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Emerging Linked-Read technologies (aka read cloud or barcoded short-reads) have revived interest in short-read technology

as a viable approach to understand large-scale structures in genomes and metagenomes. Linked-Read technologies, such as

the 10x Chromium system, use a microfluidic system and a specialized set of 3′ barcodes (aka UIDs) to tag short DNA reads

sourced from the same long fragment of DNA; subsequently, the tagged reads are sequenced on standard short-read plat-

forms. This approach results in interesting compromises. Each long fragment of DNA is only sparsely covered by reads, no

information about the ordering of reads from the same fragment is preserved, and 3′ barcodes match reads from roughly 2–

20 long fragments of DNA. However, compared to long-read technologies, the cost per base to sequence is far lower, far less

input DNA is required, and the per base error rate is that of Illumina short-reads. In this paper, we formally describe a par-

ticular algorithmic issue common to Linked-Read technology: the deconvolution of reads with a single 3′ barcode into clus-

ters that represent single long fragments of DNA. We introduce Minerva, a graph-based algorithm that approximately

solves the barcode deconvolution problem for metagenomic data (where reference genomes may be incomplete or unavail-

able). Additionally, we develop two demonstrations where the deconvolution of barcoded reads improves downstream re-

sults, improving the specificity of taxonomic assignments and of k-mer-based clustering. To the best of our knowledge, we

are the first to address the problem of barcode deconvolution in metagenomics.

[Supplemental material is available for this article.]

Recently, long-read sequencing technologies (e.g., Pacific Biosci-
ences, Oxford Nanopore) have become commercially available.
These techniques promise the ability to improve de novo assembly
(Jain et al. 2018), particularly in metagenomics (Frank et al. 2016).
While these technologies offer much longer reads than standard
short-read sequencing, their base pair error rates are substantially
higher than short reads (10%–15% error vs. 0.3%). More impor-
tant, long-read technologies have substantially higher costs, lower
throughput, and require large amounts of DNA, or PCR amplifica-
tion, as input. Currently, this makes long reads impractical for
large-scale screening of whole genome or metagenome samples
and most low-input clinical samples.

As an alternative, low-cost and low-input (∼1 ng) DNA library
preparation techniques using microfluidic 3′ barcoding methods
have recently emerged (e.g., Moleculo/Illumina, 10x Genomics)
that address these shortcomings.With these new technologies, in-
put DNA is sheared into long fragments of ∼10–100 kbp. After
shearing, a 3′ barcode is ligated to short reads from the fragments
such that short reads from the same fragment share the same 3′

barcode (note that the 3′ barcode is unrelated to the standard 5′

barcode used for sample multiplexing). Finally, the short reads
are sequenced using industry standard sequencing technologies
(e.g., Illumina HiSeq). This process is commonly referred to as

Linked-Read sequencing. Linked-Reads offer additional long-range
information over standard short reads. We refer to the set of reads
that share a 3′ barcode as a read cloud. For amore detailed explana-
tion of the process of Linked-Read sequencing we refer the reader
to Zheng et al. (2016).

Reads with matching 3′ barcodes are more likely to have
emerged from the same fragment of DNA than two randomly sam-
pled reads. However, each fragment of DNA is only fractionally
covered by reads. This increases the amount of long-range infor-
mation obtained from a given experiment but makes it impossible
to assemble reads froma single barcode into a contiguous stretchof
sequence. This trade-off has been used recently to phase large-scale
somatic structural variations (Greer et al. 2017; Spies et al. 2017).

State-of-the-art Linked-Read sequencing systems use the same
3′ barcode to label reads from several fragments of DNA. Existing
systems hone the order of 106 3′ barcodes; loading multiple frag-
ments of DNA into the same 3′ barcodes is critical for high-
throughput experiments. In particular, in our work using the
10x Genomics system, we observed that there were 2–20 long frag-
ments of DNA per 3′ barcode (Supplemental Fig. S1) and that 3′

barcodes with more reads tended to have more fragments. This
can complicate downstream applications. In the absence of other
information, it is difficult to distinguish the random assortment
of reads into a 3′ barcode from an actual structural variation or a
different source genome.
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To address this critical issue, we define the barcode deconvo-
lution problem. Briefly, each group of reads that share a 3′ barcode
has an unobserved set of fragments from which each read was
drawn. The barcode deconvolution problem is the problem of as-
signing each readwith a given 3′ barcode to a group such that every
read in the group came from the same fragment and so there is
only one group per fragment.We note that a fragment assignment
is stricter than genomic assignment. Each read from the same frag-
ment necessarily came from the same genome, but it is possible to
havemultiple fragments from the same genomewhose reads share
the same 3′ barcode.

Linked-Reads provide significantly more information about
the proximity of short reads than standard short-read sequencing.
With the exception of very common or repetitive sequences, the
co-occurrence of particular sequences across several 3′ barcodes
provides evidence that the co-occurring sequences were drawn
from the same underlying DNA molecules.

Linked-Reads have several potential benefits for metage-
nomic research compared to standard short reads. Linked-Reads
carry information about long stretches of sequence. In principle,
this information can be used to improve taxonomic classification
of reads, improve the assembly of microbial genomes, identify
horizontally transferred sequences, quantify the genetic structure
of low-abundance organisms, and catalog intra-sample genetic
structural variants. In the near term, algorithms for analyzing
short-read sequences can be used on Linked-Read data without
modification which makes Linked-Reads a practical choice for
many studies.

Compared to long-read sequencing, Linked-Reads can be
used to sequence samples far more deeply for the same amount
of money and can accept much smaller amounts of input DNA.
This is important for metagenomics; even at the same read depth,
Linked-Reads may be more useful for studying low-abundance
organisms because Linked-Reads span a much longer stretch of
a genome for the number of bases sequenced (i.e., very high phys-
ical coverage) and could be used to resolve microbial structural
variation.

In this paper, we address the barcode deconvolution problem,
a fundamental problem of using Linked-Reads for metagenomics.
We show that addressing the barcode deconvolution problem im-
proves downstream results for two demonstration applications.

We formally define the barcode deconvolution problem for a
single 3′ barcode. We note that our solution requires information
frommultiple 3′ barcodes but that this is not necessary to state the
barcode deconvolution problem generally.

As input, we are given a set of n reads from the same read
cloud. Each read has the same 3′ barcode and an unobserved class
that represents the fragment fromwhich the read was drawn. For a
given 3′ barcode with n reads drawn from f fragments, we have
�R = 〈r1, . . . , rn〉 where ri represents the unobserved class for read
i, and �F, the set of possible fragment classes [1, f ].

A solution to the barcode deconvolution problem for a single
read cloud would be a function mapping a set of read classes to
fragment classes

D:�R 7! �F

such that the function produces the same value for reads from the
same fragment for all n reads in �R

D(i) = D(j), ∀jri = rj, ∀i [ 1:|�R|.
A solution to the barcode deconvolution problem for a set of

read clouds would be a map from each read cloud to a function

which solves the barcode deconvolution problem for that read
cloud.

When a reference genome is available, the barcode deconvo-
lution problem is relatively trivial, so long as major structural var-
iants are absent. All individual reads from the same read cloud can
be mapped to the reference genome using any good read align-
ment method. Reads from the same fragment will tend to be clus-
tered near one another on the reference genome; there is little
chance that reads from different fragments in the same read cloud
will be proximal, unless the reference genome is very small.
However, if a reference genome is not available, is small, or struc-
tural variation is present, read mapping may not provide a good
solution to the barcode deconvolution problem. All of these con-
ditions are common in metagenomics.

To the best of our knowledge, we are the first to formally
describe the barcode deconvolution problem.

We have developed a novel method, Minerva, that explicitly
uses information from sequence overlap between read clouds
to approximately solve the barcode deconvolution problem for
metagenomic samples. Our approachwas inspired by topicmodel-
ing in Natural Language Processing (NLP) which studies methods
to find groups of co-occurring words in text.We demonstrate how
our technique can be effectively applied to real metagenomic
Linked-Read data and improve analysis for two example use cases.

We present our solution to the barcode deconvolution prob-
lem in detail. We also develop a probabilistic generative model
justifying key assumptions of our procedure. We also report our
negative results—models that we tested but that performed poorly
(Supplemental Materials).

Results

Algorithm overview

We have developed Minerva, an algorithm that approximately
solves the barcode deconvolution problem for metagenomics.
Minerva works by matching reads from the same read cloud that
share k-mers with reads from other read clouds. This algorithm
processes each read cloud individually by building a sparse graph
between reads and other read clouds, converting that graph into
a graph between reads, and clustering that graph. This method is
discussed in detail.

Primary data sets

We tested Minerva using two primary real data sets from two
microbial mock communities. The first community (Data set 1)
contained five bacterial species: Escherichia coli, Enterobacter cloa-
cae, Micrococcus luteus, Pseudomonas antarctica, and Staphylococcus
epidermidis. The second community (Data set 2) contained eight
bacterial species and two fungi:Bacillus subtilis,Cryptococcus neofor-
mans, Enterococcus faecalis, E. coli, Lactobacillus fermentum, Listeria
monocytogenes, Pseudomonas aeruginosa, Saccharomyces cerevisiae,
Salmonella enterica, and Staphylococcus aureus. The relative abun-
dance of each species in each data set is listed in Table 1.

We elected to use mock communities over simulated data in
order to provide as realistic a data set as possible. All species in
the mock communities had well-characterized genomes and
make taxonomic assignment easy. Themock communities chosen
are standard microbial positive controls as noted by Mason et al.
(2017).

Roughly 1 ng of high molecular weight (HMW) DNAwas ex-
tracted from each sample. The HMW DNA was processed using a
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10x Chromium instrument, and we prepared sequencing libraries.
Each library was sequenced on an Illumina HiSeq with 2×150
paired-end reads. Roughly 20 million reads were generated for
each sample; for testing, we selected 10 million reads from each
while ensuring that we only selected complete barcodes. Both
samples showed some evidence of human contamination; reads
that mapped to the human genome were not removed from
the samples (but were not used to generate statistics on barcode
purity) since some amount of human DNA is typical in metage-
nomic samples. In both samples, reads were distributed over 3 ×
106 barcodes.

We used Long Ranger BASIC to attach barcodes to reads and
perform error correction on barcodes (https://support.10xgenomics.
com/genome-exome/software/pipelines/latest/advanced/other-
pipelines). Both samples have a similar number of reads per bar-
code. Sample 2 had more species represented in each barcode, on
average, though not necessarily more fragments, since fragments
can originate from the same genome. Statistics about the data
sets are summarized in Table 2.

We determined the actual fragment of origin for each read by
mapping reads to the source genomes and clustering positions in
case multiple fragments from the same genome were present in
the same read cloud.

Runtime and performance

Minerva’s runtime performance largely depends on two parame-
ters:K, the size of the k-mers used tomatch reads; and anchor drop-
out, the minimum size of the read cloud being deconvolved. We
list the total runtime and RAM usage for Minerva (Table 3) on
both of our test data sets with different parameters. We note that
our implementation of Minerva is single-threaded but that the al-
gorithm itself is trivially parallelizable across 3′ barcodes.

Minerva approximately solves the barcode deconvolution

problem

Minerva was able to identify subgroups in read clouds that largely
corresponded to individual fragments of DNA.We term these sub-
groups ‘enhanced read clouds.’ We measured the quality of each
enhanced read cloud using two metrics: Shannon entropy index
H = ∑

pi log pi, and purity P = max (�p), where pi indicates the
proportion of an enhanced read cloud that belongs to each frag-

ment. These values are shown in Figure 1 as compared to read
clouds which were not enhanced (‘standard’ read clouds). In gene-
ral, Minerva produced a large number of perfect (P=1, H= 0) en-
hanced read clouds.

We also tested whether the quality of the enhanced read
clouds changed with the number of reads in the read cloud. We
found a small inverse relationship between read cloud size and pu-
rity but established that our previous results were not being inflat-
ed by a large number of very small enhanced read clouds
(Supplemental Fig. S2). Note that enhanced read clouds of size 1
would be trivially perfect and are always excluded from results.

In testing, we found three parameters that seemed to have the
most effect on Minerva’s performance. The number of links re-
quired between reads to form a cluster (eps), the k-mer size used
to make minimizing k-mers (K), and the maximum allowed fre-
quency of each read (maxk). In Supplemental Figure S3, we show
how these parameters affect Minerva’s performance under three
different metrics: mean enhanced barcode purity, mean enhanced
barcode size, and total reads clustered, large, pure, and complete
clusters being the ideal.We found thatMinerva’s parameters could
be used to tune performance between very large and very pure en-
hanced barcodes depending on the downstream application.

Enhanced read clouds can be clustered into meaningful groups

After deconvolving barcodes into enhanced read clouds, it is use-
ful to group enhanced read clouds that likely came from the
same genome. This is essentially a clustering problem. Initially,
we explored graph-based approaches similar to our algorithm for
read cloud deconvolution. These algorithms relied on the assump-
tion that elements being clustered would have small numbers of
distinguishing elements and a relatively high a priori probability
of originating from the same cluster. When dealing with individu-
al barcodes, these assumptions proved reasonable; faced with the
complexity of a full data set, these assumptions became inaccurate,
and graph-based algorithms performed poorly.

With relatively little structure in the data that could be known
a priori, we turned to topic modeling algorithms to discover im-
plicit genetic structures in our data. Latent Dirichlet allocation
(LDA) is a classic model in Natural Language Processing (Blei et
al. 2003). LDA is a generative model that assumes data was created
using a certain well-defined, stochastic process. Training the mod-
el consists of finding parameters that make it more likely that the
observed data would be generated using the given stochastic pro-
cess; typically, this is done with Gibbs sampling.

Typically, LDA is used to analyze corpora of natural language.
Natural language corpora are organized into documents (e.g.,
emails or book chapters) that consist of words. The base version
of LDA does not consider what order words in a document occur,
just how often each word occurs in a given document; this is re-
ferred to as a bag-of-words model. Formally, documents are mod-
eled as a sparse vector over a large vocabulary of words where

Table 2. Data set properties

Data set 1 Data set 2

Number of read pairs 107 107

Number of species 5 10
Mean read cloud richness 2.74 5.79
Mean read cloud size 7.399 7.515
Barcode N50 size 11 11
Barcode N90 size 4 4

Table 1. Taxa detail: Relative abundance is based on read counts and
is not adjusted for genome size

Taxa

Ref.
genome
size (Mb)

Rel. abund.
Data set 1

Rel. abund.
Data set 2

Escherichia coli 5.4 29.39 31.54
Enterobacter cloacae 5.7 31.37 n/a
Micrococcus luteus 2.5 12.19 n/a
Pseudomonas antarctica 6.7 11.48 n/a
Staphylococcus epidermidis 2.6 15.57 n/a
Bacillus subtilis 3.9 n/a 3.23
Lactobacillus fermentum 1.9 n/a 12.82
Listeria monocytogenes 3.0 n/a 3.64
Pseudomonas aeruginosa 6.8 n/a 14.70
Salmonella enterica 4.8 n/a 28.95
Staphylococcus aureus 2.9 n/a 1.50
Enterococcus faecalis 3.0 n/a 3.50
Cryptococcus neoformans 18.9 n/a 0.05
Saccharomyces cerevisiae 19.1 n/a 0.016
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entries represent the number of times a word occurs in the docu-
ment. LDA maps document from a high dimensional word-space
to a lower dimensional topic-space. In NLP, topics typically have
intuitive interpretations as thematically consistent units. A key ad-
vantage of LDA is that it can distinguish synonyms based on con-
text (i.e., a river bank vs. a financial bank); this may be useful for
classifying conserved motifs.

We used LDA to cluster read clouds (represented as sets of k-
mers). Each topic generated by LDA was considered to be a single
cluster.

We used LDA to project enhanced and standard read clouds
into a lower dimensional space. We treated each read cloud as a
document containing minimum sparse k-mers as words. We re-
moved k-mers that occurred far more often than average in a pro-
cess similar to removing stop-words in NLP. We ran LDA with
hyperparameter optimization on our read cloud documents and
clustered to obtain a topic vector for each read cloud using the im-
plementation LDA inMALLET (http://mallet.cs.umass.edu). Using
X-Means, we clustered the topic vectors representing read clouds
into discrete groups.

With standard read clouds, LDA essentially cannot distin-
guish any structure; with enhanced read clouds, LDA can generate
clusters that are less diverse. The clusterings are compared in Figure

2. This could be used to improve assemblies by clustering similar
reads and reducing spurious connections. Note that we denote
chromosomes rather than genomes in the figure since our process
does not attempt to link chromosomes from the same organisms.

Enhanced read clouds improve short-read taxonomic assignment

Weobserved that reads froma single linked fragment could be clas-
sified using any short-read taxonomic classifier. These classifiers,
however, often have trade-offs between recall and precision.
Enhanced read clouds can be used to improve recall of a short-
read classifier without harming precision.

Many of the reads classified by short-read taxonomic classifi-
ers cannot be assigned to low taxonomic ranks. However, all reads
from the same fragment of DNAmust all have the same taxonomic
rank. Read clouds can be used to promote unspecific taxonomic as-
signments. Any read with a taxonomic rank that is an antecedent
of a lower taxonomic rank in the same read cloud can be promoted
to the lower rank, provided there are no conflicts with other ranks
in the same cloud. Enhanced read clouds reduce the risk of con-
flicting ranks and make it more likely that reads can be promoted.

We usedMinerva to improve the specificity of short-read tax-
onomic assignments obtained from Kraken, a popular pseudo-
alignment-based tool (Wood and Salzberg 2014). We selected
Kraken because it was found to have good precision but relatively
poor recall in a study by McIntyre et al. (2017).

Using the technique described above, wewere able to rescue a
large number of reads fromunspecific taxonomic assignments.We
rescued reads using both enhanced read clouds and standard read
clouds. In every case, rescue with enhanced read clouds matched
or outperformed rescue with standard read clouds. All cases where
rescue with enhanced read clouds outperformed standard read
clouds for Data set 1 are shown in Table 4. All observed taxonomic
assignments were correct after promotion. Without enhanced
barcodes, many annotations cannot be rescued or are incorrect.

Figure 1. Clockwise from top, left: (1) Purity in Data set 1 for enhanced and 3′ barcodes; (2) Shannon index in Data set 1 for enhanced and 3′ barcodes;
(3) Shannon index in Data set 2 for enhanced and 3′ barcodes; (4) purity in Data set 2 for enhanced and 3′ barcodes.

Table 3. Runtime performance

Data set K Anchor dropout Runtime (hr) RAM (GB)

Data set 1 20 50 1.48 93
Data set 1 30 50 1.71 163
Data set 1 20 30 12.84 92
Data set 1 30 30 15.5 163
Data set 2 20 50 3.27 115
Data set 2 30 50 3.66 200
Data set 2 20 30 36.69 115
Data set 2 30 30 40 200
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Discussion

We have introducedMinerva, a graph-based algorithm, to provide
a solution to the barcode deconvolution problem. By design,
Minerva provides conservative solutions to barcode deconvolu-
tion formetagenomics and uses essentially no information (except
k-mer overlaps) about the sequences being clustered. We note
that it will be beneficial to test Minerva on more complex com-
munities. As such, Minerva is a relatively pure demonstration
of how information can be extracted from Linked-Reads. With
some modification, the algorithms underlying Minerva may
even be useful for detecting structural variations and other genetic
structures in the human genome.

However, the current version of Minerva could be enhanced
by leveraging a number of practical sequence features, such as
known taxonomic assignment, GC content, tetramer frequency,
or motifs. These have been shown to be good indicators of lineage
in metagenomics and could be easily incorporated to improve
Minerva’s clusterings. In particular, taxonomic assignments could
be incorporated into Minerva to evaluate barcode deconvolution,
since there is no a priori reason to think reads with a known taxo-
nomic classification would be deconvolved more effectively than
reads that could not be classified.

The current version of Minerva provides reasonable perfor-
mance but still represents a potential bottleneck for workflows us-
ing Linked-Reads. A large performance issue isMinerva’s routine to
calculate the size of an intersection between two sets that is naïve
and exact. Jain et al. (2018) has shown that bloom filters can be
effectively used to speed up the calculation of set intersection
in biologywith acceptable errors. Future versions ofMinerva could
employ similar techniques to improve performance. Minerva uses
the same parameters to process every barcode; however, the nature
of Linked-Read sequencing provides a rich source of information
that could be used to optimizemodel parameters for deconvolving
individual barcodes. This would require a more thorough mathe-
matical model of Linked–Reads, which we leave to a future work.
Similarly, external sequence annotation could be incorporated as
a practical approach to setting parameters for individual barcodes,
though it is unlikely that such a technique would generalize to
nonmicrobial applications.

Of particular interest to us is the possibility of using Minerva
to directly improve downstream applications. For simple appli-
cations, Minerva may be used with a single set of parameters to
produce a deconvolution that meets certain requirements. For
applications built to take advantage of barcode deconvolution,
Minerva could be runwithmultiple parameters to produce increas-
ingly strict tiers of enhancement. This may be particularly impor-
tant for de Bruijn graph (DBG) assembly. DBG assembly typically
relies on effectively trimming and finding paths through a de
Bruijn graph. Multiple tiers of linkage between reads could be
used to inform trimming or pathfinding programs about likely
paths and spurious connections. This could likely be modeled ei-
ther as an information theory or probabilistic approach depending
on the situation and assembler.

Overall, we believe that Minerva is an important step toward
building techniques designed to take advantage of Linked-Reads.
Linked-Reads have the potential to dramatically improve detection
of large genetic structures without dramatically increasing se-
quencing costs, while taking advantage of existing techniques to
process short reads.

Methods

We have developed a graph-based algorithm to subdivide reads
from the same read cloud into groups that, ideally, solve the bar-
code deconvolution problem.

Table 4. Taxonomic promotion

Original rank Promoted rank Enhanced Standard Difference Ratio

Bacteria Enterobacter cloacae 3 2 1 1.5
Proteobacteria Enterobacter cloacae 24 17 7 1.41
Gammaproteobacteria Enterobacter cloacae 21 13 8 1.62
Enterobacterales Enterobacter cloacae 87 72 15 1.21
Enterobacteriaceae Enterobacter cloacae 765 642 123 1.19
Bacteria Escherichia coli 9 6 3 1.5
Proteobacteria Escherichia coli 8 7 1 1.14
Enterobacterales Escherichia coli 17 13 4 1.31
Enterobacteriaceae Escherichia coli 9221 7846 1375 1.18
Escherichia Escherichia coli 201 198 3 1.02
Gammaproteobacteria Pseudomonas antarctica 3 2 1 1.5
Pseudomonas Pseudomonas antarctica 256 200 56 1.28

The number of reads which could be promoted using standard or enhanced read clouds in a deconvolution of Data set 1. This figure uses the same
deconvolution as Figure 1. Cases where enhanced read clouds did not outperform standard read clouds are omitted; there are no cases where standard
outperformed enhanced.

Figure 2. Abundance of different chromosomes across clusters as as-
signed by Latent Dirichlet allocation (LDA). Enhanced read clouds dramat-
ically improve LDA’s ability to distinguish structure in Data set 1. This figure
uses the same deconvolution as Figure 1.
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The core intuition behind our approach is that reads from the
same read cloud from the same fragment will tend to overlap with
similar sets of reads from other read clouds. Critically, if the total
genome length in a sample is large enough, a pair of read clouds
is unlikely to contain reads frommore than one overlapping geno-
mic region. In what follows, we justify this statement.

Mathematical justification of the model

We have developed a simple model to justify our statement that
reads from the same fragment will overlap with reads from similar
sets of read clouds. This model is similar to empirical results and
can be used to inform the parameters used for deconvolution.

First, we develop amodel for drawing fragments of DNA from
genomes in a metagenomic sample. For simplicity, wemodel each
microbial genomeGi in a metagenomeG as a discrete collection of
exactly Ng fragments Fi

�
, where i is an index numbering each ge-

nome in the metagenome. Ng is the same for all genomes. The
probability of selecting a given fragment Fi,j (where individual frag-
ments are indexed by j) from a given microbial genomeGi is given
by a uniform distribution. Wemodel the probability of selecting a
given genome as a geometric distribution; this choice is motivated
by observations of real microbial communities that tend to be
dominated by 1–2 species with a long tail of lower abundance
species.

The probability of selecting a particular fragment Fi,j given
that we are drawing fragments from genome Gi is

P(F = Fi,j|Gi) = 1
Ng

∀i [ 1:|G|.

For simplicity, we assume the abundance of genomes G1, G2, … is
sorted in descending order by their index. The probability of select-
ing a given genome Gi is

P(G = Gi) = 1
2i .

This gives us the probability of drawing a single given fragment Fi,j
without a given genome.

P(Fi,j) = 1
Ng × 2i .

The probability that two fragments Fw,x, Fy,z are the same given
that their genomes Gw, Gy are the same is

P(Fw,x = Fy,z|Gw = Gy) = 1
Ng

.

The probability that two genomes Gw, Gy are the same is given be-
low. In real communities, this is an approximation that improves
as the total number of species increases.

P(Gw = Gy) = lim
|G|�1

∑|G|

i=1

1
22i =

1
2
.

Let pf be the probability that two fragments Fw,x, Fy,z are the same
without conditioning on a given genome. We have

pf = P(Fw,x = Fy,z) = 1
2Ng

.

Second, we develop a generativemodel for assembling a read cloud
from a set of fragments.Wemodel each read cloud as a selection of
Nf fragments drawn from the set of all possible fragments.We refer
to the set of fragments in a given read cloud as Ri. For simplicity, we
do handle the case where two read clouds both contain multiple
fragments from the same class; this case is very unlikely with pa-
rameters relevant to our scenario (1 in 25,000 with the parameters
given below).

LetX(k) be the probability that two read clouds Ri and Rj, both
with Nf fragments, share exactly k fragments. In other words, any
fragment in Ri overlaps with at least one fragment in Rj and vice
versa.

We have

X(0) = P(|Ri>Rj| = 0) = (1− pf )
N2

f .

This is simply because none of the N2
f possible pairs of fragments

(i.e., one in Ri and one in Rj) overlap.
We also have

X(1) = P(|Ri>Rj| = 1)

= 2Nf (1− (1− pf )
Nf )(1− pf )

Nf (Nf −1) −N2
f pf (1− pf )

N2
f −1

.

Here, exactly one fragment in Ri overlaps with one or more frag-
ments in Rj or vice versa. While it is extremely unlikely that we ob-
serve overlap of a fragment in Ri with more than one fragment in
Rj, we handle this case in our equations because this is allowed in
our approximate generative model.We have 2Nf possibilities to se-
lect a fragment in either Ri or Rj. This fragment must overlap with
at least one fragment in the other read cloud (i.e., the term
1− (1− pf )

Nf ). No other pair of fragments must overlap (i.e., the
term (1− pf )

Nf ·(Nf −1)) and because we double-counted cases where
exactly one fragment in Ri overlaps with exactly one in Rj we sub-
tracted the term N2

f pf (1− pf )
N2

f −1.
The probability that two read clouds share more than one

fragment is

X(≥2) = P(|Ri>Rj| . 1) = 1−X(0)−X(1).

We choose reasonable, conservative (compared to our observed
data) values for all parameters Nf =5, Ng= 100, |G| = 10 and obtain
the following estimates

pf = 1
200

,

X(0) ≈ 0.8822, X(1) ≈ 0.113, X(≥2) ≈ 0.0048,

X(1)
X(≥2)

. 23.

We find that it is about 23 times more likely to have exactly one
overlapping fragment between two read clouds than multiple
overlapping fragments in our mathematical model. We verified
this through simulation and obtained a similar ratio of 1 to 40
(the discrepancy occurs because of how our simulation samples
the geometric distribution). This is true even with conservative pa-
rameters chosen tominimize the ratio. This is important because it
means we are likely to avoid a large number of spurious connec-
tions between genomic regions that could lead to poor deconvolu-
tion. However, this model does not account for the fact that
individual fragmentsmayhave similar sequences, which is amajor
source of noise for Minerva. To reduce this noise, we use the pa-
rameters of this model to justify removing any overlaps that occur
far more often than expected.

On average, each fragment in a data set is only fractionally
covered at a rate of Cr (with a read depth of 1). While the precise
coverage might vary between fragments, this parameter can be
used to estimate the size of overlaps between fragments and their
expected sparsity. Two long fragments would be expected to over-
lap at C2

r points in their overlap. In cases where fragments overlap
much more frequently than C2

r over their lengths, it can be in-
ferred that the sequence present is too repetitive or common to
be useful for deconvolution.

These facts are used in Minerva to filter connections between
repetitive regions, restrict overlaps to regions of a certain length,
and to heuristically filter comparisons between read clouds
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unlikely to have significant overlap. This carries practical perfor-
mance benefits and reduces errors.

A graph-based algorithm for barcode deconvolution

Summary

We have developed a graph-based algorithm that effectively
deconvolves the reads within a given read cloud. The model con-
structs a bipartite graph between all reads with a given read cloud
and all other read clouds. Reads have an edge to a read cloud if they
are found to contain a k-mer that is specific to exactly one read in
the foreign read cloud. Once the bipartite graph is constructed,
read clouds and reads with toomany or too few edges (by user-sup-
plied parameters) are removed. The filtered bipartite graph is used
to construct an adjacency matrix between reads, and the matrix is
clustered into groups of reads. This algorithm is O(n2) over the
number of read clouds, though we note that the number of read
clouds is a constant for each specific technology that could be
used.

The specific steps in our algorithm are as follows:

1. Read clouds are parsed; read clouds below a certain size (drop-
out) are dropped. Each read in each read cloud is parsed into a
set of minimum sparse k-mers.

2. Each read cloud above a certain size (anchor dropout) is com-
pared to all other read clouds. The read cloud being compared
is called the ‘anchor.’

3. A bipartite graph is constructed between the reads in the anchor
and all other read clouds based on k-mer overlap.

4. The bipartite graph is reduced to a graph between reads in the
anchor.

5. The read graph is broken into discrete clusters which are output
as solutions to the barcode deconvolution problem.

The model

Initially, each read cloud in a given data set is parsed into a set of
minimizing k-mers (Fig. 3, part 1). Global counts for k-mers are re-
tained.Once parsing is complete, k-mers that occur exactly once or
many times more than the average (10 times more, by default) are
discarded. Singleton k-mers cannot occur in more than one bar-
code and k-mers that are too common tend to create false positives
(these k-mers appear to originate from low complexity or con-
served regions). This process is analogous to removing stop words
in Natural Language Processing applications. A map of k-mers to
reads is retained for each read cloud.

After parsing, the set of reads in a given read cloud is com-
pared to every other read cloud (Fig. 3, part 2). Comparisons be-
tween read clouds that share too many k-mers are discarded as
these likely represent low complexity or evolutionarily conserved
regions as opposed to real overlaps. Comparisons between read
clouds that share too few k-mers are also rejected to improve per-
formance. The intersection of the k-mer sets between the given
read clouds and all read clouds that passed filtering is calculated.

A bipartite graph is constructed by creating nodes for every
read in the read cloud being processed and every read cloud that
was not filtered out (Fig. 3, part 3). Edges are only added between
read-nodes (left nodes) and read cloud-nodes (right nodes). An
edge is drawn between a read-node and a read cloud-node if, and
only if, the read shares a k-mer with the given read cloud. This is
a fast proxy measure for read overlap. Finally, any read cloud-
node with degree above a given threshold is discarded.

Each bipartite graph representing the reads from a given read
cloud is given a final round of filtering where reads that matched
too many foreign read clouds are removed based on a user-sup-

plied threshold. The filtered bipartite graph is converted to an ad-
jacency matrix of reads where the similarity between reads is
equivalent to the number of read clouds with which both reads
overlapped (Fig. 3, part 4). This adjacency matrix is converted to
a binary matrix by setting all values below a user-supplied thresh-
old to zero and all remaining values to one (Fig. 3, part 5).

All connected components in the binary matrix are found.
Connected components consisting of single reads are discarded;
the remaining components define clusters. This process is analo-
gous to DBSCAN (Ester et al. 1996) for graphs.

Information Theory bounds on barcode deconvolution

We note that the barcode deconvolution problem on the graph-
based model we have described is analogous to the community re-
covery problem (Girvan and Newman 2002) in Information
Theory. In particular, 3′ barcodes provide linkage information be-
tween pairs of reads.We use this linkage information to construct a
graph between the reads being deconvolved with the expectation
that reads from the same fragment will have a better chance of be-
ing linked than reads from different fragments. Formally, we say
that two reads are connected with probability p if they are from
the same fragment and probability q if they are from different frag-
ments. Termed differently, p is the true positive rate while q is the
false positive rate.

For clarity, we note that this model is distinct from themodel
we developed previously to justify why overlaps between read
clouds were likely to be useful for deconvolution.

If wemake a simplifying assumption that all fragments in our
read cloud produce equal numbers of reads, we can use the formula
determined by Hajek et al. (2016) to determine theminimum con-
nectivity of linking 3′ barcodes necessary to deconvolve our reads.
We define the number of reads per fragment as Nr/Nf, where Nr is

Figure 3. Processing steps for a single read cloud. From top:
(1) Fragments are sequenced and tagged with 3′ barcodes. (2) Reads in
a given read cloud are mapped to reads in other read clouds using mini-
mizing k-mers. (3) A bipartite graph between reads and other read clouds
is constructed. (4) A graph between reads that map to the same read
clouds is constructed. (5) Reads are clustered into groups.
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the total number of reads in a read cloud and Nf is the number of
fragments in the given read cloud.

For the community recovery problem, Hajek et al. (2016)
have provided a lower bound on the size of graph that can be accu-
rately clustered given values of p and q, regardless of the algorithm
used. If a graph is smaller than this threshold, it is unlikely that it
will be possible to distinguish clusters from spurious edges. This
boundary requires us to assume that all fragments with the same
3′ barcode produced equal numbers of reads. Using the definitions
above this definition, we can apply the following inequality to
read cloud deconvolution:

Nr

logNr
(

��
p

√ − ��
q

√
)2 . Nf .

Using the model developed previously and a simulation, we
estimate the maximum true positive rate p to be 0.998 and we es-
timate the minimum false positive rate q to be p/15 =0.067. We
note that these values do not account for multiple sources of error,
notably sequence homology, and should be interpreted as a best
case scenario. Using these values, we can reduce the previous equa-
tion

0.549
Nr

logNr
. Nf .

If a barcode deconvolution graph does not meet this inequality, it
is unlikely that it will be possible to accurately reconstruct all clus-
ters. More generally, this formula can be used to estimate the min-
imum number of reads and maximum error rates that can lead to
effective barcode deconvolutions. In principle, this inequality
should apply to all barcode deconvolution algorithms that can
be formulated as a graph. However, different algorithms may
have different values of p and q.We also note that the above formu-
la is based on asymptotic behavior for graphs with thousands of
nodes.Weobserved that typical deconvolution graphs in ourmod-
el have fewer than 50 nodes.

Minimum sparse hashing

Minerva frequently tests whether pairs of reads overlap. Many so-
lutions to finding overlaps between reads exist, such as sequence
clustering algorithms, sequence aligners, and k-mer matching.
These techniques typically make trade-offs between overall perfor-
mance and error rates. Since Minerva is meant to be relatively fast
and can tolerate some errors, we elected to use a minimal sparse
hash of k-mers to match read pairs. This technique reduces the
number of unique k-mers Minerva uses to find overlaps, which re-
duces runtime and RAM usage.

Minimum sparse hashing was originally developed indepen-
dently for biological sequence search and Natural Language docu-
ment search (Schleimer et al. 2003; Marçais et al. 2017) (in a
Natural Language search, the technique is referred to as winnow-
ing). While the original application of this technique in biology
definedminimization as the lexicographicminimumof a set of se-
quences, we use a uniform randomhash function to determine the
minimal sequence in a set. This is a common practical enhance-
ment recently detailed by Orenstein et al. (2016).

Minimum sparse hashing for sequences takes three parame-
ters—a length k, a window size w, and a hash function h. Given
a set K of n, n≥w k-mers, the min-sparse hash computes the
hash h of each k-mer, then selects the k-mer with the smallest nu-
merical hash from each consecutive set of w k-mers in K. The final
set of minimizers is the unique set of k-mers generated, W. Each
consecutive window shares w−1 k-mers, so there is a good chance
that each window shares the same minimumwith its predecessor.
Formally, W = {min (h(k)∀k [ K(i,i+w))∀i [ 0:(n−w)}. This algo-

rithm guarantees that any pair of reads with an exact overlap of
at least w+ k−1 bases will share at least one minimum sparse k-
mer while drastically reducing the number of k-mers which must
be stored in memory (Fig. 4). In certain implementations, mini-
mum sparse k-mers may also improve performance by allowing a
k-mer that can be stored in a single 64-bit cell (k≤32) of memory
to represent a longer sequence.

Minimum sparse k-mers are prone to false positives when pre-
sented with similar, but not identical, runs ofw bases in read pairs.
Wemeasured this phenomenon by comparing all k-mers of length
w from pairs of reads that share a minimum sparse hash. Figure 4
shows the minimum hamming distance for windows of length w
between reads that share a min-sparse hash. When k is larger,
the average hamming distance is smaller, though outliers persist.
Small values of k produce many distant false positives. Raising k
from 20 to 30 (w=40) improved accuracy and precision to the
point where false positives could be controlled using downstream
techniques.

The mathematics that underlie minimum sparse hashing
may also be used to efficiently approximate the overlap between
sets, another important operation for Minerva. We did not use
this technique in our current implementation of Minerva but
plan to explore this for later versions.

Data access

All raw sequencing reads from this study have been submitted to
the NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject)
under accession number PRJNA505182. All code from this study
is available in the Supplemental Materials and at https://github.
com/dcdanko/minerva_barcode_deconvolution.

Figure 4. Top: hamming distance betweenwindows that shareminimiz-
ing k-mers, using various parameters. Bottom: number of representative
minimizing k-mers per read.
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