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Abstract
In stroke imaging, CT angiography (CTA) is used for detecting arterial occlusions. These images could also provide infor-
mation on the extent of ischemia. The study aim was to develop and evaluate a convolutional neural network (CNN)–based 
algorithm for detecting and segmenting acute ischemic lesions from CTA images of patients with suspected middle cerebral 
artery stroke. These results were compared to volumes reported by widely used CT perfusion–based RAPID software (Ische-
maView). A 42-layer-deep CNN was trained on 50 CTA volumes with manually delineated targets. The lower bound for 
predicted lesion size to reliably discern stroke from false positives was estimated. The severity of false positives and false 
negatives was reviewed visually to assess the clinical applicability and to further guide the method development. The CNN 
model corresponded to the manual segmentations with voxel-wise sensitivity 0.54 (95% confidence interval: 0.44–0.63), 
precision 0.69 (0.60–0.76), and Sørensen–Dice coefficient 0.61 (0.52–0.67). Stroke/nonstroke differentiation accuracy 0.88 
(0.81–0.94) was achieved when only considering the predicted lesion size (i.e., regardless of location). By visual estimation, 
46% of cases showed some false findings, such as CNN highlighting chronic periventricular white matter changes or beam 
hardening artifacts, but only in 9% the errors were severe, translating to 0.91 accuracy. The CNN model had a moderately 
strong correlation to RAPID-reported Tmax > 10 s volumes (Pearson’s r = 0.76 (0.58–0.86)). The results suggest that detect-
ing anterior circulation ischemic strokes from CTA using a CNN-based algorithm can be feasible when accompanied with 
physiological knowledge to rule out false positives.
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Introduction

Applying artificial intelligence in medical research has 
experienced an exponential growth in interest over the past 
decades [1]. With its surging role in computer vision, deep 
convolutional neural networks (CNNs) hold promise for 
aiding physicians achieve an accurate imaging diagnosis 
and through automation facilitate screening efforts [2]. The 

general principle behind CNNs is to learn, without feature 
engineering, complex mappings from a data organized in 
a grid pattern (e.g., a 2D or 3D image) to a desired output 
(e.g., a segmentation, detection, diagnosis, or prognosis). 
Deep CNNs have been demonstrated to be well suited for 
many tasks in radiology [3], including stroke imaging [4]. 
Stroke, of which 87% are ischemic, is one of the leading 
causes of death and long-term disability [5]. Urgent imaging 
by novel state of the art computed tomography (CT) scan-
ners and well-timed treatment of acute ischemic stroke (AIS) 
will reduce the burden of disease [6]. AIS imaging is a prime 
candidate for machine learning where improvements in diag-
nostic accuracy could directly lead to an improved quality 
of acute patient care [7]. Among other machine learning 
techniques, deep CNNs have been applied to single- and 
multi-contrast anatomical magnetic resonance (MR), dif-
fusion-weighted imaging, MR perfusion, non-contrast CT, 
CT perfusion (CTP), and CT angiography (CTA) images for 
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ischemic and hemorrhagic stroke lesion segmentation and 
vessel occlusion detection and in predicting endovascular 
therapy outcome and tissue fate [8–16]. As shown in a pre-
ceding paper, a CNN model is feasible in detecting ischemic 
parenchymal regions associated with acute thrombosis of the 
middle cerebral artery (MCA) in CTA images [17]. In addi-
tion to the published studies, several commercial solutions 
have been made available based on similar methods [18].

In this study, a CTA-based, hemispheric asymmetry 
aware, 42-layer-deep CNN model was developed, and its 
performance was compared to a commercial CTP-based 
software RAPID (iSchemaView, Menlo Park, California, 
USA). RAPID is an automated system using deconvolution 
of tissue and arterial signals to provide separate volume 
estimates for the ischemic penumbra (based on the time 
until the residue function reaches its peak, Tmax) and the 
ischemic core (cerebral blood flow < 30% of that in normal 
tissue) [19]. The performance of RAPID has been evalu-
ated in earlier studies by comparing RAPID CTP analysis 
to diffusion–perfusion mismatch and prediction of final 
infarct volume from MR images [20]. The proposed deep 
CNN model does not process any CTP or MR diffusion data, 
providing an alternative with higher resolution and smaller 
ionizing radiation dose compared to CTP. The advantage of 
CT-based methods in general is that they are faster and more 
widely available than MRI in the emergency setting. Moreo-
ver, CTA is routinely acquired to detect large vessel occlu-
sions, and the ischemic regions are not typically evaluated 
from these images. The proposed method could complement 
perfusion analysis (e.g., in cases where the perfusion study 
is non-diagnostic) without changes to the existing imaging 
protocols.

The aims of this feasibility study were to (1) evaluate the 
proposed CNN model trained on a small data set and com-
pare the ischemic stroke lesion estimates to RAPID-reported 
volumes, (2) review false positive and false negative findings 
to guide the future development of the method, (3) investi-
gate suitability for small lesion detection by determining 
how the detected lesion (or false positive) volumes com-
pared to the initial stroke diagnosis, and (4) fully automate 
the workflow.

Materials and Methods

Image Acquisition and Patient Cohort

A total of 150 patients with a suspected AIS of the MCA 
were retrospectively selected for this study. Inclusion cri-
teria were that the CT study needed to have a diagnostic 
CTA volume. In the cohort, 75 were diagnosed with stroke 
(age 39 to 95 years, median 69 years; 41% female) and 75 
were stroke-negative (26 to 91 years, median 66 years; 56% 

female) based on acute neurological symptoms and imaging 
findings. Ethics committee approved this retrospective study, 
and patients’ informed consent was waived. All patients 
were imaged on a SOMATOM Definition Edge (Siemens 
Healthineers, Erlangen, Germany) 128-slice CT scanner 
using a CT stroke protocol previously described in [17]. The 
methods described below were based on the head portion 
of the routinely acquired single-phase CTA image volume. 
The original source images had 512 × 512 matrix size; the 
pixel resolution varied from 0.32 × 0.32 to 0.58 × 0.58 mm/
px with 0.5 mm spacing between slices and 16-bit unsigned 
integer data type. Head portion of the volume was defined 
as the region starting from the most superior slice where the 
skull was present and extending to the slice located 175 mm 
in the inferior direction.

The patients were divided into four groups: train, valida-
tion, test set A, and test set B (Fig. 1). Train data consisted of 
20 stroke and 20 nonstroke cases. Validation data consisted 
of five stroke and five nonstroke cases. Both test data sets 
(set A and set B) consisted of 25 stroke and 25 nonstroke 
cases. High-quality manual segmentations of ischemic 
changes visible in the CTA were considered the ground 
truth for CNN training. The CTP study results were available 

Hyper-parameter optimization

Train data

20 S†

Full training and early stopping

20 NS

Validation data

5 S† 5 NS

Voxel-wise performance metrics

Test data set A

25 S†

False findings analysis

25 NS

Test data set B

25 S 25 NS

RAPID vs. CNN lesion volume comparison

S = Stroke, NS = Nonstroke
† Manually delineated infarct lesion ROIs

Fig. 1   A total of 150 subjects (75 stroke and 75 nonstroke) were 
divided into four data sets: train, validation, and test sets A and B. 
Test set A was used in reporting voxel-wise performance relative to 
the manually drawn lesions. Both test data sets were used for false 
findings assessment and estimating reliable lesion detection size. 
The stroke-positives in the test sets were used in comparing the CNN 
results to the RAPID analysis
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during segmentation. Lesions were manually drawn for the 
stroke-positive train, validation, and test set A cases. Due 
to time consuming nature of manual processing, an expan-
sion to the test data (set B) did not include manual lesion 
delineations. RAPID analysis results were recorded for the 
stroke cases in the test sets A and B. Test set A was used in 
evaluating the CNN’s voxel-wise performance against expert 
lesion delineations. The full (A and B) test set was used for 
estimating the network’s stroke/no stroke detection accuracy. 
Manual lesion delineations were made on 3D Slicer image 
processing platform version 4.8.1 [21] in concurrence by a 
senior neuroradiologist with over 20 years and a radiologist 
with 7 years of experience.

Data Processing

A CNN model for ischemic stroke lesion segmentation was 
developed. A CTA image volume input was preprocessed 
prior to feeding into the network. First, the head region was 
extracted from the volume and background air was excluded 
from the training and performance evaluations. The volumes 
were resampled to uniform 0.5 × 0.5 × 0.5 mm/px resolution. 
The image pixel values were shifted and rescaled so that 
the 30 to 60 HU range was normalized to − 1 to 1. A sec-
ondary image volume was created by left–right flipping a 
copy of the original image. The flipped and original image 
volumes were first aligned by a coarse rigid co-registration 
followed by a non-rigid registration using elastix toolbox 
version 4.9.0 [22, 23]. The resulting two volumes, i.e., the 
original and the “flipped and co-registered,” were the two 
CNN input channels. This guided the network to utilize 
image information from the matching contralateral side for 
healthy tissue/lesion classification. The main parameters of 
the non-rigid B-Spline transform–based registration were as 
follows: adaptive stochastic gradient descent optimizer with 
Mattes mutual information metric, four resolution levels, 
2048 spatial samples, 16-mm grid spacing, maximum num-
ber of iterations 500, and 32 histogram bins. The non-rigid 
registration allowed more accurate matching of the cortical 
regions than simple rigid registration by properly aligning 
the (possibly asymmetric) cranial walls between the image 
volumes. Image operations such as type conversions, flip-
ping, and resampling were done using Convert 3D (part of 
ITK-SNAP toolkit) version 1.1.0 [24]. The co-registered 
image volumes were split into matching sub-volume pairs 
which were fed into the CNNs during training or inference.

A CNN was trained in two phases. First, the architecture 
was decided based upon validation performance, followed 
by full training until validation loss stopped improving. The 
CNN hyper-parameter optimization consisted of selecting 
the network depth and width, i.e., the number of layers and 
the number of filters used in the convolutional layers. The 
search was performed by training eight neural networks on 

a partial training data set A, i.e., with nonstrokes omitted 
to save computation time. The networks comprised of C 
(C = 10, 20, 30, or 40) convolutional layers with F (F = 8, 
or 16) filters in each layer, followed by one fully connected 
(i.e., 1 × 1 × 1 convolutional) layer with 50 filters, and a fully 
connected two-output layer with softmax activation. Skip 
connections with concatenations were added over most of 
the convolutional layers to assist gradient backpropaga-
tion (see details in Fig. 2). Training was halted at the epoch 
where validation loss plateaued. The lowest validation loss 
was seen with the deepest and widest network that was tested 
(C = 40, F = 16). This network was therefore selected as the 
basis for the rest of the study. This final 42-layer network 
architecture was then retrained using the full training data 
set of 20 stroke and 20 nonstroke cases for 30 epochs after 
which no further improvement was seen in the validation 
loss. The networks were implemented in Python 3.5 with 
Keras library version 2.2.4 [25] on top of Tensorflow version 
1.12.0 [26]. Adam optimizer with default parameters with 
learning rate of 10−4 was used with cross-entropy loss func-
tion. The class imbalance was mitigated by including equal 
number of stroke-lesion-positive and stroke-lesion-negative 
sub-volumes in each mini-batch. In the final training dataset, 
after air regions were excluded, approximately 3000 positive 
(lesion) and 71,000 negative (no lesion) patches were pre-
sent. An epoch was considered when all the positive samples 
were seen once with a matched number of negative patches. 
These translated to each epoch consisting of 750 iterations 
with four positive and four negative patches per minibatch.
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Fig. 2   The final patch-based neural network architecture with 3D 
convolutional layers (Conv) and skip connections. Input during train-
ing: preprocessed two-channel 107 × 107 × 107 voxel sub-volumes 
with mini-batch size eight. Conv 3 × 3 × 3: kernel size 3 × 3 × 3, 16 
filters, valid padding, and exponential linear unit activation; curved 
arrows: skip connection with cropping by one voxel on each side; 
concatenate: concatenating the outputs of the two preceding layers’ 
outputs; Conv 1 × 1 × 1 (50 filters): 1 × 1 × 1 convolution with 50 fil-
ters and rectified linear unit activation; Conv 1 × 1 × 1 (2 filters): the 
output layer with two filters (background and lesion) and softmax 
activation. Due to valid padding, the output dimensions for each indi-
vidual patch were 26 × 26 × 26 voxels. When performing inference, 
the patches were stitched together to form a seamless lesion predic-
tion map the size of the input CTA image volume. The total number 
of trainable parameters was 528,000
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A proof-of-concept automatic image processing pipeline 
was developed [27]. The system receives a CTA series from 
a scanner or PACS into DICOM image storage (DCMTK; 
OFFIS, Berlin, Germany). The pipeline waits the completion 
of the image transfer, verifies images according to DICOM 
header rules (Python pydicom library; https://​pydic​om.​github.​
io), and ensures that the received series form a valid 3D vol-
ume. Then, it adds the CTA series into a processing queue 
database (SQLite database accessed using SQLAlchemy 
library; https://​www.​sqlal​chemy.​org). In the processing steps, 
the images are converted into NifTI file format (SimpleITK; 
https://​simpl​eitk.​org) followed by pre-processing, neural net-
work inference, post-processing, and conversion back into 
secondary capture DICOM files. These are then transferred 
into PACS or a workstation. The general overview of the pipe-
line and the processing steps are shown in Fig. 3.

The CNN model produces classification confidence esti-
mates (probabilities) for each voxel. A color map called 
“Plasma” by Smith and van der Walt [28] was chosen for 
visualizing the lesion probabilities. The map is perceptually 
uniform, and fairly intuitive, starting from dark blue and end-
ing in bright yellow. It avoids the black–gray–white color spec-
trum of conventional CT images and is therefore well-suited 
for image fusion. Predicted values above 0.5 are visible, but the 
dynamic range in the mid-region of the remaining probabilities 
is enhanced: the color map range was defined by taking 0.05 
and 0.95 quantiles of the predicted probabilities (with lower-
bound cut-off ≥ 0.5) in the validation data lesion ROIs.

Performance Evaluation

Voxel-wise precision, sensitivity, and Sørensen–Dice coefficient 
between the predicted and manually drawn lesions were calcu-
lated for test set A. Due to high class imbalance (the total num-
ber of no-lesion voxels outnumbered the lesion voxels sixty to 

one), measures such as accuracy and specificity were undescrip-
tive of the true performance. Predicted lesion volumes were cal-
culated using a probability threshold of ≥ 0.5 and excluding con-
tinuous clusters smaller than 3 mL (per RAPID’s convention). 
We also investigated at what CNN-predicted lesion volume the 
presence of a stroke could be reliably identified using the full 
A + B test sets. The volume threshold for stroke detection was 
varied and area under the receiver operating characteristic curve 
(ROC AUC) was calculated. The top-left point on the ROC 
curve was considered the optimal operating point for stroke 
detection. Confidence intervals (CIs) were calculated using a 
bootstrapping method, where resampling with replacement 
was repeated 105 times while maintaining an equal number of 
strokes and nonstrokes in each sample.

Linear regression was calculated between the CNN esti-
mated volumes and five RAPID-reported volumes: Tmax > 4 s, 
Tmax > 6 s, Tmax > 8 s, Tmax > 10 s and ischemic core. Pearson 
correlation coefficients (r) with bootstrap CIs were used to 
decide which RAPID time point matched the CNN volume 
estimates the best. Similarly, average volume differences with 
CIs were estimated by linear regression with forced inter-
section at the origin. The calculations were performed using 
MATLAB version 2018b (MathWorks, Natick, MA, USA).

Each of the CNN predictions in the full test set was evalu-
ated visually: the localization of the lesion in the correct vas-
cular territory (based on CTA and perfusion findings) was 
verified and false positives and false negatives were recorded.

Results

Lesion Detection

Voxel-wise performance results relative to the expert seg-
mentations for test set A were as follows: precision 0.69 

DICOM to 

NifTI file

conversion 

Apply ”Plasma” colormap 

to predefined 0.53-0.80 

probability range

Convert to 

DICOM and 

send to PACS

Left-right-flipped version of

the cropped image volume

Coarse rigid co-registration of the flipped and non-flipped 

volumes followed by a non-rigid co-registration

Feed the co-registered sub-

volumes to the 42 layers 

deep neural network

Lesion probability map 

valued from 0 to 1

Extract head region from

the CTA volume

Fuse with the original image

(probability map visibility

threshold at ≥0.5)

Image intensity

normalization

Split into sub-volumes 

according to GPU memory

constraints

CTA from

a scanner

Send to PACS

Fig. 3   The processing workflow takes approximately 7  min from 
beginning to receive the DICOM files to completion. A secondary 
image volume is created from the original CTA where subject’s left 
and right sides are flipped. This allows the neural network to learn 

features with information from the contralateral side. The volumes 
are then co-registered, normalized, split, and fed into the neural net-
work, and the results are sent to PACS
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(95% CI: 0.60–0.76), sensitivity 0.54 (0.44–0.63), and 
Sørensen–Dice coefficient 0.61 (0.52–0.67). The predicted 
volumes were on average 23% smaller than the manual 
delineations. (See Fig. 4 for examples of correctly iden-
tified lesions and Fig. 5 for typical false positives. See 
Fig. 6 for two severe false positives examples (a and b) and 
for the two stroke lesions in the test set that were missed 
completely (c and d). Full processing time, including pre-
processing, inference, and network transfers, was 7 min.

Detected stroke lesion volume could be used to aid in 
treatment decisions (Fig. 7). Volume cut-off for lesion 
detection was varied on the full A + B test set (with ground 
truth being the original stroke diagnosis) producing a 
ROC AUC of 0.96 (95% CI: 0.92–0.98). The optimal vol-
ume threshold maximizing the combined sensitivity and 
specificity, i.e., corresponding to the closest point to the 
top-left corner on the ROC curve, was 25 mL. With this 
value as a decision threshold, 43 true positives, five false 
positives, 45 true negatives, and seven false negatives 
were observed, resulting in an accuracy of 0.88 (95% CI: 
0.81–0.94). The two completely missed positive cases had 
erroneous volumes of 9 and 10 mL, i.e., wrong location 
and below the cut-off. The other five false negatives (based 
only on the volume threshold) were correctly localized but 
were underestimated in size. Two of the five false positives 
resembled true findings whereas the rest could have been 
ruled out based on other imaging features: not extending 
to the cortex or an improbable anatomical location.

Visually Assessed False Positives and Negatives

The CNN-predicted stroke lesions (above 3 mL) were 
reviewed visually: correct localization was verified and 
errors were recorded. Connected regions smaller than 
3 mL were ignored. No false positives or negatives of any 
kind were seen on 54 of the 100 test cases (A + B). We 
identified a total of 67 false findings with 15 cases having 
more than one type. Erroneous findings were considered 
severe for nine patients: in seven nonstroke cases, the CNN 
predicted an anatomically credible “pseudo-lesion” (for 
examples see Fig. 6a, b), and on two positive cases, the 
lesion was missed completely (Fig. 6c, d). We speculate 
that one of the false negatives resulted from sulcus-like 
appearance (Fig. 6c). No clear reason was found for the 
other case (Fig. 6d). As a drawback for utilizing hemi-
spheric asymmetry, one large (81 mL) “lesion-mimic” was 
present due to considerable hyper-attenuation on the con-
tralateral side resulting from epileptic activity (Fig. 6a). 
The rest of the false findings were considered less severe: 
either they were anatomically implausible, clearly artefac-
tuous due to beam hardening or resulting from vascular 
or cortical atrophy (or a combination of these). The most 

common cause for these “benign” false positives was beam 
hardening either in the temporal lobe (19) or cerebellum 
(14). In 14 cases, scattered false positive lesions were 
seen due to atrophy and subsequent attenuation asym-
metry between hemispheres. In 10 instances, the false 
positive finding was inside a sulcus or otherwise located 
extra-parenchymally. One old stroke lesion was detected, 
which was also considered a false positive. In addition, 
one of the true positives was delineated both consider-
ably smaller than visually estimated (8.1 vs. 31.6 mL) 
and appeared non-continuous. The lesion would have 
been better depicted with a lower probability threshold 
than the predefined ≥ 0.5, but the total number of false 
positives would have correspondingly increased. The sub-
ject in question was the youngest stroke case in the test 
sets (47 years) which may indicate age dependence in the 
developed model.

CT Perfusion Comparison

The largest continuous lesion volumes predicted by the CNN 
model were recorded and compared to the five RAPID-
reported volumes for 43 of the 50 stroke-positives in the test 
data. Three cases were omitted because no RAPID report 
was available at the time of analysis. Additional four were 
excluded because RAPID failed to provide realistic volumes: 
studies were considered undiagnostic if hypoperfusion 
(defined as Tmax > 6 s or ischemic core) was reported to both 
hemispheres and to the posterior fossa. RAPID did not report 
any problems with perfusion data in any of these cases. Cor-
relations (Pearson’s r) between the CNN and RAPID pre-
dicted volumes were the following: Tmax > 4 s: r = 0.41 (95% 
CI: 0.14–0.71), Tmax > 6 s: r = 0.73 (0.52–0.85), Tmax > 8 s: 
r = 0.75 (0.55–0.86), Tmax > 10 s: r = 0.76 (0.58–0.86), and 
ischemic core: r = 0.72 (0.52–0.84) (Fig. 8). On average 
the corresponding relative volume differences between 
RAPID and CNN were (positive meaning RAPID produced 
larger volumes): + 101% (95% CI: + 79 to + 133%), + 31% 
(+ 17 to + 45%), − 3% (− 16 to + 9%), − 26% (− 40 
to − 15%), − 54% (− 71 to − 40%), respectively. The high-
est correlation (“moderately strong” per convention in [29] 
) was seen for RAPID Tmax > 10 s volume, although only 
Tmax > 4 s correlation differed significantly from the others. 
The most accurate absolute match between the CNN- and 
RAPID-reported volumes was for Tmax > 8 s.

Discussion

In this study, a fully automated, patch-based 3D convo-
lutional neural network model was applied to detect AIS 
lesions, and 91% stroke detection accuracy for the study 
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Fig. 4   Three examples of 
ischemic strokes detected by the 
convolutional neural network 
(a–c). In the example c, the 
predicted lesion was smaller 
than visually estimated by a 
radiologist
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Fig. 5   Typical false positives 
presented a in the cerebellum or 
b in the temporal lobe (resulting 
from beam hardening artifact), 
or were due to c white matter 
vascular degenerative changes
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Fig. 6   a, b Two examples of 
severe (anatomically credible) 
false positive lesions predicted 
by the CNN model resulting 
from hemispheric attenuation 
asymmetry. In case a, hyper-
perfusion on the contra-lateral 
side was caused by epileptic 
activity. Two lesions in the test 
data (blue outline) were com-
pletely missed: perhaps due to 
sulcus-like appearance (c) and 
for an unclear reason (d)
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Fig. 7   The largest connected 
lesion volumes were recorded. 
ROC curve (a) was produced 
by varying volume thresh-
old and comparing against 
the original stroke diagnosis 
(black and white dot for stroke 
and nonstroke). Using a fixed 
25-mL limit and predicting that 
volumes larger than this are pre-
sent only in stroke patients, 43 
true positives, 5 false positives, 
45 true negatives, and 7 false 
negative cases in the test were 
detected (b)

Fig. 8   A moderately strong  
correlation (Pearson’s r ≥ 0.72) 
was seen between the volumes 
defined by the proposed  
CTA-based convolutional  
neural network (CNN) and CTP 
RAPID analysis volumes (a-d: 
Tmax > 6 s, 8 s, 10 s, and ischemic 
core) except for Tmax > 4 s 
(r = 0.41, not shown). Linear 
regression lines are indicated by 
dashed lines. The highest cor-
relation was for Tmax > 10 s and 
the best absolute match was for 
Tmax > 8 s
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population was achieved. The robust preprocessing con-
sisted of only resampling, pixel value scaling, and reg-
istering the two hemispheres: no additional ad hoc steps 
such as histogram equalization [8], atlas-based template 
matching [30], skull stripping [14], or separation of tis-
sue types [15] were needed, and no cases were excluded 
due to improper registration [13]. Also, no morphologi-
cal or other post-processing, except for predefined > 3 ml 
threshold, was required. The network demonstrated an 
affinity for certain false positive inducing imaging fea-
tures, which were primarily below 25 mL in volume. This 
exploratory study concerned only patients with suspected 
MCA strokes, and therefore the model’s applicability to 
other territories, such as posterior circulation strokes, can 
be expected to be very limited.

Two other groups (Sheth et al. [15] and Hilbert et al. [13] 
) have also demonstrated the applicability of CNNs and CTA 
in ischemic stroke detection and neither applied strict high-
quality manual lesion segmentations in their studies, but rather 
opted for more big data approach (297 cases and 1301 cases 
for training, respectively, vs. 50 cases in this study). The vol-
umetric comparison to RAPID suggested that the proposed 
model produces ischemic lesion estimates that correspond 
approximately between traditionally considered penumbra 
(Tmax > 6 s) and the ischemic core. Notably, CNN volume esti-
mates were categorically larger than RAPID ischemic core 
estimates. Directly estimating ischemic core volume may also 
be possible from CTA alone as demonstrated by Sheth et al. 
They reported “an acceptable correlation” between RAPID 
ischemic core volumes and network output probabilities 
(r = 0.70). In the current study, a similar correlation between 
the RAPID core volumes and the CNN-predicted volumes was 
observed (r = 0.72). It is notable that neither of the networks 
was trained explicitly on exact ischemic core segmentations 
or exact ischemic core volumes.

The feasibility of ischemic stroke detection using a CNN 
with CTA image inputs was confirmed in a preceding study 
[17] in which a dual-pathway CNN architecture DeepMedic 
[19] was used. In the current study, the methodology was 
improved in three primary ways: (1) time spent on manual 
delineations for the training set was increased aiming to 
reduce training data noise, (2) a new CNN model with dif-
ferent network architecture was trained, and (3) the inference 
was fully automated. Because the networks in the previous 
and the current study were trained on different data sets, no 
extensive comparison was made; however, a brief discussion 
is provided in the following. Based on comparison during 
network development, the CNN models of the previous [17] 
and the current study provided similar voxel-wise perfor-
mances and lesion detectability (for a visual comparison see 
Fig. 9). However, anecdotally, the new network produced 
more localized predictions and was less prone to false find-
ings and the overall performance was more consistent. It 
also tended to be more conservative in lesion segmentation 
lowering voxel-wise evaluated performance. Also, in the 
primary testing, it was observed that networks with multi-
resolution approaches (using pooling and upsampling layers) 
tended to produce certain repeated-edge-like artifacts near 
bony cranial walls. These were also visible in the previous 
study’s network predictions and presented both intra- and 
extra-cranially. (For an extra-cranial example see the left-
hand side of the Fig. 9b). These were probably due to net-
work memorization effects (following likely from limited 
training data) where mere closeness to the skull tended to be 
indicative of a stroke lesion extending to the cortical surface. 
These artifacts were not seen in the predictions produced by 
the proposed network which was the main motivation for the 
current single resolution-level architecture choice. Memo-
rization was also mitigated by maintaining a relatively low 
number of trainable parameters.

Fig. 9   A similar performance was seen between the models from the 
previous [17] and the current study. In the example case (a), the old 
model (b) produced less conservative lesion estimation and was more 
prone to false positives than the current model (c). The probability 

threshold in the images b and c is set to ≥ 0.05 (values below 0.53 are 
blue). The most striking visual differences between the predictions of 
the two CNNs were the greater range of probability values and less 
rugged edges produced by the current model
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The final CNN had only half-a-million trainable param-
eters without pooling, dropout, or normalization layers. 
The difference is quite drastic when compared, for exam-
ple, to a high-performing ImageNet classification network 
by Mahajan et al. with up to 829 million parameters [31]. 
A huge network would most likely require a larger train-
ing set to avoid overfitting. The large number of voxels and 
large anatomical variation combined with highly subjective 
nature of exactly delineating the lesion borders (i.e., training 
data noise) could result in superfluous correlations when 
using networks with strong representative power and larger 
receptive fields. The latter could, for example, mean zeal-
ously excluding regions never seen in the training data only 
based on the surrounding anatomy rather than actual infor-
mation content at the specific region. Although 40 consecu-
tive 3 × 3 × 3 convolutional layers could in principle have 
81-voxel-wide receptive field, it has been postulated that in 
fully convolutional hierarchies the effective receptive fields 
tend to be only a fraction of the theoretical ones [32]. There-
fore, the non-pooling architecture selected for this study pos-
sesses a (perhaps desirable) handicap for extinguishing false 
positives on surrounding anatomy alone. The authors pos-
tulate that the network learned a local and, to some extent, 
explainable extraction of information, even if it suffers from 
non-stroke-related attenuation asymmetries. The decision is 
primarily driven by a combination of local texture and differ-
ences in iodine-uptake and brain tissue densities between the 
hemispheres. These features can be, when necessary, inter-
preted visually from the original images, and the possible 
true or false findings can be put in a correct physiological 
or anatomical context.

There are several approaches to counter the aforemen-
tioned pitfalls. The effect of ground truth noise could be 
mitigated by relaxing the loss function penalty for near-exact 
match: for example, Lisowska et al. used a “do not care” 
zone at the manual vessel segmentation edges [11]. The 
amount of training data in this study was mainly limited 
by the arduousness of manual segmentation. Deep learning 
allows different tactics to circumvent this cost: Hilbert et al. 
used treatment outcome [13], Barman et al. used stroke/non-
stroke [30], and Sheth et al. used the presence/absence of 
large vessel occlusion and dichotomized RAPID-reported 
ischemic core volumes as the training targets [15]. This way 
it was possible to substantially increase the number of train-
ing samples. However, in these studies, to interpret from 
which regions the network derives its decisions, activation 
maps needed to be approximated. This is not necessary for 
the segmentation approach. The exact localization of the 
positive and negative findings allows more straightforward 
method development. Secondly, the model in the current 
study provides exact volume estimates whereas Sheth et al. 
limited the core volume investigation to clinically defined 
values of ≤ 30 mL and ≤ 50 mL. In this study, RAPID values 

were used as a semi-external validation method (same ses-
sion but different scan type and algorithm) instead of being 
a basis for training. Lastly, our method was prone to spe-
cific image artifacts and physiological changes which could 
be mitigated by a more advanced CNN model but also by 
technical improvements in image acquisition. Considering 
emerging technologies, along with improved image recon-
struction and artifact reduction, it has been reported that dual 
energy CT could aid in blood/parenchyma/bone distinction 
and reduce artifacts [33].

In the current study, memory and computation hungry 3D 
convolution filters and high-resolution input images were 
used, which limits the versatility of different network archi-
tectures that can realistically be adopted. Inference speed is 
also affected by the large number of convolutional layers using 
valid padding and subsequent need to process the image in 
a large number of overlapping sub-volumes with redundant 
computations. The time requirements for both training and 
inference were the reason why the number of layers and fil-
ters was not further increased during the hyper-parameter 
search. Hilbert et al. drastically reduced the dimensions by 
maximum intensity projection over the whole skull-stripped 
image volume to single axial image [13]. A plethora of other 
options include simply using 2D slices as inputs, some ver-
sion of 2.5D (e.g., tri-planar) approach [34], or multi-scale 
processing either for the inputs [10] or inside the network 
[12]. These are compromises between available information 
and computational cost, and the current choice of fully 3D 
CNN aims to maintain all of the local information regardless 
of the chosen reconstruction orientation. This is analogous 
to using several millimeter slice thicknesses in multi-planar 
CT reading, but without a priori decision how to combine 
the neighboring voxels. The low contrast-to-noise ratio in CT 
is both due to small differences in x-ray attenuation in soft 
tissues (and low concentration iodine) and the desire to keep 
radiation dose levels as low as possible following ALARA 
principle. Non-contrast CT alongside with CTA could be uti-
lized in better extracting the presence of contrast-agent. Multi-
modal approaches where several image volumes are fed into 
a neural network are more often used in MR research [9, 35, 
36] than in CT. However, in the previous study, the inclusion 
of non-contrast CT did not improve the performance [17], and 
the unimodal approach was therefore selected for this study.

The proposed CNN lesion volume estimates were some-
where between RAPID predicted Tmax > 6 s volume, which 
is considered the best indicator of ischemic penumbra [37], 
and the ischemic core volume. There was no diffusion-
weighted (considered golden standard) or follow-up imaging 
analysis to test the accuracies of these methods. It has been 
postulated that current CTA with fast acquisition times is 
more heavily cerebral blood flow than volume weighted, i.e., 
possibly overestimating ischemic core volumes compared to 
CTP, which may in part explain the results [38].
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Study limitations include dataset size, possible selection 
biases from the inclusion criteria (especially focusing only 
on the suspected MCA strokes), both training and test data 
being from a single scanner (unknown generalizability), and 
the subjectivity resulting from difficulty of visually discern-
ing abnormal regions in the CTA images. The sample size of 
50 infarct positive cases was relatively small and weighted 
on larger sized infarcts. Both CTP and CTA may suffer from 
various factors detrimental to image quality, such as abnormal 
circulation or patient movement and neither method success-
fully detected all stroke cases. The inclusion criteria in this 
study required that the study included a CTA series with good 
image quality, and no conclusions can be drawn for perfor-
mance on poor-quality images. Assessing the potential impact 
on the patient care and determining how CTP and CTA analy-
ses complement each other warrant a further study, preferably 
including follow-ups and a wide range of stroke sizes and 
sites, and with careful analysis of both algorithms’ success 
rates and failure reasons in complete clinical populations.

Current guidelines regarding treatment selection in AIS are 
based on large trials that investigated the safety and efficacy of 
thrombolysis and mechanical thrombectomy in an extended time 
window: 6–16(–24) hours for thrombectomy and 4.5–9 h for 
thrombolysis [39–41]. Patients for these studies were selected 
based on a mismatch between ischemic core and penumbra and 
the detected ischemic core was to be < 21–70 mL depending 
on other factors such as the age and functional capacity of the 
patient. The optimal volume threshold maximizing sensitivity 
and specificity for the proposed CNN model was 25 mL. To 
put the value in context, the average volume of the whole MCA 
territory is 284 mL and the average volume of the basal ganglia 
is 10 mL [42]. The effect is also seen in Fig. 8d where there is 
visibly very little correlation between the two methods for small 
RAPID-reported core volumes. Although the CNN model did 
not allow for exact ischemic core and penumbra mismatch esti-
mation from CTA, the results suggest that CNN powered CTA 
could offer supporting information for patient diagnosis or triage 
in hospitals where CTP is not available. These findings are in 
line with conclusions by Hilbert et al. [13] and Sheth et al. [15]. 
Apart from extending the search for optimal hyper-parameters, 
there are several approaches to further develop the proposed 
methods. For example, a secondary CNN at lower resolution 
could be used to rank out anatomically improbable false posi-
tives (especially if targeting individual vessels); the models 
could be trained based on control MR or CT images, or on the 
CTP RAPID–derived core and penumbra estimates.

Conclusions

A fully automated deep CNN model can be trained on a rela-
tively small training set to accurately detect acute ischemic 
stroke lesions from CTA images with a correlation to 

RAPID-reported CTP volumes. The results could be further 
improved by extended network optimization and a training set 
with larger variety of normal tissue and lesion manifestations. 
The total processing time for a single CTA volume was 7 min.
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