect of matching (β = −1.182, SE = 0.127, p < .001) and the

interaction effect of self and matching (β = .733, SE = 0.229,

p = .001) are highly significant. In contrast, the SPE was not signifi-

cant as a main effect over both matching and nonmatching condi-

tions (β = .00267, SE = 0.146, p = .985). The interaction effect of

self and matching on accuracy is displayed in Figure 2c, where the

model predictions of mean accuracy are presented together with

their standard error.

Using post hoc analysis to confirm that the SPE is present in the

matching conditions, but not in the nonmatching conditions, we esti-

mated the marginal effects of self separately in the matching and non-

matching conditions with Bonferroni correction. The coefficient was

highly significant in the matching condition (β = .116, SE = 0.0272,

p < .001), but not in the nonmatching conditions (β = .0003, SE = 0.015,

p = 1.00). This indicates that in the matching conditions participants

responded more accurately when the presented shape was associated

to themselves as compared to a friend or a stranger, confirming the

existence of an SPE on accuracy.

3.1.3 | Reaction times

Next, we analyzed RTs separately by fitting a linear mixed effects

regression model, again with self and matching and their interaction

as fixed factors and random intercepts by participant. The SPE was

marginally significant as main effect over both matching and non-

matching conditions (β = 17.37, SE = 9.46, p = .066), while, similar as

KOLVOORT ET AL. 4361



with accuracy, the main effect of matching was significant (β = 31.35,

SE = 10.37, p = .003), as was the interaction effect (β = −89.50,

SE = 17.22, p < .001).

We did a similar post hoc analysis for RTs as done on accuracy.

We find that, again, using Bonferroni correction, the SPE is significant

in the matching conditions (β = −72.13, SE = 14.36, p < .001), but not

in the nonmatching condition (β = 17.37, SE = 9.46, p = .133). This

confirms the finding by Sui and colleagues that there is a SPE on RTs,

where people respond more quickly to self-related stimuli in the

matching conditions (Sui et al., 2012).

3.2 | Psychological level of self II: Effect of delays

3.2.1 | Efficiency scores

Next, we analyzed the influence of the delays on participant's

responses. First, we calculated efficiency scores for each participant

separately for each delay. We see that the mean efficiency scores

decrease with increased delays: no delay (M = 950.9, SD = 123.1),

40 ms (M = 846.0, SD = 123.3), 120 ms (M = 815.3, SD = 137.9),

700 ms (M = 696.2, SD = 153.1). To test whether the efficiency scores

in the conditions with a delay were significantly different we did mul-

tiple paired t-tests with Bonferroni correction comparing each delay

with the previous one. The difference between no delay and 40 ms is

significant (t = 8.21, p < .001), as are the differences between 40 and

120 ms (t = 3.16, p = .006) and between 120 and 700 ms

(t = 10.0, p < .001).

3.2.2 | Accuracy

We then analyzed accuracy separately by fitting a logistic mixed

effects regression model (LogMM) as specified before. With regard

to the main effect of the delays, we find that the effect of the

40 ms delay is not significantly different from the no delay condition

(β = .248, SE = 0.133, p = .062). In contrast the 120 ms and 700 ms

delay conditions are significantly different from the no-delay condi-

tion (120 ms: β = .296, SE = 0.132, p = .025.; 700 ms: β = .700,

SE = 0.141, p < .001). This indicates participants become more accu-

rate with increasing delays. We also observed significant effects of

self in delay conditions (β = .744, SE = 0.188, p < .001), indicating

that participants were more accurate in response to self-related

stimuli.

F IGURE 2 Effect of self and matching without delays. Based only on trials without a delay. Asterisks indicate p < .05. (a) Bootstrapped mean
values of accuracy and reaction time, using 250 samples per condition sampled with replacement. (b) Mean efficiency scores (reaction time
divided by accuracy), bars indicate standard errors. (c) LogMM predictions of the probability that a response is correct. Bars represent standard
errors of predictions
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3.2.3 | Reaction time

RTs were analyzed separately by fitting a linear mixed effects

regression model (LMM). The model specification was with same

factors (2 × 4 full factorial) as the above logistic regression model

for accuracy. The overall SPE is not significant (β = −17.94,

SE = 19.9, p = .088). With regard to the main effect of the delays,

we find that the effect of the 40 ms delay is not significantly differ-

ent from the no delay condition (β = −25.10, SE = 16.37, p = .13). In

contrast, the 120 and 700 ms delay conditions are significantly dif-

ferent from the no delay condition (120 ms: β = −50.4, SE = 16.3,

p = .002; 700 ms: β = −164.5, SE = 16.5, p < .001), indicating that

participants respond quicker when longer delays are included

between shape and label.

Together these results show that increasing the delay between

the presentations of shape and label increases accuracy and shortens

RTs. Importantly, the SPE of the no-delay condition was preserved in

and thus carried over to the delay conditions. We then focused our

investigation on the interaction of self and temporal delay, the subject

of our hypothesis.

3.3 | Psychological level of self III: Interaction
of self and delays

To elucidate the way in which the SPE changes over the delays in self

and nonself, we first calculated bootstrapped means similarly as

before. These are presented in Figure 3a. We calculated mean effi-

ciency scores for each participant for each delay condition separately

for self and nonself. The means are plotted in Figure 3b. We tested

the difference in efficiency scores between self and nonself condi-

tions (SPE) for each of the delays using t-tests with Bonferroni correc-

tion. The SPE was significant at all but the longest delay condition

(no delay: Δ = 198.6, t = 3.5463, p = .0052. 40 ms: Δ = 296.5,

t = 4.09, p = .0012. 120 ms: Δ = 213.9, t = 6.02, p < .0001. 700 ms:

Δ = 216.5, t = 2.43, p = .0822). These values do not indicate a clear

trend of the SPE over the delays.

To test whether the SPE on accuracy and RT separately changed

with the delays, we looked at the interaction effect of the Self and

Delay variables in the LogMM and LMM, respectively. The average

marginal SPE effects per delay are presented in Figure 3a. While a

Wald test does not indicate a significant interaction of the SPE and

F IGURE 3 Effects of self and temporal delays. (a) Bootstrapped mean values of accuracy and reaction time, using 250 samples per condition
sampled with replacement. (b) Mean efficiency scores (reaction time divided by accuracy), bars indicate standard errors. (c) Estimates from the
logistic mixed model regression of the probability that a response is correct, separately for self and nonself over the different delays. Bars
represent standard errors of the predictions
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the delays for accuracy (χ2[3] = 3.01, p = 0.390), Figure 3c indicates a

decreasing trend for the SPE across delays. However, the differences

in SPE in the delays compared to no delay are not significant due to

the large variance relative to the estimates, Table 1 provides the esti-

mated differences in marginal effects of the self and their standard

error. A Wald test shows that the interaction of the delays with the

SPE for RT is just significant (χ2[3] = 8.09, p = .0443). See Table 1 for

the pairwise contrasts.

3.4 | Psychological level of self IV: Interindividual
variability in interaction of self and delays

We observed considerable intersubject variance in the self-delay

interaction on accuracy, as evidenced by the standard errors in

Table 1, which was thus subjected to further analyses on the single

subject level (Figure 4). The y-axis of all graphs in Figure 4a are

ordered on the SPE, that is, the difference in accuracy between the

self and nonself conditions, of individual subjects in the no delay con-

dition: the figure shows high interindividual variation in the no delay

SPE (left) and how that variability is carried over to the SPE in delay

conditions (from left to right). If the SPE was carried over from the no

delay conditions to the delay conditions, for example, if participants

with low SPE in the no delay conditions would also have a relatively

low SPE in the delay conditions, then we would observe a diagonal

line in all graphs in Figure 4a as we do in the graph of the no delay

conditions. This is not the case as the graphs show that there is no

group-level pattern in how the SPE gets carried over to the different

delay conditions. Hence, intersubject variability of SPE holds over all

temporal delays for which reason it may be to a large extent an intrin-

sic feature rather than being extrinsic (in which case changes in SPE

would be similarly modulated by changing extrinsic task requirements

like the different delays for each participant).

To better quantify interindividual variation across the different

conditions, we calculated for each individual subject the slope of lin-

ear fits through each participant's SPEs on accuracy in the matching

conditions over time. This slope is an index of how each individual's

SPE changes due to the temporal delays. If this slope is positive for a

participant, it indicates that this participant's SPE increases with the

longer delays. These slopes have a mean of −0.0196 and a SD of

TABLE 1 Pairwise contrasts of self-
prioritization effect (SPE) between delays

Delay contrast ΔSPE on accuracy SE p ΔSPE on reaction times SE p

0 ms–40 ms 0.150 0.253 n.s. −39.22 21.8 .0724

0 ms–120 ms 0.084 0.263 n.s. −38.45 22.3 .0840

0 ms–700 ms −0.290 0.265 n.s. 9.155 22.2 n.s.

Note: Pairwise contrasts of SPE under different delays based on mixed model regressions on accuracy

and reaction time respectively.

F IGURE 4 Individual variation in changes of self-prioritization effect on accuracy over the delays. (a) Plots of each subject's self-prioritization
effect on accuracy separately plotted for each delay condition. The x-axis can be read as the added probability of a correct answer due to the self.
The y-axis indicates each individual subject, all plots are sorted on the self-prioritization effect in the no delay condition to illustrate how
participant's self-prioritization effect changes from the no delay condition to conditions with delays. Dashed black lines are trend lines which
illustrate that the pattern from the no delay condition is not carried over to the delay conditions. (b) Density plot of the power-law exponent
(PLE) slopes. PLE slopes refer to the slopes of linear fits to each participant's SPE values. The slopes of these lines are used for the correlational
analysis with EEG data
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0.0595. This indicates that on average the SPE on accuracy decreased

over the delays, but that there is a significant amount of inter-

individual variation: 17 subjects had a negative slope while 14 subjects

exhibited a positive slope (see Figure 4b). We similarly calculated

slopes for the SPE on RT. These slopes were subsequently used as

basis for the correlation of the psychological SPE-delay effects with

the neuronal PLE of resting-state EEG.

3.5 | Cognitive function I: Relation of working
memory to self and delays

To test the effect of working memory on efficiency, we first calculated

overall efficiency scores for each participant separately and then per-

formed a median split based on the working memory scores. We

excluded one participant for who the working memory test failed due

to a technical error. A two-sample t-test indicates that the participants

in the high working memory group responded more efficiently overall

(Δ = 114.5, t = 2.610, p = .0144). Next, we calculated the average SPE

on efficiency for each participant separately and then compared these

using t-tests. The SPE on efficiency scores was not different for the

participants in the high and low working memory groups (Δ = −11.24,

t = −0.503, p = .6186).

We included the main effect of working memory and the interac-

tions with the SPE and the delays as covariates in the LogMM. The

results show a significant positive main effect of working memory on

accuracy (β = .387, SE = 0.171, p = .024). Participants with higher

working memory scores responded more accurately overall. However,

the interaction with the SPE was not significant (β = .006, SE = 0.091,

p = .946), nor was the interaction with the delays.

Different from accuracy, we find that working memory does not

affect participant's overall RT (β = −2.05, SE = 22.8, p = .929). Nor do

we find a significant interaction of working memory with the SPE

(β = −2.39, SE = 7.89, p = .762).

Together these results show the effect of the self is not related to

an individual's working memory capacity. It does seem that working

memory affects accuracy overall, but not RTs; participants higher in

working memory capacity respond more accurately regardless of the

specific stimuli. Importantly, the data show that it holds for both self

and nonself conditions; the SPE is thus not related to working mem-

ory effects.

3.6 | Cognitive function II: Relation of learning
effects to self and nonself

To see whether learning impacts behavior, we looked at how it

changes during a block, since each block new associations were

learned. We first calculated overall efficiency scores (i.e., independent

of self and matching) for each participant separately for the first and

last 50 trials in each block, a paired t-test shows that participants were

more efficient in the second half of the blocks (Δ = 44.51, t = 4.16,

p < .0001). Next we calculated the SPE on efficiency for each

participant separately for the first and latter half of the blocks. Paired

t-tests show that there is no significant difference for the SPE

(Δ = −31.06, t = −1.82, p = .079), indicating that it did not change over

the course of the experiment.

Next, to test the effect of learning on RTs and accuracy sepa-

rately, we used a variable indicating the trial number within a block.

We added both the main effect and the with the self to the LogMM

and LMM regressions.

We find a significant main effect of trial number on accuracy

(β = .189, SE = 0.082, p = .021), but no significant interaction effects.

Participants become more accurate during a block, regardless of

stimulus type.

The story for RTs is different: there is both a significant main

effect of trial number (β = −31.2, SE = 8.09, p < .001) and a significant

interaction effect with the SPE (β = 15.86, SE = 7.75, p = .041). To

investigate this interaction, we calculated the average marginal effects

(AME) of trial number separately for the self and nonself trials. The

effect of trial number is highly significant for the nonself trials

(AME = −20.8, SE = 4.71, z = −4.08, p < .001), but it is not for the self

trials (AME = −4.90, SE = 6.14, z = −0.798, p = .43). So, learning affects

RTs on nonself trials, but not on trials involving the self.

Taken together, our results show an overall or global learning

effect that applied to all stimuli in an equal way: participants are

quicker and more accurate at the end of a block. There was no learn-

ing effect specific to the self conditions, learning only has a specific

impact on RTs of nonself trials.

3.7 | Temporal integration on neuronal level I: PLE
and ACW mediate delay effects on the SPE

In a first step, we calculated resting-state ACW and PLE for all elec-

trodes based on the mixed-spectrum EEG signal. This yielded typical

ACW and PLE values in all subjects. As in previous EEG (Wolff

et al., 2019) and fMRI (Huang et al., 2016) studies, we observed sub-

stantial interindividual variability in ACW (M = 0.0362, SD = 0.0089),

mixed-spectrum PLE (M = 1.24, SD = 0.145), and fractal-spectrum PLE

(M = 1.05, SD = 0.1175; see Figure 5a,b).

Next we correlated the mixed-spectrum and fractal-spectrum

PLE, as well as the ACW, with the SPE slope over the different delays.

That showed significant correlations of both resting-state PLE and

ACW with SPE slope for accuracy: the higher the PLE and the longer

the ACW, the steeper the SPE slope across the different delays.

Hence, higher PLE and longer ACW went along with stronger and

thus more positive SPE effects over the longer delays (mixed-

spectrum PLE: ρ = 0.393, p = .0052; fractal-spectrum PLE: ρ = 0.338,

p = 0.0346; ACW: ρ = 0.268, p = .0492; see Figure 6). To rule out cog-

nitive effects, we also included working memory scores as a co-variate

in these correlations: mixed-spectrum PLE remained significant

(ρ = 0.357, p = .0170), while fractal-spectrum PLE and ACW remained

marginal (ρ = 0.286, p = .0504 and ρ = 0.286, p = .0772, respectively).

Finally, no correlation of SPE slope on RT with either PLE or ACW

was significant.
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F IGURE 5 Across-subject variability in power spectra and autocorrelograms. (a) Resting-state power spectra for each individual subject.
The distribution of power-law exponents is plotted in the inset. (b) IRASA decomposition of the power spectrum into oscillatory (left) and
fractal (right) components. Oscillatory components are plotted on a linear scale (as no a priori logarithmic structure is present), while fractal
components are plotted on a log–log scale. (c) Resting-state autocorrelograms for each individual subject (each subject is a color). The
threshold of 0.5 is plotted as a horizontal line, and the distribution of resulting autocorrelation windows (see Section 2) is plotted in the
inset
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Together, these data suggest that interindividual differences in tem-

poral integration on the neuronal level of the brain's resting-state activity,

that is, PLE and ACW, are related to interindividual differences in

changes of the SPE due to temporal delays on the psychological level,

that is, the SPE slope. This temporal relationship of neuronal and psycho-

logical levels holds especially for the scale-free, that is, fractal, compo-

nent of the neuronal signal and cannot be traced psychologically to the

cognitive components we measured, working memory, and learning.

F IGURE 6 Correlation of EEG measures with slope across delays of self-prioritization effects on accuracy (self-prioritization effect [SPE]
slope). (a) Correlation of mixed-spectrum power-law exponent (PLE) with SPE slope. (b) Correlation of fractal-spectrum PLE with SPE slope.
(c) Correlation of autocorrelation window with SPE slope. Scatter plots (left) show mean values across electrodes, and Spearman correlation
coefficients using these mean values. Topographies (right) show the correlation coefficients across electrodes. White electrodes were
included in a significant cluster (p values listed in figure), while black electrodes were significant at p < .05, but not following the cluster-based
correction
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3.8 | Temporal integration on neuronal level II:
Cortical midline structures

Finally, we conducted the same analyses in regions implicated in self-

related processing, pACC and PCC, as well as in control regions, the

motor and visual cortex. This yielded significant correlations of SPE

slope with mixed-spectrum PLE and ACW in the pACC and PCC ROIs

(see Figure 7). We found that one participant was an outlier (more

than two standard deviations from the mean) in both pACC ACW and

PCC ACW, her data are excluded from the results presented in

F IGURE 7 Regions of interest (ROI) definitions and correlations with self-prioritization effect (SPE) slope for (a) PCC and (b) pACC PLE and
autocorrelation window (ACW). Top panel shows the ROI definitions, according to Brodmann areas, interpolated onto a standard cortical surface
in Brainstorm (Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011). Bottom two panels show the correlation of mixed-spectrum PLE and ACW values
in each region with the slope across delays of the SPE on accuracy (SPE slope). Rho and p-values correspond to Spearman's rank correlation
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Figure 7. The removal of this outlier did not affect our results (correla-

tions including outlier: PCC ACW: ρ = 0.462, p = .00889; pACC ACW:

ρ = 0.434, p = 0.0147). In contrast with the pACC and PCC, no signifi-

cant correlations were present for the visual and motor cortices

(Tables 2 and 3). However, a correlation was found in the somatosen-

sory cortex with PLE as well; because of this, and the inherent low

spatial resolution of source-localized EEG, we refrain from making

strong inferences on the specific regions involved in this effect. All

correlations mentioned above survived partial correlation analysis

when including working memory scores as a covariate (see Tables 2

and 3).

Taken together, these results show that higher PLE and longer

ACW, both of which index the scale-free relationship of slow- and

fast-frequency components of the EEG signal, are related to a stron-

ger SPE on accuracy with longer delays as compared to shorter delays

or no delay. Participants with high PLE and long ACW values have a

self-bias that increases when delays become longer. This relationship

is particularly strong for the pACC and PCC, areas that have been pre-

viously implicated in self-related processing (Northoff et al., 2006;

Northoff & Bermpohl, 2004; van den Meer et al., 2010; Murray

et al., 2015). Working memory does not seem to affect this

relationship, which marks it as primarily dynamic and temporal rather

than being dependent on working memory or deliberate, cognitive

processing.

4 | DISCUSSION

We investigated temporal integration of self on the psychological

level and how it is related to temporal integration on the neuronal

level of the brain's resting-state. First, we observed on the psychologi-

cal level that the SPE was present across different temporal delays

inserted by us in the perceptual matching task of Sui and colleagues

(Sui et al., 2012, 2013; Sui, Yankouskaya, & Humphreys, 2015;

Yankouskaya et al., 2020). Importantly, we analyzed accuracy sepa-

rately from RTs, and found a different pattern of effects. Moreover,

we showed that the SPEs of specifically the self-specific stimuli over

the different temporal delays could not be accounted for by cognitive

effects related to working memory or learning.

Secondly, we demonstrated that interindividual variation in the

SPEs of self-specific stimuli over the different temporal delays was

correlated with the interindividual variation in the PLE and ACW of

resting-state EEG. Importantly, this relationship was not affected by

cognitive functions, and was most prominent in the midline regions

pACC and PCC.

Taken together, our data show that temporal integration on the

psychological level of self (as tested for in the delays of the self-

matching task) is related to temporal integration on the neuronal level

of the brain's spontaneous activity (as indexed by PLE and ACW). We

therefore conclude that temporal integration mediates the connection

or link of neuronal and psychological levels of self, thus reflecting

what recently has been described as “common currency” (Northoff

et al., 2020).

4.1 | Temporal integration on the psychological
level of self

We confirmed and replicated the SPE in the matching conditions in

the no delay condition as observed in the various studies by Sui and

colleagues (Sui et al., 2012, 2013, 2015; Yankouskaya et al., 2020).

We extend these findings by our observation that the newly inserted

delay conditions in the self-matching paradigm did not change the

SPE on accuracy at the group level. Hence, we observed SPE effects

in all delays, that is, participants responded on average significantly

more accurately to the self trials compared with the nonself trials

across all delays. This strongly suggests that the SPE from the no delay

condition is carried over to the temporal domain such that it holds also

during the delays. Such temporal extension of the SPE means that

subjects can integrate label and shape across different time points,

that is, over the delays. That, in turn, requires temporal continuity on

the psychological level of self-specificity, thus giving support to what

recently has been described as self-continuity (Ersner-Hershfield

et al., 2009; Huang et al., 2016; Northoff, 2017; Wolff et al., 2019).

TABLE 2 Spearman and partial correlations of autocorrelation
window with self-prioritization effect slope in five regions of
interest (ROIs)

Spearman

correlation Partial correlation

ROI R p R p

PCC .462** .00889 .470** .00882

pACC .434* .0147 .453* .0120

Visual cortex .203 .273 .205 .277

Motor cortex −.0200 .915 −.0238 .901

Somatosensory cortex .231 .212 .236 .209

Note: ROIs estimated with eLORETA. Partial correlations are controlled for

working memory score.
*p < .05.
**p < .01.

TABLE 3 Spearman and partial correlations of mixed-spectrum
power-law exponent with self-prioritization effect slope in five
regions of interest (ROIs)

Spearman correlation Partial correlation

ROI R p R p

PCC .478 ** .00716 .481 ** .00716

pACC .433 * .0150 .437 * .0157

Visual cortex .329 .0705 .330 .0749

Motor cortex .189 .308 .190 .314

Somatosensory cortex .551 ** .00130 .552 ** .00157

Note: ROIs estimated with eLORETA. Partial correlations are controlled for

working memory score.
*p < .05.
**p < .01.
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While we found that the SPE on average is present even when

delays are inserted, a group-level analysis does not tell the full story.

There is substantial interindividual variation in both the SPE itself and

how it changes across the delays. Moreover, these are not related, the

magnitude of the SPE of a subject in the no delay condition seems to

be unrelated to whether the SPE increases or decreases due to delays.

Hence the SPE seems to be largely an intrinsic or trait feature of a

subjects rather than being determined by the extrinsic task demands,

that is, the state. How an individual responds to self-related stimuli

across different timescales is personalized, in other words, it is depen-

dent on that individual's intrinsic or trait features: our data suggest

that this can be traced, in part, to resting-state brain activity.

The notion of an intrinsic temporal trait feature characterizing the self

is in line with findings showing that differences in how people experi-

ence their self extending over time severely impacts their behavior

(Ersner-Hershfield et al., 2009), and with the clinical view that holds

the self as being a central criterion by which to assess personality

(Scalabrini et al., 2018).

Importantly, we did not observe any relation of interindividual

variation in working memory to the interindividual variation in the

impact of the temporal delays on SPE. This does not support the

hypothesis that the temporal delay effects in SPE are mediated pri-

marily by a cognitive function like working memory (see Janczyk,

Humphreys, & Sui, 2018). However, our data do not rule out working

memory effects as we did not specifically test for all the different

forms of working memory, nor for memory effects related to our spe-

cific stimuli. We did test for learning effects and found accuracy to

increase within blocks of trials. However, these learning effects were

observed in both self- and nonself-specific conditions without any

specific relation to the temporal SPE effects. This makes learning a

rather unlikely source of the SPE.

4.2 | Temporal integration links neuronal and
psychological levels

The psychological effects suggest a primarily dynamic (i.e., temporal

rather than cognitive) basis of the temporal SPE effects. We therefore

analyzed the relationship between the psychological SPE and tempo-

ral integration on the neuronal level as indexed by PLE and ACW. Cor-

relation analyses show close relationship of psychological and

neuronal indices of temporal integration: the higher the PLE and the

longer the ACW in EEG resting-state, the stronger the SPE increased

over increasing delays.

The relationship of scale-free properties of neuronal activity with

the temporal delay effects on the SPE suggests that temporal integra-

tion on the neuronal level shapes temporal integration on the psycho-

logical level of self. We therefore propose that the relationship

between neuronal ACW/PLE and psychological SPE delay effects may

be mediated in a temporal way—temporal integration could provide

the “common currency” (Northoff et al., 2020) of neuronal and

psychological levels. That is further supported by our observation

that cognitive functions like working memory and learning neither

modulated SPE delay effects on the psychological level nor co-varied

with the ACW/PLE–SPE delay relationships.

Finally, given our eLORETA results, temporal integration medi-

ating neuronal and psychological levels seems to be particularly

strong in cortical midline structures like pACC and PCC. In contrast,

we did not observe such a strong relationship in primary regions like

visual and motor cortices. We did observe a significant relationship

in the somatosensory cortex, but only for the PLE. As such, this cor-

relation may not reflect the influence of scale-free activity as much

as the unique noise sources and biases that affect the PLE estima-

tion; it is for exactly this reason we included both PLE and ACW as

measures. Our findings are in line with previous studies using fMRI

(Huang et al., 2016) and EEG (Wolff et al., 2019), with both showing

a relationship of resting-state PLE in pACC and PCC with self-con-

sciousness. The findings presented here are also in accordance with

studies that show resting-state PLE in midline regions to modulate

task-evoked activity in response to self-related stimuli (Scalabrini

et al., 2017, 2019). As such our findings agree with the well-known

association of these regions with the self (Murray et al., 2015;

Northoff & Bermpohl, 2004; Northoff et al., 2006; van den Meer

et al., 2010). Accordingly, our data lend further support to the

observed “rest-self overlap” (Bai et al., 2016) and “rest-self contain-

ment” (Northoff, 2016) in specifically the cortical midline structures

(Qin & Northoff, 2011). This “overlap” or “containment” suggests a

“basis model of self-specificity” as distinguished from a higher-order

cognitive model of self (Northoff, 2016). That we found working

memory and learning not to affect our results supports this basis

model of the self. Moreover, our findings extend this model to the

temporal domain by showing that temporal integration in the mid-

line regions is related to temporal integration on the psychological

level of self. More generally, we provide further evidence for the

notion that individual differences in resting-state brain activity,

intrinsically related to the self, are crucial in understanding how

individual differences arise in behavior (Scalabrini et al., 2018).

4.3 | Temporal pooling as mechanism of temporal
integration

The exact mechanism that connects temporal integration from neuro-

nal to psychological levels remains unclear. Temporal integration is

closely related to what recently has been described as “temporal

pooling” that refers to how different inputs over a specific time win-

dow are summed and integrated within one and the same activity

(of a neuron or region; Himberger et al., 2018, p. 163). Such temporal

pooling and integration make the neural response robust to changes

in the inputs' timing and allows for combining past and present inputs

into one and the same pattern of activity. This integration is required

for the self to extend over longer timescales.

Temporal pooling also allows for the summation or integration of

different inputs from different sources—from internal cognitive inputs,

interoceptive bodily inputs, and exteroceptive inputs from the world—

at different points in time. Hence, such temporal pooling would
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provide a mechanism for cognition, the body, and aspects of the world

to be integrated into the self.

Our self-matching paradigm with the newly inserted temporal

delays requires such temporal pooling: subjects had to integrate exter-

nal inputs presented at different time points. The better they can pool

and sum the two temporally delayed inputs, that is, shape and label,

the higher their SPE effects over the temporal delays.

We measured temporal integration in the frequency (PLE) and

time (ACW) domains. We can apply these mathematically equivalent

viewpoints to temporal pooling as well. The more different time points

in neuronal activity are correlated over longer stretches of time (time-

domain lens; ACW), the more likely it is that inputs arriving at differ-

ent points in time impact neuronal activity in such a way that they are

pooled and integrated in the same pattern of neuronal activity (see

Himberger et al., 2018). Looking through the frequency-domain lens,

slower frequencies have long cycle durations, which makes brain

activity with strong power in these frequencies (PLE) ideally suited for

pooling and integrating different stimuli at different time points

together (He & Raichle, 2009; Himberger et al., 2018; Honey

et al., 2012).

We thus propose, albeit tentatively, that temporal pooling of

inputs is a candidate mechanism of temporal integration on the psy-

chological level of self. That is, temporal pooling is in part responsible

for the manifestation of a self that is extended over time and over dif-

ferent sources (cognition, body, and world) of neuronal activity. More-

over, it leads to self-coherence as activity related to different aspects

to the self are pooled into the same pattern of activity. Such a mecha-

nism would agree with the processing advantage implied by the SPE

(Sui & Humphreys, 2015) and in particular with the proposal of

Scalabrini and colleagues that the current temporal structure of spon-

taneous brain activity predisposes or aligns an individual's response to

external self-related stimuli (Scalabrini et al., 2017, 2019). The neuro-

nal activity of these self-related stimuli may be pooled into a pattern

of brain activity that extends over longer timescales, whereas nonself-

related stimuli would not, or to a lesser extent, benefit from this par-

ticular processing mechanism.

Taken together, we suggest that temporal pooling may underlie the

observed temporal integration on both neuronal and psychological

levels. We hypothesize that temporal pooling is a mechanism that medi-

ates the temporal integration on both the neuronal and psychological

level. Temporal pooling and thus temporal integration can therefore be

considered an example of what was recently described as “common cur-

rency” of neuronal and psychological levels (Northoff et al., 2020). How-

ever, more research is needed to lend further support to this

hypothesis. In particular, future research should directly test for the tem-

poral integration of inputs from multiple sources, that is, from cognitive

processes, from the own body, and from the external world.

4.4 | Limitations

Some limitations of this study need to be considered. First, using EEG

without adjusting for individual anatomy can yield localization errors,

and as such our localization results can at best be considered an

approximation. Second, due to practical constraints, we could not

include a more fine-grained continuum of different time delays in our

self paradigm. That precludes a more comprehensive parametric map-

ping of self-delay interaction effects. Third, we here focused on

linking resting-state measures of scale-free activity to psychological

effects of self-delay interaction; that excludes any relevant effects

task-evoked activity might have on the self-delay interaction. Lastly,

we only included a rather limited cognitive battery which, in future

studies, may need to be complemented by more a comprehensive bat-

tery that includes tasks testing for individual differences in memory

and executive functioning.

5 | CONCLUSION

In conclusion, we here provide evidence for a relationship between

temporal integration on both neuronal and psychological levels. Spe-

cifically, neuronal indices of temporal integration, for example, PLE

and ACW, relate to psychological measures of temporal integration

with respect to self, that is, SPE delay effects. We therefore tenta-

tively propose that temporal integration on the neuronal level serves

as template or blueprint (in yet unclear ways though) for temporal

integration on the psychological level—temporal integration may serve

as “common currency” of brain and self (Northoff et al., 2020). While

we suggest a specific temporal mechanism like temporal pooling to

mediate neuronal and psychological levels of temporal integration,

future studies are warranted to substantiate this hypothesis and to

investigate how the here suggested temporal mechanisms are related

to cognitive ones such as memory or attention.
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