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Abstract

Climate change has been described to raise outbreaks of water-born infectious diseases

and increases public health concerns. This study aimed at finding out these impacts on chol-

era infections by using Artificial Neural Networks (ANNs) from 2021 to 2050. Daily data for

cholera infection cases in Qom city, which is located in the center of Iran, were analyzed

from 1998 to 2016. To determine the best lag time and combination of inputs, Gamma Test

(GT) was applied. General circulation model outputs were utilized to project future climate

pattern under two scenarios of Representative Concentration Pathway (RCP2.6 and

RCP8.5). Statistical downscaling was done to produce high-resolution synthetic time series

weather dataset. ANNs were applied for simulating the impact of climate change on cholera.

The observed climate variables including maximum and minimum temperatures and precipi-

tation were tagged as predictors in ANNs. Cholera cases were considered as the target out-

come variable. Projected future (2020–2050) climate in previous step was carried out to

assess future cholera incidence. A seasonal trend in cholera infection was seen. Our results

elucidated that the best lag time was 21 days. According to the results of downscaling tool,

future climate in the study area by 2050 will be warmer and wetter. Simulation of cholera

cases indicated that there is a clear trend of increasing cholera cases under the worst sce-

nario (RCP8.5) by the year 2050 and the highest cholera cases observe in warmer months.

The precipitation was recognized as the most effective input variable by sensitivity analysis.

We observed a significant correlation between low precipitation and cholera infection. There

is a strong evidence to show that cholera disease is correlated with environment variables,

as low precipitation and high temperatures in warmer months could provide the swifter bac-

terial replication. These conditions in Iran, especially in the central parts, may raise the chol-

era infection rates. Furthermore, ANNs is an executive tool to simulate the impact of climate

change on cholera to estimate the future trend of cholera incidence for adopting protective

measures in endemic areas.
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Introduction

Studies have elucidated the effects of climate change on infectious diseases, including water,

vector and food-borne diseases [1–3]. There is the evidence of relationship between climatic

parameters and the burden of water-borne diseases such as cholera, particularly in undevel-

oped/developing countries [4–6].

The cause of cholera is Vibrio cholerae (V. cholerae), which is categorized as a gram-nega-

tive bacterium. Its natural habitat is brackish water. The disease is a severely contagious acute

bacterial infection, which is caused by colonization and multiplication of V. cholerae inside the

intestine. High risk individuals get the infection when they ingest an infective dosage of bacte-

ria from contaminated water, vegetables and foods [7]. According to the World Health Orga-

nization (WHO) reports, cholera is one of the health threats in some developing countries. In

2017, a total of 1227391 cases of cholera were reported by 34 countries including 5654 deaths

[8]. Cholera infection has emerged in association with seasonality, travel, natural catastrophes,

warfare and distinct conditions which ends to insufficient sanitation and poverty [9]. With

growing concerns about global climate change, the role of climatic factors in cholera incidence

has been investigated in the last decades. Weather conditions such as increasing ambient tem-

perature were known as a key parameter for cholera incidence [10, 11]. Several studies have

shown a significant correlation between either high or low rainfall and incidence of cholera

cases. So, either increasing or decreasing the average rainfall could lead to flood and droughts

which can affect the concentration of bacteria and also human health [12–14]. Rainfall can

also effect on nutrient concentrations, salinity and pH of water resources which effect on bac-

terial survival [15].

General Circulation Models (GCMs) have been applied to evaluate the effect of climate

change on a wide region. The Intergovernmental Panel on Climate Change (IPCC) has pub-

lished the latest sets of scenarios (Representative Concentration Pathway (RCP)) in the its fifth

Assessment Report (AR5) in 2014. These scenarios include RCP8.5, RCP6, RCP4.5, and

RCP2.6 [16]. To link between outputs of GCMs (spatial resolution of 100–300 km) and the

local climatic processes (spatial resolution of 10–20 km), downscaling technique was investi-

gated. This technique was applied to project future climate pattern at the local scale under

RCP scenarios [17].

Recently, the prediction of effect of climate change on health aspects has been widely stud-

ied [18, 19]. Prediction of an infectious disease such as cholera by reliable modeling can help

managers to perform preventive actions such as preparation of adequate manpower, pharma-

ceutical and logistic resources [20]. Artificial neural networks (ANNs), as nonlinear statistical

modeling, can be applied for creating models of disease spreading and prediction of epidemic

outcomes. Moreover, ANNs can gain elucidation of data and nonlinear forecast analysis of

variables for evaluation of biological and environmental data [21]. Several studies applied

ANNs to forecast the incidence of cholera over an area and illustrated advantages and disad-

vantages of this method [21, 22].

Many undeveloped/developing countries such as Iran still suffer from frequent epidemics;

therefore, the objectives of present study were evaluation of the association between the chol-

era cases and climate variables and also finding the most effective parameters. In addition, we

developed ANNs to simulate the climate change impact on cholera cases by the year 2050 in

Qom, Iran, with the highest cholera incidences, within two scenarios of RCP2.6 and RCP8.5.

In considering importance of controlling cholera in Qom, it can help to develop a system for

warning incidence of cholera which lead to promotion of planning and decision-making for

public health and reducing the health effects of climate change.
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Material and methods

Study area

The study area was Qom (50.88˚N 34.64˚E), located in the center of Iran and southwest of

Tehran (capital of Iran) (Fig 1). Qom is one of the biggest, industrialized and densely popu-

lated cities in Iran, with an urban population of over 1 million. The region’s physical geogra-

phy is dry and warm with an average annual maximum temperature of 40.3˚C in July and the

average annual minimum temperature of -1.6˚C in January. Annual rainfall average is 125

mm which occurs between October and May [23, 24].

Data source and collection

Cholera. Daily cholera prevalence data from January 1998 to December 2016 were col-

lected from the records of "The Centers for Disease Control and Prevention" at Qom Univer-

sity of Medical Sciences. Systematic cholera surveillance has been started working from 1998

epidemic in Qom, Iran; therefore, there was not available any cholera data for previous year.

The suspected cholera cases were diagnosed by the conventional culture technique and con-

firmed as cholera case-counts.

Meteorological data. Meteorological data were collected from Iran Meteorological Orga-

nization (IMO) for the period of 1976 to 2016. Data were collected regarding daily minimum

Fig 1. Study area: Qom, Iran (created by Arc GIS version 10.2).

https://doi.org/10.1371/journal.pone.0224813.g001
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temperatures (Tmin), daily maximum temperatures (Tmax) (in ˚C) and daily precipitation (pr)

(in mm) from Qom meteorological stations.

Preprocessing and optimization processes

The Gamma Test (GT) was known as a non-linear modeling analysis tool which estimated the

minimum Mean Square Error (MSE). GT can be attained when modeling the unseen data

using any continuous nonlinear models. This tool was firstly introduced by Koncar [25] and

Agalbjörn [26] and then improved by other researchers [27, 28]. GT is an index of strength

association between two variables measured at the ordinal level. This index estimated that part

of variance of output data which cannot be accounted for any smooth data model and calculate

by vertical intercept of the regression line [29]. Furthermore, slope or gradient is the slope of

regression line and could provide information on complexity of the system. GT is known as a

non-parametric method and its results used to build a model regardless of the techniques. The

result can standardize by V-ratio, which determines as Gamma/Var (output) and scale

between 0 and 1. A V-ratio equal or close to zero demonstrates a high degree of predictability

of given output. Furthermore, if the standard error (SE) value tends to zero, there is a high

confidence in the value of gamma statistic as an estimate for the noise variance on the output

[30]. To estimate the reliability of gamma statistic, a series of GT (for a definite number of

unique data points (M)) was run to determine the size of the data set required to create a stable

asymptote. The M-test helps us to find out how many data points are adequate for building a

model with a proximate MSE to the estimated noise variance (when the M-test plot be-comes

flat) [31].

In the present study, different combinations of input data were explored to assess their

influence on the cholera disease. GT evaluated the best combination of the candidate inputs by

Genetic Algorothim (GA). The parameters of GA to find good embedding were the population

size (100 chromosomes), the mutation rate (0.01), the crossover rate (0.5), the gradient fitness

(0.1), intercept fitness (0.8), and length fitness (0.1) [16]. The non-linear analysis and modeling

tool which used to analyze the data was winGamma that developed by the Department of

Computer Science, Cardiff University [29].

In the first step, five time-series data including cholera’s data with no lag time (NL), cho-

lera’s data with seven days lag (7DL), cholera’s data with 14 days lag (14DL), cholera’s data

with 21 days lag (21DL) and cholera’s data with 30 days lag (30DL) were prepared to be exam-

ined. In the next step, standard normalization was applied to give an equal chance to contrib-

ute to an output prediction for each data group. Then, different smooth data modeling

techniques were built and examined. Three principal factors of GT including gamma statistics,

model complexity, and the required number of inputs were used to determine the fitness of

particular mask or feature set. Finally, according to the results of GT, GA and M-test, the best

lag time was chosen between five time-series.

Projecting future climate patterns and climate scenario

Simulated climate change data on monthly scales in baseline experiments (1976 to 2005) and

future experiments (2021 to 2050) were obtained from Intergovernmental Panel on Climate

Change (IPCC)-data distribution center (DDC) website. The future experiments were included

four RCP scenarios (RCP8.5, RCP6, RCP4.5, and RCP2.6), which in the present study, we used

two of the RCP scenarios, RCP8.5 and RCP2.6 (with a relatively high and low future pathway).

In this study, ten global climate change model outputs (France IPSL-CM5A-LR, Japan MIROC5,

Canada CanESM2, USA CESM1-CAM5, Australia CSIRO-Mk3-6-0, China FIO-ESM, South

Korea HadGEM2-AO, UK HadGEM2-ES, Germany MPI-ESM-MR, China bcc-csm1-1) were
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applied to project the future climate. ArcGIS10.2 was utilized to display and transfer Net-CDF

(network common data form) files to excel. Monthly average of all variables (baseline and future)

were calculated and graphed separately. Then, the above-mentioned data of the two selected

groups in 10 models were compared. Furthermore, change factor method was used to select the

most appropriate GCMs.

Statistical downscaling establishes the relationships between the selected GCM outputs and

observed regional climatic processes [32]. LARS-WG (Long Ashton Research Station Weather

Generator, version 5–5) was applied as a successful downscaling tool, to both generate or sim-

ulated future daily meteorological variables in our study area [33]. The process of creating

daily site-specific climate data were carried out in three steps as follows:

1. Site analysis (model calibration): In this step, observed daily weather data from 1976 to

2005 (30 years) recorded in Qom synoptic stations was first used to calculate their statistical

parameters. These parameters were applied by LARS-WG in next step to generate synthetic

data series. The Kolmogorov-Smirnov (K-S) were used to determine the best copula fitting to

data, t-test for monthly means, and F-test for standard deviation [34].

2. Model validation: Synthetic weather series (generated by the WG) were methodologi-

cally tested against observed data to find out the presence of any statistically significant differ-

ence in the statistical parameters. This method led to increasing the confidence in the models’

predictions [33].

3. Generation of future daily synthetic weather data: LARS-WG baseline parameters

which are derived from observed weather data (during the process of model calibration) are

applied to generate synthetic weather by using the output of GCMs (as predictors). It derived

changes in precipitation and temperature and statistically downscale the conditioning of

parameters. The LARS-WG version of 5–5 has not covered the latest sets of scenarios which

released in the IPCC-AR5. Thus, to produce the RCP scenario fills and generate future weather

data, the observed climate data in the study area was compared with the GCM outputs and

then applied to the LARS scenario fill.

Simulation

The ANNs were applied to simulate the climate change impacts on cholera disease. ANNs is a

powerful mechanism and an important computational data-driven model which can learn a

correlation between inputs and outputs (training) and then represents the relationship

between input and output parameters by building a model. One of the most commonly and

effective used types of neural network is Back Propagation Neural Network (BPNN) approach,

i.e. Multilayer Perceptron (MLP). Using MLP, a learning model created by baseline data and

then it uses to produce outputs for new inputs [35].

In the present study, the software package Neuro-Solutions for Excel, version 7 (Neuro-

Dimension, Inc. 3701 NW 40th Terrace, Suite 1 Gainesville, FL 32606, NeuroSolutions for

Excel) was applied. The observed climate datasets in the study area were tagged as inputs and

the number of cholera disease was tagged as desired in an ANNs model for training, cross-vali-

dation, and testing. MLPs algorithm was used to create a neural network model and predict

cholera disease number, due to climate change. MLPs are structured of three layers of input,

hidden, and output and two steps of input feed-forward network and back propagation. After

randomization of the datasets, for training, cross-validation, and testing the network, 60, 15

and 25% of the inputs and outputs datasets were applied, respectively. In this study, to evaluate

the prediction success, we assessed the accuracy of the estimate by using MSE, correlation

coefficients (R-values), root mean square error (RMSE), normalized mean square error

(NMESE), and mean absolute error (MAE). Finally, the future (2021–2050) trends of cholera
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disease were estimated under two RCP scenarios (RCP2.6 and RCP8.5) using the projected cli-

mate datasets in the optimized ANNs.

Statistical analysis

For statistical analysis of collected data, SPSS software (version 20) was applied and the nor-

mality of all data was evaluated by Kolmogorov-Smirnov test. Descriptive statistics were used

for analysis of meteorological data and the number of cholera cases. Furthermore, the relation-

ship between the number of cholera cases and climate variables was determined by Pearson

correlation coefficient. For all tests, P-values of�0.05 are embraced as statistically significant.

GraphPad Prism 8.0.1 was used to design and graph in the current study. Also, ArcMap 10.2

Geographical Information System (GIS) (ESRI, Redlands, CA) was applied as a suitable tool

for mapping the study area and transferring Net-CDF (network common data form) files to

excel.

Results

Overview of effect of climate variability on cholera

From March 1998 to December 2016, in total, 1243 patients were identified with cholera by

the surveillance system in Qom province. The highest number of annual cholera cases were

recognized in five years 1998, 2001, 2005, 2008 and 2011 with 836, 22, 167, 26 and 137, respec-

tively, and the other years have few or zero number of cholera cases. The minimum, maximum

and mean of monthly variables for each year are presented in Table 1. The maximum monthly

of cholera was 21 in August 1998, as a year with the highest number of cholera cases. No case

was recognized in some years observed in Table 1. The monthly average of minimum tempera-

ture varied between 10.5˚C in 2000 and 11.54˚C in 2015 which shows an increase for mini-

mum temperature. The lowest temperature was recorded in January 2008 with a monthly

average of -23˚C after a catastrophic weather in Qom. An increasing trend was observed for

monthly average of maximum temperature. So, the maximum temperature was elevated from

43.5˚C in August 1998 to 45.2˚C in June 2016 and also during 19 years, the highest tempera-

ture was recorded in July 2010 with 47˚C. The maximum precipitation was varied between 9.5

mm in December 2014 and 35 mm in November 1999. Furthermore, a decreasing trend was

observed for precipitation during the years. Time series of cholera and climate variables were

applied to demonstrate the relationship between climatic factors and number of cholera cases

(Fig 2). For better understanding the figure, we presented the monthly values of cholera cases

and climate variables in just 5 years with the highest number of choleras and ignored the years

with negligible or zero cases of cholera. A seasonal trend in cholera cases and climate variables

is shown during 1998 to 2016 (Fig 3). Highest numbers of cholera were observed during the

warm season from June to September with highest maximum and minimum temperature and

lowest precipitation. Analysis of the correlation between monthly average of climate variables

and number of cholera cases were carried out by Pearson test (Table 2). The maximum and

minimum temperatures as independent variables had a positive correlation and also precipita-

tion has a negative correlation with number of cholera cases (R2 = 0.211, R2 = 0.204 and R2 =

-0.226, respectively). Moreover, the seasonal pattern of cholera disease was confirmed by cor-

relation coefficient of 0.332 between months and the number of cholera cases.

The results of GT

In the first step of analysis, GT results including gamma statistics and other relevant measures

were calculated for 3 inputs and one output in five time series data (NL, 7DL, 14DL, 21DL,
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30DL). Furthermore, different combinations were analyzed to assess their influence on the

cholera disease modeling (Table 3). As shown in the Table, the minimum value of Gama

(0.123) was observed when we used 21DL dataset with just precipitation (pr) as input combi-

nation. The best input data combination has a set of low values of gradient (0.22), standard

error (0.03) and V-ratio (0.37) and selected as a best lag time for simulation in the next step.

Interesting findings of the present study shows that the three input variables combination has

a higher gamma statistic, compared with the other combinations.

Regarding the size of dataset, the near neighbors (the number of Pmax) were estimated in

10 which shows that produces the most accurate estimate. The variation of gamma statistic

and the SE versus the Pmax has been illustrated in Fig 4(A). Moreover, the sufficient data for

building a smooth data model was estimated by M-test. From Fig 4(B), it can be seen that the

Table 1. Descriptive statistics of the monthly climatic variables and cholera cases.

Tmin

(˚C)

Tmax

(˚C)

Precipitation

(mm)

Cholera

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

1998 -7

(Feb)

24.4

(Jun)

10.6 4

(Jan)

43.5

(Aug)

26.8 0 18

(Mar)

0.39 0 21

(Aug)

2.29

1999 -10

(Jan)

26

(Jul)

10.7 4

(Dec)

44

(Jul)

27.04 0 35

(Nov)

0.45 0 1

(Jul/Aug/Sep)

0.05

2000 -8

(Jan)

28

(Jul)

10.55 6

(Jan)

44

(Aug)

26.5 0 25

(Jan)

0.48 0 1

(Jul/Aug/Sep)

0.02

2001 -10

(Jan)

30

(Jul)

11.04 1

(Jan)

44.5

(Jul)

27.2 0 18.4

(Jan)

0.41 0 1

(Jun/Jul/Aug/Sep)

0.06

2002 -7

(Dec)

27

(Jul)

11.05 4

(Feb)

44.4

(Aug)

26.8 0 26

(Apr)

0.41 0 0 0

2003 -6

(Dec)

29.5

(Jul)

10.95 4.5

(Jan)

46

(Jul)

26.03 0 14

(May)

0.45 0 1

(Aug)

0.01

2004 -6

(Jan)

29

(Jun)

11.68 5

(Dec)

42.5

(Aug)

26.3 0 22

(Jan)

0.48 0 1

(Aug)

0.002

2005 -7

(Feb)

31

(Jul)

11.25 1.5

(Feb)

45

(Jul)

26.2 0 25

(Mar)

0.40 0 5

(Jul/Aug)

0.45

2006 -6.8

(Jan)

28.5

(Jul)

11.58 4.5

(Dec)

44.6

(Jul)

26.6 0 19

(Mar)

0.43 0 1

(Jul/Aug/Sep)

0.03

2007 -7

(Jan)

29.5

(Jul)

11.25 4

(Jan)

43.5

(Jul)

26.04 0 33

(Mar)

0.50 0 1

(Aug)

0.005

2008 -23

(Jan)

30.2

(Jul)

10.64 -4.2

(Jan)

45.6

(Jul)

25.7 0 13

(Dec)

0.27 0 1

(Jul/Aug/Sep)

0.07

2009 -7

(Jan)

28.4

(Jul)

11.03 4

(Jan)

45.8

(Jul)

26.6 0 43.01

(Mar)

0.45 0 0 0

2010 -6.8

(Dec)

29.4

(Jul)

11.9 8

(Feb)

47

(Jul)

28.6 0 10

(Feb)

0.21 0 0 0

2011 -14.2

(Jan)

29

(Jul)

10.9 1.5

(Jan)

45.8

(Jul)

26.2 0 16.6

(Jan)

0.41 0 11

(Aug)

0.37

2012 -7.1

(Feb)

27.4

(Jul)

11.03 5.2

(Feb)

42.8

(Jul)

25.9 0 16

(Nov)

0.40 0 0 0

2013 -7.5

(Jan)

28.7

(Jul)

11.32 2.5

(Mar)

46.8

(Jul)

27.4 0 10.1

(Nov)

0.21 0 1

(Jul/Sep)

0.008

2014 -7.8

(Feb)

30.6

(Jul)

11.38 -1.3

(Feb)

46.6

(Jul)

27.2 0 9.5

(Dec)

0.19 0 0 0

2015 -5.1

(Dec)

28.1

(Jul)

11.54 5.3

(Dec)

45.9

(Jun)

27.6 0 13

(Dec)

0.27 0 1

(Jul/Aug/Sep)

0.02

2016 -11

(Nov)

28.3

(Jul)

11.2 3.5

(Nov)

45.2

(Jun)

27.7 0 11

(Mar)

0.27 0 0 0

https://doi.org/10.1371/journal.pone.0224813.t001
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sufficient data point to construct a smooth data model without overtraining were at least

4000–4500.

Predictions of climate variability under future climate change scenarios

Statistical downscaling using LARS-WG was applied to define an empirical relationship

between observed regional climatic (1976–2005) and GCM output models for 2021–2050

under two scenarios of RCP2.6 and RCP8.5 for the study area. Fig 5 demonstrates the down-

scaled monthly mean values of three parameters of precipitation, Tmax and Tmin under RCP2.6

and RCP8.5 scenarios, compared to the baseline values. As can be seen in this figure, RCP2.6

and RCP8.5 predicted that the minimum and maximum temperatures will rise in the study

area by the year 2050. The highest increase in Tmin and Tmax will happen in July (1.44˚C) and

May (1.81˚C) for RCP8.5, respectively. In addition, the lowest amount of precipitation will

occur in Mar (-7.89) but in overall, RCP2.6 and RCP8.5 scenarios predicted that precipitation

will decrease in the first 6 months of the year, while it will increase in the three months of win-

ter during October, November and December.

Fig 2. Variation in the number of cholera cases and climate variables in five years (1998, 2001, 2005, 2008 and

2011).

https://doi.org/10.1371/journal.pone.0224813.g002
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Cholera simulation based on ANNs

The simulation of effect of climate change on cholera disease was carried out by using a feed-

forward MLP type of ANNs. The schematic of the optimized NN is shown in Fig 6. This figure

demonstrates that the network has one hidden layer and Tan Axon and Momentum were set

as layer’s transfer function and learning rule, respectively. It is worth to mention that the

results are based on data with 21-days lag (21DL). According to the results, the average final

MSEs were 0.011 and 0.008 with standard deviations of 0.004 and 0.003, respectively for train-

ing and cross-validation.

In evaluation of future trend of cholera disease, Fig 7(A) was prepared to show the trends of

cholera cases for years of 2021–2050 under the two scenarios of RCP2.6 and RCP8.5. Also, Fig

7(B) shows monthly average of cholera cases during 2021–205. Accordingly, there is an

increasing trend in cholera cases under RCP8.5 by the year 2050. The seasonal trend of cholera

will change in the future qua the highest cholera cases will observe in spring and summer over

next 30 years, while the highest monthly average of cholera cases in baseline period was in

August. These conditions will occur when social factors such as availability of health and sani-

tation facilities and also safe water do not either change or become worse through the time.

Modeling by ANNs and sensitivity analysis of the mean of three inputs show that precipitation

Fig 3. Monthly variation in the number of cholera cases and climate variables, 1998–2016.

https://doi.org/10.1371/journal.pone.0224813.g003

Table 2. Correlation between the number of cholera cases and climate variables during 1998–2016.

Tmin Tmax Precipitation Month Cholera

Tmin 1

Tmax 0.986 1

Precipitation -0.566 -0.633 1

Month 0.191 0.187 -0.194 1

Cholera 0.211 0.204 -0.226 0.332 1

https://doi.org/10.1371/journal.pone.0224813.t002
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had the highest effect on the incidence of cholera with sensitivity of 0.54, while Tmin and Tmax

had sensitivity of 0.07 and 0.018, respectively (Fig 8).

Discussion

In the present study, the effects of climate variables on cholera disease in Qom, were evaluated.

Since Qom is one of the main religious tourist cities, control of cholera is a strategic and

important health issue. From July 1998 and after a huge outbreak in cholera in Qom with 836

cases, the surveillance system began to identify and document all positive cases officially. The

health center of Qom province assumed responsibility for finding out the source of infection,

monitoring, surveillance and controlling the disease. In the 19-year time period, five waves

Table 3. Gamma test results for five time-series.

Mask Gamma Gradient Standard Error V-Ratio Near Neighbours

NL Tmin,Tmax,pr 0.199 -0.065 0.018 0.796 10

Tmin,Tmax 0.197 2.462 0.015 0.788 10

Tmax,pr 0.190 -0.868 0.012 0.761 10

Tmin,pr 0.176 0.274 0.007 0.706 10

Tmin, 0.194 -2.371 0.014 0.780 10

Tmax 0.192 -1.555 0.017 0.768 10

pr 0.145 0.288 0.039 0.582 10

7DL Tmin,Tmax,pr 0.204 -0.500 0.015 0.817 10

Tmin,Tmax 0.203 -0.979 0.011 0.812 10

Tmax,pr 0.187 -0.690 0.009 0.749 10

Tmin,pr 0.181 -0.315 0.010 0.726 10

Tmin, 0.188 6.519 0.018 0.753 10

Tmax 0.180 14.052 0.020 0.722 10

pr 0.177 -0.344 0.100 0.711 10

14DL Tmin,Tmax,pr 0.198 -0.494 0.016 0.794 10

Tmin,Tmax 0.198 -0.074 0.010 0.795 10

Tmax,pr 0.188 -0.839 0.013 0.753 10

Tmin,pr 0.178 -0.416 0.009 0.712 10

Tmin, 0.182 6.193 0.018 0.729 10

Tmax 0.180 13.595 0.019 0.721 10

pr 0.187 -0.789 0.120 0.748 10

21DL Tmin,Tmax,pr 0.200 -0.343 0.015 0.801 10

Tmin,Tmax 0.196 5.319 0.013 0.785 10

Tmax,pr 0.181 -0.643 0.011 0.726 10

Tmin,pr 0.179 -0.326 0.010 0.716 10

Tmin, 0.185 5.036 0.019 0.740 10

Tmax 0.174 13.716 0.019 0.698 10

pr 0.123 0.223 0.030 0.374 10

30DL Tmin,Tmax,pr 0.201 -0.839 0.215 0.911 10

Tmin,Tmax 0.198 2.462 0.306 0.687 10

Tmax,pr 0.196 -0.267 0.015 0.826 10

Tmin,pr 0.179 -0.494 0.012 0.616 10

Tmin, 0.174 2.036 0.026 0.840 10

Tmax 0.183 9.612 0.018 0.798 10

pr 0.181 0.344 0.029 0.674 10

https://doi.org/10.1371/journal.pone.0224813.t003
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with a 3–4 year life cycle were happened, as has been recognized in India and Bangladesh with

3-year cycles and 3–6 year cycles, respectively [36, 37]. Cholera infection can be transmitted by

direct person-to-person contacts, using contaminated containers of water, unhealthy process

of food preparation, or contact with contaminated environmental reservoir with persistence

bacteria. However, pathways of transmission can be affected by climate conditions [38]. For

example, high temperature can accelerate the growth and proliferation of pathogens in their

habitats (e.g., raw food, water or environment). Rainfall can have a direct influence on trans-

mission of cholera in two ways: first, high rainfall can increase the risk of contamination of

either raw or treated water with wastewater (transmission of person-to-environment) and sec-

ond, low rainfall can also increase the concentration of pathogens in water media (transmis-

sion of environment-to-person) [37]. According to the results of correlation between monthly

average of climate variables and the number of cholera cases, it is obvious that high tempera-

ture with low precipitation in dry season was the ideal climatic conditions for cholera infec-

tion. In the current study, a seasonal trend was apperceived, so that the highest number of

cholera cases were observed during the summer to early fall (June to October). We hypothe-

sized that an increase in air temperatures during summer created proper environmental con-

ditions for bacterial growth and their survival through increasing salinity. On the other hand,

considerable decreasing in precipitation and increasing evaporation during dry months could

lead to reducing the amount of water in surface and groundwater sources. In overall, these

changes in climatic conditions could lead to increasing salinity, organic matter and aqueous

temperatures and subsequent growth and proliferation of pathogens, decreasing raw water

quality and increasing bacterial concentration in open water wells and the other water

resources. In this regard, using contaminated and untreated water for residential consuming

or irrigating vegetation could lead to increasing the risk of cholera disease incidence in high

risk people. In different recent studies, environmental variables were known as most impor-

tant factors in incidence of cholera. Indeed, seasonality was introduced as a stronger parameter

which leads to increasing in cholera outbreaks generally during warm months [39]. The posi-

tive correlation between monthly average of temperature and cholera infection was observed

in this study, which well proved by findings from East Africa, Zambia and South China [10,

11, 40]. In the case of precipitation, other studies found that heavy rainfall as an important

parameter on cholera incidence can lead to flooding and affect water quality and sanitation

Fig 4. (a) Variation of gamma and SE as the number of near neighbors (b) M-test graph.

https://doi.org/10.1371/journal.pone.0224813.g004
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Fig 5. Future monthly mean of (a) minimum temperature (Tmin), (b) maximum temperature (Tmax) and (c)

precipitation.

https://doi.org/10.1371/journal.pone.0224813.g005

Fig 6. Optimized ANNs structure for simulation in the study.

https://doi.org/10.1371/journal.pone.0224813.g006
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systems [41, 42]. Although, the effect of low precipitation in increasing the risk of cholera dis-

ease described in this study, was supported by recent findings in Bangladesh and Iran [12, 21].

In the first step of analysis, to determine the foremost lag time, the best combination of

inputs and to evaluate the effects of climate variables on cholera disease modeling, GT was

applied. A modeler needs much time to calibrate and test different built models for all input

combinations and also, there is no idea, how many data points required for calibration. The

results of GT and GA can considerably reduce the model workload and help to focus on the

best selection of inputs. The GA search and optimization techniques were used to evaluate the

best combination of input variables for predicting the target which was chosen by smallest the

asymptotic gamma statistic (the best MSE) between 2"-1 meaningful combination for a partic-

ular output [29]. The gradient and V-ratio also indicate the model complexity and the degree

of predictability of given outputs [43]. Thus, a model with low gamma and smaller gradient

and V-ratio are assumed as the best scenario for modeling. We indicated the impact of climate

variables on cholera disease were lagged by 21 days (21DL). Our reason for choosing different

lag times for variables was evaluation of the sensitivity of the cholera disease to delay in the

Fig 7. (a) Trend of cholera cases by 2050, (b) Monthly average of cholera cases.

https://doi.org/10.1371/journal.pone.0224813.g007
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effect of climate events. These lag times between the changes in climatic variables and the dis-

ease emergence may acquire, due to (a) time required to grow pathogens, (b) exposure to

infections, (c) incubation period, (d) disease detection and (e) report delayed. Bacterial dis-

eases have a shorter delay time than other pathogens and react more quickly to changes in

temperature and precipitation [38, 44]. For example, maximum correlation coefficients

between malaria incidence and sea surface temperatures in Colombia was happened with a 6

to 8 month lag [45], while the findings of Constantin de Magny in Bangladesh were shown the

short time lag (one month) between environmental variables and cholera epidemics [18].

According the results of our study, just precipitation (pr) was known as the most effective

input combination which means a built model by a combination of all input variables was not

suitable to estimate cholera disease. On other words, the most important weather factor was

only precipitation. Wang et al., used six weather input variables to estimate the evapotranspira-

tion and their model using the combination with four input variables (maximum temperature,

relative humidity, wind speed, solar radiation). They have shown that these variables have a

better performance to estimate evapotranspiration and this model with more input variables

could be developed more easily with less model complexity [43]. A study has reported that

three contributing weather factors including daily wind speed (W), relative humidity (RH)

and daily saturation vapor pressure deficit (Ed) were the best input data combination between

four weather factors based on the gamma value (0.0216) [30]. If the gamma value and other

three factors (i.e., gradient, Standard error and V-ratio) have low values, it is possible to build

a mathematical model with high quality.

For generation of local-scale daily climate scenarios, baseline parameters of the LARS-WG

(calculated from observed weather data for the period 1976–2005) modified for 2021–2050

under two RCP scenario files predicted by selected GCM model. In other words, by using this

technique, the future values of local precipitation and temperature were generated for the

Qom. To calibrate WG, synthetic daily weather data were generated by the parameters file in

the Qom sites and then the observed and synthetic data were compared. In the current study,

10 GCMs experimental outputs were used and compared with the 30-year recorded climatic

Fig 8. Sensitivity about the mean of each of predictors.

https://doi.org/10.1371/journal.pone.0224813.g008
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values and also, LARS-WG model applied for statistical downscaling to analyze and project

future climate pattern under two scenarios of RCP2.6 and RCP8.5. Several studies applied

GCMs to estimate the changes in disease in their area [46, 47]. Furthermore, some studies

were used LARS-WG to generate daily site-specific climate scenarios for the future [16, 48].

The findings of this study are in agreement with Mohammadi’s findings that simulated the

impact of climate change on emergency medical services clients in Tehran, Iran. In fact, they

predicted a wetter and warmer climate for their study area by the year 2050 [16]. In another

study, the effect of climate change in the Saguenay watershed in Canada was investigated by

LARS-WG downscaling technique. Their results have shown a clear increase in monthly aver-

age of both minimum and maximum temperatures (2.5 ˚C between current and 2080s climate)

but there was not any significant changes in the daily average of precipitation in the study area

[49].

The impacts of climate change on cholera disease were simulated using a feed-forward

MLP type of ANNs. To build a network, the trial-and-error approach was used and to find the

optimum network, training multiple times was applied. In addition, cross-validation was car-

ried out and performance of the network was tested to protect it against overtraining. The opti-

mized NN has one hidden layer and Tan Axon and Momentum were set as layer’s transfer

function and learning rule, respectively. Different studies applied ANNs to predict the diar-

rheal and cholera outbreaks in distinct areas of the world [21, 22, 50, 51]. Pezeshki et al. used a

multilayer perception ANNs to create a model and predict cholera disease in Chabahar, Iran.

They applied monthly average of temperature, humidity and rainfall as climatic variables and

their results illustrated that cholera cases were significantly related to humidity and there was a

significant relationship between the cholera incidence and lack of rainfall [21]. Considering

the importance of controlling the infectious diseases, many studies were done to estimate the

effect of climate changes on infectious diseases in human societies in the future and prepare

helpful prediction tools [52]. Accordingly, in another study, a new BPNN Model was estab-

lished to predict the number of infectious diarrheas in Shanghai of China with climatic vari-

ables as input. Moreover, the results of BPNN Model were compared with SVR, RFR and MLR

models. Their results indicated that BPNN model creates the best prediction results compared

to the MLR, RFR and SVR models. In addition, sensitivity analysis defined that temperature-

related variables (Tmax, Tmin, and Tavg) were the effective climatic factors on infectious diarrhea

while rainfall had minimum effect [51].

The projected scenario’s datasets were utilized on the optimized NN data-driven model to

evaluate the future trend of cholera cases. These datasets included daily values of cholera cases

and climate variables for 30 years (2021–2050). According to the present results, a slight

increase was shown in cholera cases under the two scenarios of RCP2.6 and RCP8.5. Our data

identified 4–5 years cycles between 2021 and 2050 under the scenario of RCP8.5. In one

important study, the ‘cyclical periodicity’ of cholera disease was demonstrated in relation to

the cycles of rainfall by the director of public health in Bengal. They reported that insufficient

rainfall under drought conditions could lead to epidemics of cholera [53, 54]. In fact, changing

the seasonality of cholera can be due to changes in rainfall patterns over the years. It should be

noted that all of the conditions will happen when the authorities do not accomplish any pre-

ventive actions and social factors (availability of healthy water especially in suburb and devel-

opment of wastewater systems) remain either the same or worse during the time. Considering

extensive changes in global and local climate conditions in last decades and its impact on the

spread of different diseases, it is a great necessity to find proper algorithms to predict the vast-

ness of these diseases based on climate conditions. In this regards, ANNs are known as one of

the appropriate tools for climate modeling and weather prediction [21]. In ANNs models, the
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sensitivity analysis was carried out for enhancing network performance and determination of

the relative importance and contribution of input parameters on the output [55].

According to investigation of Qom Health Center, the main cause of cholera in Qom was

determined as consumption of contaminated vegetables and untreated water in suburb. The

justification of this phenomena can be found in the summer time. As mentioned, climate in

Qom is dry and warm; therefore, lack of precipitation, drought and water shortage in the sum-

mer led to increasing bacterial load and contaminate groundwater by waterborne infection, V.

cholerae. Water scarcity, made people to use untreated water (with a higher risk of contamina-

tion) from wells with lower depths for drinking and other usages in suburb. Irrigation of agri-

cultural products by contaminated water and untreated wastewater and their consumption

can transmit V. cholerae to high risk people. V. cholerae is the major cause of human diarrheal

infection of cholera, which cause economic loss and mortality in developing countries. It is

nominated as "the disease of poverty" because it has shown in areas with no access to adequate

water treatment systems and sewage collection lines [56]. The best environmental conditions

for V. cholerae are 30˚C water temperature, 15% salinity, and almost alkaline environments

(pH = 8.5) [57]. Human movement also is another factor which play a noticeable role in the

epidemiology and transmission of infectious diseases. As mentioned, Qom is a religious city

and hosts lots of tourists from endemic countries such as Iraq, Afghanistan and Pakistan annu-

ally. All of these suitable conditions were provided in Qom and it could be resulted intense

growth of bacteria and increase incidence rate of cholera infection. Therefore, the promotion

of any control measures such as the development of sewage collection lines, the use of treated

wastewater for irrigation of farms, monitoring on the production/distribution of foods and

raw vegetables can help to reduce the predicted number of cholera incidence by the model in

the future.

One limitation of the present study was lack of long-term monitoring data on cholera and

diarrhea disease especially in details of patient data such as age and sex categories and social

and economic classes. Another limitation of our study was lack of hygienic, social and demo-

graphic information in the modeling process. Addition of some determinants affecting cholera

such as availability to safe water, wastewater collection system, sanitation access, consumption

of raw sewage in irrigation, hygiene in restaurants and other food providers and etc. can pro-

mote the potential of model to predict incidence of cholera with more accuracy. However, it

may also require more effort, cost, and time. For further work, these impact factors can add to

model and it may be helpful to use this approach to other waterborne infectious diseases.

Conclusion

Cholera outbreaks and diarrhea disease can be linked to climatic variables and climate change.

After establishing a surveillance system and recording cholera data in Qom, the information

showed that the first cholera epidemic started in July 1998 and continued over the 15 years. To

project the future climate using outputs from GCMs under two scenarios of the RCP2.6 and

RCP8.5, we used statistical downscaling by LARS-WG as an efficient tool. Results of this study

demonstrated a warmer and wetter climate pattern in our studied area by 2050. Based on the

feedforward MLP type ANN technique, this study indicated that annual cholera cases will

increase under both RCP scenarios during 2021–2050.

Our results showed that ANNs is a very useful and executive tool for simulation of infec-

tious diseases such as cholera to perform preventive actions and decrease fatalities and also

limit unwanted social results. But, because of some mentioned limitations of our dataset, sensi-

tivity of simulation is not high enough. Therefore, it is important to get comprehensive and

influential data including hygienic, social and demographic parameters. These results were
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obtained based on the present social conditions and surveillance systems. Promotion in sur-

veillance system, increasing in the number of epidemiologic studies and identification of cli-

matic and social risks factors can help to enhance control and prevention interventions.
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