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Abstract

Background: Conversion of human somatic cells into induced pluripotent stem cells (iPSCs) is often an inefficient,
time consuming and expensive process. Also, the tendency of iPSCs to revert to their original somatic cell type over
time continues to be problematic. A computational model of iPSCs identifying genes/molecules necessary for iPSC
generation and maintenance could represent a crucial step forward for improved stem cell research. The
combination of substantial genetic relationship data, advanced computing hardware and powerful nonlinear
modeling software could make the possibility of artificially-induced pluripotent stem cells (aiPSC) a reality. We have
developed an unsupervised deep machine learning technology, called DeepNEU that is based on a fully-connected
recurrent neural network architecture with one network processing layer for each input. DeepNEU was used to
simulate aiPSC systems using a defined set of reprogramming transcription factors. Genes/proteins that were
reported to be essential in human pluripotent stem cells (hPSC) were used for system modelling.

Results: The Mean Squared Error (MSE) function was used to assess system learning. System convergence was defined
at MSE < 0.001. The markers of human iPSC pluripotency (N = 15) were all upregulated in the aiPSC final model. These
upregulated/expressed genes in the aiPSC system were entirely consistent with results obtained for iPSCs.

Conclusion: This research introduces and validates the potential use of aiPSCs as computer models of human
pluripotent stem cell systems. Disease-specific aiPSCs have the potential to improve disease modeling, prototyping of
wet lab experiments, and prediction of genes relevant and necessary for aiPSC production and maintenance for both
common and rare diseases in a cost-effective manner.

Keywords: iPSCs, Cellular reprogramming, Machine learning, Neutrosophic and fuzzy cognitive maps, Recurrent neural
network, RNN

Background
Cellular reprogramming and modeling of human diseases
Advances in cellular reprogramming
The field of cellular reprogramming has evolved rap-
idly since mid-twentieth century. In the 1950s, the
earliest attempts of cloning used a frog embryonic
model [1]. Cloning was subsequently refined through
somatic cell nuclear transplantation (SCNT) of the
differentiated cells [2]. In the 1990s, advances in the
field continued to emerge and, following substantial
fine-tuning, led to successful cloning of the first
mammal (Dolly the sheep) [3]. More recently,

Yamanaka’s group showed that they could turn back
the differentiation clock of somatic fibroblasts, first in
mice [4], and then in humans [5, 6]. Their advance
was achieved through the induced overexpression of
just four key transcription factors (Oct4, Sox2, Klf4
and c-Myc) to generate embryonic stem-like cells,
which were later referred to as induced pluripotent
stem cells (iPSCs) [4–6]. In 2012, professor Yamanaka
won the Nobel prize for his contribution to the field
of cellular reprogramming and regenerative medicine.

Modeling human disease
Disease modeling is an essential tool to elucidate the mo-
lecular basis of numerous pathologies and enable develop-
ment of novel targeted therapies. Several approaches are
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currently used to model human disease, including culture
of primary patient-derived cells and over-expression of
transfected genes correlated with disease in pre-identified
cell culture lineage and/or animal models [7, 8]. However,
there are limitations associated with each of these
disease-modeling approaches. For example, the use of
primary human cells is limited by (1) access to donors,
especially in rare diseases (2) difficulty in gaining access to
cells from certain organs (e.g. neuronal and cardiac cells)
and (3) the short life span and/or ex vivo proliferative
capacity of these cells. Additionally, transgene over-ex-
pression does not faithfully reflect physiological and
pathological conditions. Finally, the differences between
animal and human genomes, physiology, and patterns of
gene expression make it challenging to translate findings
obtained from animal modeling to clinical settings [8–10].
Thanks to the development of iPSCs, it is now possible to
isolate somatic cells from patients and reprogram these
cells into almost any specific cell lineage with the desired
genetic background. The concept of “disease in a dish”
using iPSCs has created new opportunities for
experimentally-derived understanding of the underlying
mechanisms of disease leading to new targeted therapeutic
options. However, use of iPSC technologies has been suc-
cessful in modelling some diseases and not in others.

Deep-machine learning to enable efficient disease
modeling
iPSCs for modeling disease and current challenges −
Since the generation of iPSCs from human fibroblasts
[6], the technology has advanced rapidly. iPSC-based
disease models have been developed for numerous
diseases affecting different human systems, including
neurological, cardiovascular, hematological, metabolic,
epigenetic, telomere and mitochondrial diseases and
more [11–15]. Despite advances in iPSC technology, the
production of these iPSCs continues to be limited by the
lack of efficient induction protocols [16–18]. In fact, the
average efficiency of human pluripotent stem cell (PSC)
induction protocols ranges from 0.001–1.0% based on
reprogramming method and cell lineage and is usually
dependent on experimental conditions [16, 18]. Other
ongoing issues include cost/resource requirements and
tendency of iPSCs to return to the genetic makeup of
the original somatic cell type over time [19–21]. Such
limitations in the current cellular reprogramming
methods underscore the need for improved stem cell
generation strategies.

Deep-machine learning for efficient iPSC modeling
Elucidating the underlying mechanisms of cellular repro-
gramming is still at an early stage of understanding.
Nonetheless, extensive and ongoing research has pro-
duced new methods for improving the efficiency of iPSC

generation. For example, several studies have investi-
gated the effect of small molecules on the efficiency of
various PSC induction protocols. Others focus on evalu-
ating the association between the level of expressed
pluripotent transcription factors and the efficiency of
inducting protocols for PSCs [18, 22–24]. However,
there is increasing demand for fast, accurate, deep, and
cost-effective analytical approaches to effectively enable
iPSC-based model generation and subsequent modelling
of human diseases, including rare ones where access to
patient-derived primary somatic cells is very limited. In
this study, we introduce a novel unsupervised deep-ma-
chine learning platform, called DeepNEU, to simulate
iPSCs and enable efficient cellular reprogramming. We
have validated the DeepNEU platform extensively, as
presented in the current work. The platform has been
employed and validated by developing computer simula-
tions of three iPSCs models that were previously gener-
ated experimentally and published in the peer-reviewed
literature [6, 25–27]. Here we have generated models of
artificially-induced pluripotent stem cells (aiPSCs),
artificially-induced neural stem cells (aiNSCs) and
artificially-induced cardiomyocytes (aiCMCs). Addition-
ally, the aiNSC model has been used to successfully
simulate a rare neurological disorder, Rett syndrome,
that is caused by methyl-CpG-binding protein 2
(MeCP2) deficiency in about 80% of cases [28].

Results
DeepNEU platform specification
The DeepNEU database (Version 3.2) contains 3589
gene/proteins (~ 10% of the human genome) and 27,566
nonzero relationships resulting in a large amount of in-
formation flowing into and out of each node in the net-
work. On average, each node in the network has more
than 7 inputs and 7 outputs. An analysis of positive and
negative network connections revealed a bias towards
positive outputs. The pretest probability of a positive
outcome prediction is 0.66 and the pretest probability of
a negative prediction is therefore 0.34. This system bias
was used when applying the binomial test to all simula-
tion outcomes.

Simulation of the aiPSC model
Studies have shown that iPSCs express many factors that
are consistent with the signature of undifferentiated hu-
man ES cells. These factors include, OCT3/4, SOX2,
NANOG, growth and differentiation factor 3 (GDF3), re-
duced expression 1 (REX1), fibroblast growth factor 4
(FGF4), embryonic cell-specific gene 1 (ESG1/DPPA5),
developmental pluripotency-associated 2 (DPPA2),
DPPA4, and telomerase reverse transcriptase (hTERT)
[6, 29]. It is also noteworthy that expression levels of
OCT3/4, SOX2, NANOG, SALL4, E-CADHERIN and
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hTERT determined by western blotting and were similar
in iPSC and hESC [6].
In this study we have programmed DeepNEU to simulate

iPSCs (aiPSC) using defined sets of reprogramming factors.
We have turned on the key transcription factors that were
previously reported to induce pluripotency. Briefly, OCT3/
4, SOX2, KLF4 and CMYC were turned on [5].
The unsupervised aiPSC model converged quickly (18

iterations) to a new system wide steady state without
evidence of overtraining after 1000 iterations. The aiPSC
model expressed the same human ESC specific surface
antigens, including SSEA-3/4, tumor-related antigen
TRA-1-81, alkaline phosphatase (ALP) and NANOG
protein. The current aiPSC system did not implement
the tumor-related antigen TRA-1-60 and therefore it
could not be evaluated. Interestingly, all the above
mentioned undifferentiated ESC makers were also up-
regulated in the aiPSC model system. These ESC
markers studied in iPSC were also elevated in the aiPSC
model (Fig. 1). The probability that all (N = 15) pluripo-
tency outcomes were predicted by chance alone using
the binomial test is 0.002.
While the aiPSC model was not specifically designed

to evaluate embryoid markers-mediated differentiation,
it was possible to critically evaluate the same markers
examined in [6] that were used to confirm line specific
differentiation identified by immunocytochemistry and/
or RT-PCR by [6] and summarized in Table 1 below.
All these genes were expressed/up regulated in the

aiPSC system (Fig. 2). The probability that all (N = 14) of

the line specific differentiation outcomes were predicted
by chance alone using the binomial test is 0.003.

The aiNSC model
We next employed DeepNEU to generate the unsuper-
vised aiNSC model by turning off LET7 and turning on
SOX2 to convert human fibroblasts directly into induced
neural stem cells (iNSC) Yu et al. [27]. The unsupervised
aiNSC model converged quickly (15 iterations) to a new
system wide steady state without evidence of overtrain-
ing after 1000 iterations. Like the hiNSC cellular model,
the aiNSC simulation expressed several NSC specific
markers including PAX6, NESTIN, VIMENTIN and
SOX2 (Fig. 3). In addition, several microRNAs were also
evaluated by Yu et al, (2015). The authors determined
that the expression levels of miR-9-5p, miR-9-3p, and
miR-124 were upregulated in the hiNSCs, but other
miRNAs namely miR-302/miR-367 were not detected in
their system. In the aiNSC simulation, miR-9-5p was
also upregulated while miR-124 was down regulated.
Unlike the hiNSC, the aiNSC expressed miR-302/
miR-367 which were also “abundantly” expressed in
hESC (Fig. 4). miR-9-3p was not implemented in the
current version of the aiNSC simulation and therefore
could not be evaluated.
Next, Yu et al. [27] demonstrated that the hiNSC

could be differentiated into neurons, astrocytes and oli-
godendrocytes, the three main neural lineages. Immuno-
histochemistry was used to demonstrate the expression
of specific early neuronal markers including class III

Fig. 1 Expression of pluripotency factors by the aiPSC model. Unsupervised DeepNEU simulation of aiPSC model, which was experimentally
validated by [5]. The model converged after 18 iterations and expressed the same human ESC surface antigens and undifferentiated ECS markers
were also upregulated (N = 15, p = 0.002). Data are representative of three independent simulation experiments; error bars indicate ± SEM
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beta-tubulin (TUJ1/TUBB3), doublecortin (DCX) and
neuronal intermediate filaments. Cytokeratin 8 and 18
(CK8/CK18) were the neuronal intermediate fibers im-
plemented in the aiNSC while a-internexin was not im-
plemented in this version of the aiNSC. Several early
neuronal markers were also expressed by the aiNSC
simulation. Subsequently, the mature neuronal marker,
MAP2; the dopaminergic and noradrenergic neuron
marker, tyrosine hydroxylase (TH); the cholinergic
neuron marker, choline acetyltransferase (ChAT); the

astrocyte marker, Glial fibrillary acidic protein (GFAP);
and the oligodendrocyte marker, OLIG2 were all
expressed in the aiNSC simulation (Fig. 5). The O4
oligodendrocyte marker was not implemented in this
version of the aiNSC. The probability that 16 of the 17
(94.12%) neuronal marker expression outcomes were ac-
curately predicted by chance alone using the binomial
test is 0.0075.
Takahashi et al. [5, 6] also directed differentiation of

hiPSC into neural cells. Immunocytochemistry was used
to confirm expression of TH and TUBB3 by differentiat-
ing cells. PCR analysis revealed expression of dopamin-
ergic neuron markers, dopa-decarboxylase (AADC) and
member 3 (DAT); ChAT; LIM homeobox transcription
factor 1 beta (LMX1B); and the mature neuron marker,
MAP2. However, the astrocyte marker, GFAP was not
expressed in their system. All markers identified by
Takahashi et al. [5, 6] plus GFAP were expressed in the
aiNSC simulation (Fig. 6). The probability that these
neuronal marker expression outcomes (N = 8) were pre-
dicted by chance alone using the binomial test is 0.036.

The aiCMC (cardiomyocyte) model
A protocol adding Activin A and member of the bone
morphogenetic protein 4 (BMP4) to the generation of
generic aiPSC resulted in an aiCMC model that converged
after 15 iterations without evidence of overtraining after

Table 1 Embryoid markers-mediated differentiation expressed
by aiPSCs

Ectodermal markers
(N = 4)

Mesodermal
markers (N = 6)

Endodermal
markers (N = 5)

bIII-tubulin (TUBB3) alpha-smooth muscle
actin (a-SMA)

forkhead box A2
(FOXA2)

Glial fibrillary acidic protein
(GFAP)

desmin, alpha-
fetoprotein (AFP)

AFP

Microtubule-associated
protein 2 (MAP2)

vimentin mesoderm cytokeratin 8/18
(CK8/CK18)

Apaired box 6 (PAX6) vimentin parietal
endoderm

SRY-box containing
gene 17 (SOX17)

BRACHYURY

Msh homeobox 1
(MSX1)

Fig. 2 Differentiation potential of the aiPSC model. Embryonic markers-mediated differentiation were predicted to be expressed by aiPSC model
as shown experimentally by [5]. Total of (N = 14) embryonic differentiation markers were expressed by aiPSC. Specifically, (N = 4) ectodermal
markers, (N = 6) Mesodermal markers and (N = 5) endodermal markers (p = 0.003). Data are representative of three independent simulation
experiments; error bars indicate ± SEM
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1000 iterations. Takahashi et al. [5, 6] used a similar proto-
col to successfully direct the differentiation of hiPSC into
clumps of beating cells. RT-PCR showed that these cells
expressed cardiomyocyte markers including troponin T
type 2 cardiac (TnTc); myocyte enhancer factor 2C

(MEF2C); regulatory myosin light polypeptide 2A
(MYL2A); myosin, heavy polypeptide 7 cardiac muscle
beta (MYHCB); and NK2 transcription factor-related
locus 5 (NKX2.5) [6]. All the cardiomyocyte markers
above were also expressed by the aiCMC system (Fig. 7).

Fig. 3 Expression of NSC markers by aiNSC. Unsupervised DeepNEU simulation of aiNSC model, which was experimentally validated by [27]. The
model converged after 15 iterations and expressed NSC specific markers PAX6, NESTIN, VIMENTIN and SOX2. (N = 15, p = 0.002). Data are
representative of three independent simulation experiments; error bars indicate ± SEM

Fig. 4 Expression of several miRNAs by aiNSC. aiNSC model also expressed several microRNAs, which were also evaluated by Yu et al, (2015). The
expression levels of miR-9-5p, miR-302 and miR-367 were upregulated, but miR-124-1 was downregulated in aiNSC. (N = 15, p = 0.002). Data are
representative of three independent simulation experiments; error bars indicate ± SEM

Danter Orphanet Journal of Rare Diseases           (2019) 14:13 Page 5 of 13



Fig. 5 Expression of neuronal specific markers by aiNSC. Several early neuronal markers were expressed by the aiNSC simulation. Namely,
CK18/K18, MAP2, TUBB3, DCX/Doublecortin, CK8/K8, TH, ChAT, and OLIG2 were all expressed in the aiNSC simulation. The probability
that 16 of the 17 (94.12%) neuronal marker expression outcomes were accurately predicted by chance alone using the binomial test is
(p = 0.0075). Data are representative of three independent simulation experiments; error bars indicate ± SEM

Fig. 6 Neuronal Markers identified by Takahashi et al., (2007) and expressed by aiNSC. All markers identified in hNSC by Takahashi et al (2007) in
addition to GFAP were also predicted to express in aiNSC model. (N = 8, p = 0.036). Data are representative of three independent simulation
experiments; error bars indicate ± SEM
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Five additional cardiomyocyte markers identified in [30]
including, GATA-4, Isl-1, Tbx-5, Tbx-20 and cardiac
Troponin I were also expressed by the aiCMC system.
The probability that the cardiomyocyte marker expression
outcomes (N = 10) were predicted by chance alone using
the binomial test is 0.016.

An aiNSC for simulating Rett syndrome (MeCP2
deficiency)
Finally, we have used our unsupervised aiNSC model
that was validated based on the Yu et al. [27] recipe
for direct conversion of human fibroblasts to iNSC
with the gene MeCP2 locked off to simulate a Rett
syndrome neuron. The model converged quickly (15
iterations) to a new system wide steady state without
evidence of overtraining after 1000 iterations. The ac-
tual Rett neuron(s) generated and evaluated in [26]
had the following gene expression profile. The upreg-
ulated genes were Brain-derived neurotrophic factor
(BDNF), FKBP5, Insulin-like growth factor II (IGF2),
Distal-Less Homeobox 5 (DLX5), Distal-Less Homeo-
box 6 (DLX6), Serine/threonine-protein kinases 1
(SGK1), Membrane Palmitoylated Protein 1 (MPP1),
Guanidinoacetate N-Methyltransferase (GAMT) and
Gene coding Phospholemman (FXYD1) while genes
Ubiquitin-protein ligase E3A (UBE3A) and Glutamate
Ionotropic Receptor Delta Type Subunit 1 (GRID1/
GluD1) were both downregulated. All up and down gene
regulation predictions from the aiNSC-Rett neuron simu-
lation were correct and these data are presented in
[26](Fig. 8). The probability that all (N = 11) of the Rett

neuron specific outcomes were predicted by chance alone
using the binomial test is 0.01.

Discussion
The use of hSCs in medicine is limited by the abun-
dance of/accessibility to somatic cells from a donor
and histocompatibility Issues with donor/recipient
transplants. These two factors largely determine the
reliability of hSCs for drug development and develop-
mental studies. Nevertheless, the development of
iPSCs from donor somatic cells has proven to be
somewhat successful. Issues of histocompatibility with
donor/recipient transplants that have been reported
with hESCs and adult stem cells (ASCs) can be
avoided. Additionally, information gathered from the
reprogramming process that results in iPSCs is very
promising for drug development research of rare dis-
eases and developmental studies [31]. Unfortunately,
the application of iPSCs is also hindered by the highly
variable efficiency of SC induction protocols and the
significant costs that leads to uncertainty because of
reduced reproducibility and long-term maintenance of
iPSCs. In this study, we introduced an efficient, ac-
curate, cost-effective and highly customizable compu-
tational platform to enable aiPSC model generation.
An increasing number of studies have employed

computational, statistical, and mathematical ap-
proaches for modelling and analyzing the underling
factors that regulate cellular reprogramming. These
efforts have largely focused on specific elements of
cellular reprogramming. Examples of this previous

Fig. 7 Expression of cardiomyocyte markers by aiCMC. Unsupervised DeepNEU simulation of aiCMC model, which was experimentally validated
by [30]. The model converged after 15 iterations and expressed iCMC specific markers consistent with [30]. (N = 10, p = 0.016). Data are
representative of three independent simulation experiments; error bars indicate ± SEM
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work include, (1) a Bayesian network model (i.e., a
probabilistic model) provided conditional analysis of
random signaling network interactions [32], (2) a
Boolean network model (i.e., a quantitative model)
was used to study the logical interactions of network
components [33], (3) a multi-scale model, in which a
framework of combined algorithms was used to math-
ematically predict effects of factors/genes on other
factors/genes [34], (4) a clustering algorithm, in which
multiple algorithms were used to organize data points
into groups that share certain similarities to enable
mathematical modeling and simulation of cellular
events [35] and (5) a Support Vector Machine learn-
ing model (SVM), in which a fully supervised compu-
tational approach was used to classify datasets into
pre-defined categories to enable phenotypic profiling
of cellular subsets [36, 37]. A more in-depth review
of computational tools used in stem cell research has
been published recently [38].
Unlike previous and largely supervised models focused

on various aspects of cellular reprogramming, the un-
supervised DeepNEU platform provides a novel high di-
mensional and nonlinear approach for simulating simple
aiPSCs, and to qualitatively assess stem cell regulatory
mechanisms and pathways using a literature validated
set of reprogramming factors in the context of a fully
connected hybrid RNN. Once validated with the results
of peer reviewed wet-lab experiments, DeepNEU aiPSC
models provide an efficient, programmable, and
cost-effective tool for empowering rare disease and other
researchers.

In this research work, the performance of the DeepNEU
platform (Version 3.2) was evaluated extensively
through simulation of several experimentally validated
iPSC models including iPSCs, iNSCs, iCMCs and a
Rett syndrome model using aiNSC with MeCP2
deficiency.
DeepNEU simulation of aiPSCs showed that the

gene expression profiles of the simulated cells were
consistent with that of iPSCs. aiPSCs express many
factors that are consistent with the signature of undif-
ferentiated human ES cells. These factors include,
OCT3/4, SOX2, NANOG, growth and differentiation
factor 3 (GDF3), reduced expression 1 (REX1), fibro-
blast growth factor 4 (FGF4), embryonic cell-specific
gene 1 (ESG1/DPPA5), developmental pluripotency-
associated 2 (DPPA2), DPPA4, and telomerase reverse
transcriptase (hTERT) [6, 29]. Additionally, the un-
supervised DeepNEU successfully simulated embryoid
body-mediated differentiation (see Table 1) to confirm
line specific differentiation identified by immunocyto-
chemistry and/or RT-PCR in Takahashi et al. [5, 6].
The unsupervised aiNSCs model (Fig. 3) showed that

the gene/protein expression profile was consistent with
the hiNSC cellular model. The aiNSC simulation also
expressed several NSC specific markers including PAX6,
NESTIN, VIMENTIN and SOX2.
In the study conducted by Yu et al. [27] the expression

levels of miR-9-5p, miR-9-3p, and miR-124 were upregu-
lated in the hiNSCs but other miRNAs, namely
miR-302/miR-367, were not detected in their system.
Interestingly in our simulated aiNSC model miR-9-5p

Fig. 8 Expression profile of RETT neuron by aiNSC. Unsupervised aiNSC model was programmed with the gene MeCP2 locked off to simulated
RETT syndrome. The model converged after 18 iterations to generate RETT neuron as reported in [26]. Specifically, BDNF, FKBP5, IGF2, DLX5, DLX6,
SGK1, MPP1, GAMT and FXYD were upregulated, while genes UBE3A and GRID1/GluD1 were both downregulated. (N = 11, p = 0.01). Data are
representative of three independent simulation experiments; error bars indicate ± SEM
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was also upregulated while miR-124 was downregulated.
Unlike the hiNSC, the aiNSC expressed miR-302/
miR-367 which were also “abundantly” expressed in hu-
man embryonic stem cells (hESC) (Fig. 4).
On the other hand, PCR analysis revealed expression of

dopaminergic neuron markers, dopa-decarboxylase
(AADC) and member 3 (DAT); ChAT; LIM homeobox
transcription factor 1 beta (LMX1B); and the mature
neuron marker, MAP2 (Takahashi et al, 2007). How-
ever, the astrocyte marker, GFAP was not expressed
in their system. All markers identified by Takahashi et
al. [5, 6] plus GFAP were expressed in the aiNSC
simulation (Fig. 6).
All the cardiomyocyte markers that were reported to

be expressed by iCMCs were also expressed in the un-
supervised aiCMC system (Fig. 7) entirely consistent
with the data provided by Takahashi et al. [5, 6]. Five
additional cardiomyocyte markers identified in Rajala et
al. (2012) including GATA-4, Isl-1, Tbx-5, Tbx-20 and
cardiac Troponin I were also expressed by the aiCMC
system.

DeepNEU to simulate rare disease− aiNSC for simulating
RETT syndrome (MeCP2 deficiency)
To validate DeepNEU platform efficiency in modeling a
rare disease (RETT syndrome) was simulated using the
aiNSC protocol with the MeCP2 gene locked off. Inter-
estingly, the upregulated genes were BDNF, FKBP5,
IGF2, DLX5, DLX6, SGK1, MPP1, GAMT and FXYD1
while genes UBE3A and GRID1/GluD1 were both down-
regulated. All up and down regulated genes in the
aiNSC-RETT neuron simulation are entirely consistent
with the expression data presented in Ehrhart et al. [26]
(Fig. 8).
To the best of our knowledge, this is the first-time

computer simulations of intact and functioning iPSC
have been successfully used to accurately reproduce the
landmark experimental results reported by Takahashi et
al. (2007) and other studies cited above. The technology
itself has limited overlap with some features of neutro-
sophic cognitive maps, evolutionary systems, neural net-
works and SVM applied to create a novel unsupervised
machine learning platform. The papers referenced above
were the source for the reprogramming and media fac-
tors used to construct the input vector for the simula-
tions. These papers were also used here to validate in an
unsupervised manner the genotypic and phenotypic out-
put features of the simulation at the new stable state.

Conclusion/Significance
Stem cell research will inevitably be transformed by
computer technologies. The results of the initial Deep-
NEU project indicate that currently available stem cell
data, computer software and hardware are sufficient to

generate basic artificially induced pluripotent stem cells
(aiPSC). These initial DeepNEU stem cell simulations
accurately reproduced gene and protein expression re-
sults from several peer reviewed publications.
The application of this computer technology to gener-

ate disease specific aiPSCs has the potential to improve
(1) disease modeling, (2) rapid prototyping of wet lab ex-
periments, (3) grant application writing and (4) specific
biomarker identification in a highly cost-effective man-
ner. Further development and validation of this promis-
ing new technology is ongoing with the current focus on
modelling rare genetic diseases.

Methods
DeepNEU platform: We have developed a novel and
powerful deep-machine learning platform employing a
fully-connected recurrent neural network (RNN) archi-
tecture, in which each of the inputs is connected to its
output nodes (feedforward neurons) and each of the out-
put nodes is also connected back to their input nodes
(feedback neurons). There are at least two major benefits
of using this network architecture. First, RNN can use
the feedback neurons connections to store information
over time and develop “memory”. Second, RNN net-
works can handle sequential data of arbitrary length
[39]. For example, RNN can be programmed to simulate
the relationship of a specific gene/protein to another
gene/protein (one to one), gene/protein to multiple
genes/proteins (one to many), multiple genes/proteins to
one gene/protein (many to one) and multiple genes/pro-
teins to different multiple genes/proteins (many to
many). Our novel RNN DeepNEU network was devel-
oped with one network processing layer for each input
to promote complex learning and analysis of how differ-
ent genes and pathways are potentially regulated in em-
bryonic and reprogrammed somatic cells in key
signaling pathways. Here we have used DeepNEU to
simulate aiPSCs by using defined sets of reprogramming
factors (genes/proteins were turned on or off based on
the modeled iPSCs).

Dataset
We have incorporated into the DeepNEU database key
genes/proteins that were reported to be involved in
regulating and maintaining signaling pathways in human
embryonic stem cells (hESCs) and induced human pluri-
potent stem cells (hiPSCs). We have gathered genes/pro-
teins based on literature reports that extensively studied
cellular pathways of hESC and/or hiPSC [40–49].
Abundant data were available. For example, a PubMed
(PMC) search of the literature with “stem cells” returned
more than 435,000 hits. A more focused query using
“stem cell signaling”, returned more than 261,000 hits.
Nevertheless, data that were included in the DeePNEU
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database were selected with a preference for (1) human
stem cell data, (2) recency of peer reviewed English
language publications and (3) highest impact factors of
the journals under consideration.
To that end, the data was used to create a list of im-

portant genes/proteins (data not shown) based on their
documented contributions to human stem cell signaling
pathways. The current version of the database includes
3589 gene/protein (inputs) involved in hESC cellular
pathways and 27,566 gene/protein regulatory relation-
ships important in hESC that were used for aiPSC
system modelling. Importantly, this simple data repre-
sentation permits complex relationships including both
positive and negative feedback loops that are common
in biological systems.

Entry of data to DeepNEU database
All data (genes/proteins, and relationships) were entered,
formatted and stored as a large CSV (comma separated
values) file in Delimit Professional (v3.7.5, Delimitware,
2017). This database manager was chosen because it can
efficiently handle very large CSV files where data can be
represented as an NxN (an array of values with N rows
and N columns) relationship matrix. In addition, built-in
data entry and file scan functions help to ensure and
maintain data integrity. This software can also import
and export multiple data file types facilitating two-way
interaction with a wide range of data analysis tools.
Finally, the software scales easily to NxN or NxM (an
array of values with N rows and M columns) databases
having millions of rows and columns (http://delimitwar-
e.com, 2017).

DeepNEU platform
The DeepNEU platform uses a novel, but powerful neu-
trosophic logical (NL) framework to represent relation-
ships between signaling genes/proteins. NL was
originally created by Florentin Smarandache in 1995. In
NL, every logical variable X is described by an ordered
triple, X = (T, I, F) where T is the degree of truth, “I” is
the degree of indeterminacy, and F is the degree of false.
The strength of any relationship can have any real value
between − 1 and + 1 or “I” if the relationship is consid-
ered indeterminate. Positive or stimulatory causal rela-
tionships are represented by + 1 in the database unless
there is a fractional value > 0 and < = + 1. Similarly,
negative or inhibitory causal relationships are
represented by − 1 in the database unless a fractional
value < 0 and > = − 1 is provided. Relationships are con-
sidered indeterminate and represented by an “I” if mul-
tiple sources report conflicting data or if the relationship
is labelled with a question mark in an associated process
flow diagram. A value of zero is used when no relation-
ship between nodes is known or suspected [50]. NL is

an extension and generalization of Fuzzy Logic and can
be easily converted by replacing all indeterminate (I) re-
lationships with zeros (i.e. by assuming there is no causal
relationship).

DeepNEU network architecture
The NxN relationship matrix is the core data for an un-
supervised fully-connected RNN. A learning system is
referred to as supervised when each data pattern is asso-
ciated with a specific numerical (i.e., regression) or cat-
egory (i.e., classification) outcome. Unsupervised
learning is used to draw inferences from datasets con-
sisting of input data patterns that do not have labeled
outcomes [50]. DeepNEU is a complex learning system
in that every (gene/protein) node in the multilayered
network is connected to every other node in the net-
work. Traditional neural networks have one or a few
hidden or processing layers between the input layer and
the output layer. Advanced deep-learning neural net-
works can have more than a dozen processing layers [51,
52]. DeepNEU has one processing layer for each input
variable. Taken together, the input variables and their
declared initial values constitute an N-dimensional initial
input vector. Vector-Matrix multiplication uses this
N-dimensional input vector and the NxN relationship
matrix to produce an N-dimensional output or new state
vector. The new state vector becomes the new input
vector for the next iteration and this iterative process
continues until a new system wide steady state is
achieved. In general terms, the DeepNEU network archi-
tecture is similar to Neutrosophic and Fuzzy Cognitive
Maps (NCMs/FCMs; used to represent causal relation-
ship between concepts (genes/proteins)) which are also
examples of fully-connected and recurrent neural net-
works [53, 54].

The DeepNEU simulations
The initial goal of this project was to first create a com-
puter simulation of a hiPSC and then validate the model
using the results published by Takahashi et al. in 2007
and others as described above. Briefly, the input or initial
state vector of dimension N was set to all zeros except
for transcription factors OCT3/4, SOX2, KLF4 and
CMYC. These four factors were given a value of + 1 in-
dicating that they were turned on for the first iteration.
These values were not locked on so that all subsequent
values were determined by system behavior.

DeepNEU simulation protocol

1. The machine learning process began with vector
matrix multiplication (VMM). The NxN
relationship matrix was multiplied by the “N”-
dimensioned input vector with OCT3/4, SOX2,
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KLF4 and CMYC turned on. Both the input vector
and relationship matrix are comprised mostly of
zeros. The input vector and relationship matrix
were both considered to be sparse. To minimize the
computational burden, sparse vector matrix
multiplication algorithms were employed at each
iteration during model generation.

2. At each iteration the sparse VMM operation
produces an “N”-dimensional output vector with
variable components many of which have large
positive or negative values. To avoid computational
explosion a squashing or activation function was
used to map these values between a minimum of −
1 and a maximum of + 1. After initial evaluation of
several activation functions, the Elliott function was
selected based on rapidity of system convergence
and outcome reproducibility [55]. At the end of the
activation process, the squashed N-dimensional
output vector becomes the new input vector for the
next iteration. This cycle is repeated until system
convergence occurs indicating that a new system
wide steady state has been achieved.

3. The goal of the learning system is to minimize
error. In this case the error being considered is the
mean squared error (MSE) between a given output
vector and the previous output vector. During
model development several error functions
including adjusted R2, SVM/Vapnik loss and MSE
were evaluated. The MSE function was selected
because its’ use consistently resulted in faster
system convergence and more reproducible results.
While the MSE function has been widely used it
has also been widely criticized because the function
can perform poorly due to squaring in the presence
of outliers. In the current project, the error
function was applied after the raw system output
was “squashed” between values of − 1 and + 1 using
a sigmoid type function. This squashing effectively
mitigates the problem of potential outliers. As
learning continues the MSE converges towards
zero. For this project system convergence was
defined at MSE < 0.001 and model generation stops.
The system output is then saved as a CSV data file
for further analysis.

4. The final output from the aiPSC model regarding
the expression or repression of genes and proteins
was directly compared with published expression
profiles [6]. Model prediction values > 0 were
classified as expressed or upregulated while
values < 0 were classified as not expressed or
downregulated. Statistical analysis of the aiPSC
predictions and the published data used the
Binomial Test. This test provides an exact
probability, can compensate for prediction bias and

is ideal for determining the statistical significance of
experimental deviations from an actual distribution
of observations that fall into two outcome
categories (e.g., agree vs disagree). A p-value < 0.05
is considered significant and is interpreted to
indicate that the observed relationship between
aiPSC predictions and actual outcomes is unlikely
to have occurred by chance alone.
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