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Abstract: We report a fiber-structured hybrid nanogenerator wearable device fabricated on a single
polyethylene terephthalate (PET) textile cylindrical substrate. The device can be described as a
capacitor with inner and outer carbon-black-dispersed poly dimethyl siloxane (PDMS:Carbon black)
electrodes, and zinc oxide and polyvinylidene fluoride (PVDF) as the dielectric medium between
the electrodes. The compositional analysis in terms of X-ray diffraction, Fourier transform infrared
spectroscopy, and scanning electron microscopy of the synthesized ZnO/PVDF has been measured
and analyzed. The combined effect of triboelectricity between PDMS:Carbon black and PVDF, and
piezoelectricity in a ZnO/PVDF hybrid, was investigated. Current–voltage characteristics were
observed with varying load from 0–20 g, and resistance was observed to be decreased with load.
Compared to earlier reports, there was a significant enhancement in voltage (≈5.1 V) and current
(≈92.5 nA) at 10 g. Due to the introduction of interfacial polarization between PVDF and ZnO, the
piezoelectric properties and pressure sensitivity of the hybrid ZnO/PVDF is enhanced. The hysterical
behavior in the device’s response while measuring voltage and current with varying time shows
the signature of the triboelectric effect between PVDF and ZnO, as well as PDMS:Carbon black and
ZnO/PVDF layers. Reduction of triboelectric behavior was confirmed with increasing relaxation time.
Because of the enhancement in piezoelectricity, fiber-structured nanogenerator (FNG) ZnO/PVDF
proved to a potential candidate to be used for wearable computing devices, such as smart watches
and sports bracelets.

Keywords: fiber nanogenerator; wearable computing device; ZnO; piezoelectric; PVDF; PDMS

1. Introduction

Human-based energy-harvesting systems have become of great interest with the
broad spread of mobile electronics [1]. Energy sources for portable electronic devices have
been designed to provide sufficient and necessary electricity for devices with low power
consumption. Propagation of IoT technology means many objects in daily life or business
can be controlled anywhere and anytime, forming a ubiquitous environment [2]. Wearable
computing devices refers to electronics which are able to be incorporated into clothing, and
have sustained rapid development. Electronic textiles (e-textiles or smart textiles) are being
actively studied for fabricating all types of wearable devices [3].

Many research groups have developed wearable devices on two-dimensional sub-
strates, such as glass or flexible polymer [4–9]. However, flat-type substrate has many
obstacles for wearable-device applications [10–12]. Wearable devices will ultimately be wo-
ven into fabrics for clothes; hence, cylindrical shaped substrates, similar to textiles, are more
advantageous for low-cost manufacturing [13,14]. Substrate surface roughness is essential
when fabricating electronics, since electrical and mechanical properties can significantly
deteriorate if cracks form between layers [13,15,16]. Traditional textiles, such as wool and
cotton yarns, consisted of an assembly of thin threads. Therefore, a single fiber is required
with smooth interfaces, enhancing operational features for wearable devices [13]. An
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external energy source is required within the clothes to commercialize and adapt wearable
devices [17,18]. Therefore, self-powering systems, particularly piezoelectric devices, have
been widely studied in conjunction with various nanoscale materials [19]. Piezoelectricity
refers to energy harvesting from various external forces, such as heat, pressure, and electric
fields, and includes ferroelectricity, pyroelectricity, and piezoelectricity [20–25].

Zinc oxide (ZnO) is a promising material for practical next-generation technological
applications. Generally, ZnO has a wurtzite structure, which polarizes under an external
force. It also forms a variety of nanostructures, such as nanorods, nanowires, nanobelts,
and nanoforests, depending on the hydrothermal synthesis conditions [19,26,27]. Generally,
the substrate is submerged in a nutrient solution, and ZnO nanoparticles are grown on
metal electrodes. A redox reaction between zinc and other metal ions eradicates the metal
layer without requiring a screen mask [28].

Thus, non-reactive polymeric electrodes are required to prepare intact electrodes after
a chemical reaction. Ferroelectric polymers combined with ceramics maximize energy-
harvesting performance, and are commonly called hybrid nanogenerators [28–30]. PVDF
is the most widely employed ferroelectric polymer due to its vital beta factor, i.e., sponta-
neous electrical polarization aligned by an applied electric field and the protective ceramic
layer [31–33].

ZnO/PVDF composite have been reported for sensing humidity [34], corrosion [35],
pressure, and temperature [36,37]. The researchers have used various electrodes such as
reduced grapheme oxide (rGO), indium tin oxide (ITO)-coated PET, Au, etc. [28,38,39];
however, PDMS:Carbon black has never been used in this ZnO/PVDF hybrid structure.
Therefore, in this article, we present a fiber-structured nanogenerator (FNG) fabricated
on a PET cylindrical substrate with fully covered electrodes made of PDMS:Carbon black
for pressure-sensing wearable computing devices. The device comprises a capacitor with
inside and outside electrodes of PDMS:Carbon black with a ZnO/PVDF piezoelectric
layer. A novel electrode was constructed by dispersing conductive carbon black in poly-
dimethylsiloxane, which provides the advantages of piezoelectricity, high elasticity, good
adhesion, heat durability, and chemical inertness. Electrical performance, i.e., average
output voltage and current, was significantly enhanced by combining ZnO and PVDF in
the energy-harvesting layer. Negative differential capacitance was discovered by applying
weights to the device. We validate that the proposed FNG provides a maximum voltage
up to 10 times that reported previously due to the combination of piezo- and triboelectric
properties in all the layers.

2. Experimental Section

The proposed FNG consists of multiple thin films: a ZnO growth layer covered with
PVDF, sandwiched between PDMS:Carbon black electrodes as shown in Figure 1. To
linearize tangled PET fiber, 100 mm samples were held at 100 ◦C on a hot plate for 1 h, then
rinsed with methanol, acetone, and deionized water at room temperature [15]. The polymer-
based electrode was prepared by mixing PDMS (Dow Corning Sylgard 184) with its curing
agent and 0.1 g carbon black powder (Alfa Aesar) in a 10:1:1 ratio in toluene solvent by
magnetically stirring, because PDMS can be converted into electrically conductive material
by adding 10% carbon black [40]. The composite, PDMS:Carbon black, was coated on the
PET substrate by continuous dipping at a constant 5 mm/s, then placed in a desiccator to
remove air bubbles, and cured at 65 ◦C for 30 min.

The seed solution of ZnO was prepared by mixing 1.1 g of zinc acetate dihydrate
(Zn(CH3CO2)2·2H2O) in isopropyl alcohol (IPA) and sodium hydrate solution, while
stirring drop-wise [41]. The nutrient solution was manufactured using the hydrothermal
method by taking 1 M equimolar amount of hexamethylenetetramine ((CH2)6N4) and zinc
nitrate hexahydrate (Zn(NO3)2·6H2O) in 200 mL deionized water and stirring for 24 h.
Then, the solution was kept at 90 ◦C for 5 h [42].
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The PDMS:Carbon-black-coated PET fiber was soaked in the seed solution and treated
at 150 ◦C on a hot plate three times, then heated in the nutrient solution at 95 ◦C for
8 h [19,28]. The ZnO grown on the PDMS:Carbon-black-coated PET sample was dried under
vacuum for approximately 24 h. The PVDF solution was prepared by mixing 1.5 g PVDF
powder (Sigma Aldrich, Merck, Seoul, Republic of Korea) at a 6:4 volume ratio of acetone
and Dimethylformamide (DMF) [27,28]. Then, the PET covered by PDMS:Carbon black
and ZnO is coated with PVDF solution by a dipping method, and annealed at 65 ◦C (shown
in Figure 1). The formation of ZnO, PDMS, and PVDF was confirmed by X-ray diffraction
(XRD) using Ultima IV (Rigaku, Tokyo, Japan), Attenuated total reflectance (ATR)–Fourier
transform infrared (FTIR) spectroscopy using a Nicolet 6700 (Thermo Fisher Scientific,
Waltham, United States of America) and their surface morphology was studied using field-
effect-scanning electron microscopy (FE-SEM) using a JSM-7100 (Jeol, Tokyo, Japan). After
compositional analysis, electrical properties of the FNG—including electrode resistance,
current-voltage (I–V) curves, average open-circuit and real-time output voltages, and
short-circuit output current—were measured using a Keithley 6517 instrument (Tektronix,
Beaverton, United States of America) and LabView (National Instruments, Texas, United
States of America) while applying weights to the device.

3. Results and Discussion
3.1. Material Characterization

Figure 1 shows the various FNG layers on the cylindrical PET substrate covered by
electrode layers and a ZnO/PVDF composite layer. The PET substrate has thermoelasticity,
with a long rod shape similar to a textile strand. Although PET is generally insulative
and requires specific equipment due to the cylindricity, it can be designed to be suit-
able for an electronic fiber by depositing a metal film or conductive polymer. Therefore,
PDMS:Carbon black was uniformly coated on a PET substrate as an inner electrode and
above a ZnO/PVDF layer as an outer electrode. The rubber-like property, due to cross-
linked silicon groups in PDMS, maximizes electrode-film deformation while enhancing
sensitivity to applied weights [40].

ATR–FTIR was conducted to examine the existence of silicone links in synthesized
PDMS, as seen in Figure 2. FTIR spectra indicated at the peaks of 790, 1072, 1259, 1408,
2164, 2362, and 2964 cm−1 (Si-(CH3)2, Si-O-Si, Si-CH3, Si-CH=CH2, -OH, -CO, and -CH3,
respectively) [43,44]. Dispersing the conductive carbon black particles in the elastic PDMS
produced a very flexible electrode through a simple coating process [40]. The piezoelectric
layer, containing ZnO and PVDF, was evenly fabricated on the PDMS:Carbon black elec-
trode by hydrothermal synthesis and dip coating. During the hydrothermal synthesis of
zinc oxide, the inner electrode retained good adhesion with the substrate at 95 ◦C without
causing an oxidation-redox reaction with zinc ions.

Figure 3a,b shows SEM images of hydrothermally synthesized ZnO and ZnO/PVDF
composite, respectively. Figure 3a shows ZnO alloyed as a tangled nanobelt (NB), and
these nanobelts are agglomerated with micropores at the surface after PVDF coating, as
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shown in Figure 3b. The ZnO NB arrangement was affected by the PVDF powder being
dissolved in DMF and acetone solvents during the immersion process [45]. DMF-treated
ZnO/PVDF was characterized by the XRD method and the pattern is shown in Figure 4a.
The diffraction planes of ZnO (marked with * in Figure 4a) are matched with JCPDS#36-1451
and for α, β, and γ phases of PVDF are JCPDS#42–1650, 38–1638, and 42–1649 [46].

PVDF porosity caused bonding shifts between ZnO NB composites, affecting the
peaks in terms of their broadness and diffuseness. The effects on the peaks due to PVDF
porosity confirmed that the composite structure had a broad shape, consistent with SEM
images (Figure 3a). PVDF is a semi-crystalline polymer with α, β, and γ phases for
different chain formations [47]. The PVDF β-phase has a permanent dipolar moment [48];
therefore, the β-phase has more polarity than the other phases of PVDF and, hence, it
shows the ferroelectric and piezoelectric properties [49]. The PVDF β phase can be seen in
the XRD pattern at 19.46◦, and ATR-FTIR spectra show the PVDF β phase at 838, 1070, and
1288 cm−1 as seen in Figure 4b. Thus, PVDF enhanced piezoelectric performance through
the β phase’s permanent polarization. Figure 4b shows 874, 1070, 1263, and 1383 cm−1 for
the PVDF α phase and 1220 cm−1 for the PVDF γ phase [50–54].
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3.2. Fiber Nanogenerator Electrical Properties

PDMS:Carbon black was selected for the electrodes, and enhanced working perfor-
mance due to its piezoelectricity [55,56] and large Young’s modulus [57]. Due to the
piezoelectric nature of ZnO and PVDF, having the piezoelectric coefficients ≈ 6.08 and
≈2.24 pm/V [58], respectively, the device was constructed as a capacitor [1,31]. In Figure 5,
the electrodes’ ability was assessed by measuring resistance variation. This was performed
by compressing the weight ranging from 0.1 g to 2.0 g in the middle of the sample, which is
pointed out at the inset of Figure 5a. This figure shows the variation of the ratio of resistance
with load (R) to that of resistance without load (Ro), i.e., R/Ro, with applied load varying
from 0.1 to 2 g. As load increases, the ZnO/PVDF NBs start coming close to each other,
which tends to increase conductivity because of ohmic contact formation in the device.

Hybrid FNG piezoelectricity was estimated using a variety of electrical attributes such
as I–V characteristics shown in Figure 5b, from −5 V to +5 V, with increasing load from 0 g
to 20 g. There is a significant enhancement in current at 5 V from 17 to 280 µA. The inset of
Figure 5b shows the zoomed-in image of Figure 5b for 0 g, 5 g, and 10 g. The inset shows
that the I–V curve without load, i.e., 0 g, shows a non-linear resistive behavior similar to a
diode, because the ZnO/PVDF NBs are sufficiently far from each other. However, with an
increase in load towards 20 g, the I–V characteristics seem to have a linear resistive behavior
similar to ohmic connections. The resistance values for 0 g, 5 g, and 10 g are calculated
from the I–V curves and are shown in Figure 5c. This figure shows a linear decrease in
resistance with an increase in load.

Figure 5c shows that resistance was 414.7, 297.4, and 17.0 kΩ at 5, 10, and 20 g loads,
respectively, grounded on Ohm’s law. Since the deformation length is proportional to the
external force from Hooke’s law and Young’s modulus [59], only the cross-sectional area
should be affected, and therefore, resistance would tend to reduce proportionally. However,
the resistance decreased by 117.3 Ω from the 5 to 10 g load, and 280.4 Ω from the 10 to 20 g
load, corresponding to an extra 45.8 Ω reduction due to temporary triboelectric inductance
caused by the capacitive structure and frictional contact between the dielectric materials,
PDMS and PVDF. The response of the device was recorded in terms of current with time by
applying and removing the load of 10 g for ≈90 s (Figure 5d) with an interval of 5–10 s. The
figure shows a clear change in current from 0 g to 10 g, with stability during application
or removal of load. The output current at 10 g is maintained in the range of 88.8–96.2 nA.
This hysteresis behavior in the output current may also be due to the triboelectric effect in
the device.
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from 0 to 20 g with zoomed-in inset figure of 0–10 g, (c) resistance calculated from the slopes in
(b) with varying load from 5–20 g, and (d) the output current with 10 g load for ≈90 s under the
short-circuit state.

Nanogeneration capacity was also examined using output voltage with different
measuring times for loading. Figure 6a shows the output voltage measured while loading
and unloading (or relaxing) for ≈90 s. The measuring time while loading and relaxing
kept an average period of 9 s, which also shows the stability in the measurement. The
average voltage obtained for this duration is 5.1 V which is significantly higher than
the maximum output voltage previously reported for devices fabricated from similar
piezoelectric materials, i.e., ZnO/PVDF, as seen in Table 1. The maximum output voltage
has been compared as per the mechanism, electrode material, and substrate. Table 1 depicts
that the output voltage obtained from the piezoelectric effect is significantly lower than that
of obtained from triboelectric effect. E.g., in ref. [60], output voltage is enhanced from 1 V to
4.5 V when comparing piezoelectric and triboelectric effects for a given electrode (Au) and
substrate material (PVDF). Similarly, as depicted in Table 1, the output voltage obtained in
the ZnO/PVDF reported in this article is significantly higher than that of reported literature,
which is the signature of the triboelectric effect. In Figure 6b, two relaxing times have been
taken of 5 s and 10 s, respectively, to check the triboelectric effect in the device. Under an
open circuit, a 10 g load was applied and relieved for about 5 s and 10 s on the device, as
shown in Figure 6b. The reference line is taken as per the initial voltage to see the gap
between the output pulse relaxing line and the reference line.
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Table 1. Comparison of output voltage produced in ZnO/PVDF hybrid flexible nanogenerator.

Electrode Material Substrate Structure Maximum Output Voltage Mechanism Reference

Au/Cr Fiber-type 0.03 V Piezoelectric [28]

Ag PVDF film 2 V Piezoelectric [39]

Ag PVDF film 0.6 V Piezoelectric [38]

Ag Cotton 0.09 V Piezoelectric [61]

Au PVDF 1 V Piezoelectric [60]

Au PVDF 4.5 V Triboelectric [60]

ITO/PET PDMS 2.15 V Triboelectric [62]

ITO/PET PDMS 3.5 V Triboelectric [63]

ITO/Al PET 4.5 V Triboelectric [64]

PDMS:Carbon black PET 5.1 V Combined triboelectric
and piezoelectric This work

The pulse output voltage was relatively high, lying near 5 V. However, as the number
of input intervals increased, the voltage gap between the relaxing line and reference line
values expanded, as shown in Figure 6b. The triboelectric charge was generated due
to frictional contact of the dielectric materials with a brief relaxing time under 5 s, and
the recovery time among piezoelectric materials differed [36]. Therefore, the case with
a recovery time of 10 s appeared to be a consistent level compared to the time of the 5 s
specimen, due to the reduced triboelectric effect shown in the case of a 10 s pulse.

Figure 7 shows measured capacitance over a range of −5 to 5 V for three samples:
ZnO, PVDF, and hybrid ZnO/PVDF with PDMS:Carbon black electrodes. Capacitance (C)
is inversely proportional to the distance between the electrodes as given by Equation (1),

C = ε
A
d

, (1)

where ε is the absolute permittivity of the medium, A is the electrode area, and d is the
distance between the electrodes. For all three samples, capacitance decreases with load
because of ohmic contact formation inside them with increasing load. Because of this, the
dielectric constant is enhanced, due to the interfacial polarization among the polymer and
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fillers such as ZnO [65,66]. The capacitance was increased in hybrid ZnO/PVDF because
of an increase in piezoelectric properties and absolute permittivity by combining two
piezoelectric materials, i.e., ZnO and PVDF [65]. A magnified image of the capacitance at
10 g and 20 g is shown in the inset of Figure 7. Capacitance increased from ZnO (0.01 nF)
and PVDF (0.018 nF) to hybrid ZnO/PVDF (0.048 nF) at 20 g.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 11 
 

 

C = ε ஺ௗ, (1)

where ε is the absolute permittivity of the medium, A is the electrode area, and d is the 
distance between the electrodes. For all three samples, capacitance decreases with load 
because of ohmic contact formation inside them with increasing load. Because of this, the 
dielectric constant is enhanced, due to the interfacial polarization among the polymer and 
fillers such as ZnO [65,66]. The capacitance was increased in hybrid ZnO/PVDF because 
of an increase in piezoelectric properties and absolute permittivity by combining two pi-
ezoelectric materials, i.e., ZnO and PVDF [65]. A magnified image of the capacitance at 10 
g and 20 g is shown in the inset of Figure 7. Capacitance increased from ZnO (0.01 nF) and 
PVDF (0.018 nF) to hybrid ZnO/PVDF (0.048 nF) at 20 g. 

 
Figure 7. Comparison of capacitance change among three samples: ZnO, PVDF, and ZnO/PVDF 
with piezoelectric layers between PDMS:Carbon black electrodes, with varying load. 

However, the proposed hybrid FNG behaved somewhat non-typically due to the 
temporary triboelectric effects of adjacent materials as the load compressed the device. 
Although the distance between the charged media was decreased, the capacitance value 
was elevated. The results showed that the dielectric constant was also affected on the 
FNG, especially based on the fundamental working principle of triboelectricity, which ac-
quires electrical charge from frictional contact between substances. Consequently, FNG 
performance was enhanced by combining piezoelectric materials in terms of energy pro-
vision, piezoelectricity, and triboelectricity. 

4. Conclusions 
In this article, a capacitor-structured FNG was synthesized and developed to take 

advantage of synergistic effects for energy-harvesting and piezoelectric materials. A de-
tailed compositional analysis of ZnO/PVDF hybrid structure was analyzed. The proposed 
ZnO/PVDF hybrid sandwiched between PDMS:Carbon black electrodes inherited the core 
piezoelectric property, which enhanced performance under load. The detailed I–V char-
acteristics were also investigated with varying loads from 0 g to 20 g, and stability was 
checked by applying and removing load alternately with time. The average electrical out-
put was found to be ≈5 V under open-circuit, with an average short-circuit current of 92.5 
nA at 10 g load, which is a significant enhancement compared to previously reported out-
comes. This is because of the combination of piezo- and triboelectricity observed in the 
ZnO/PVDF which, due to such, can be used as an FNG. Similarly, the capacitance was also 
measured with varying load, and an increase in capacitance was observed from ZnO or 
PVDF to ZnO/PVDF due to an increase in piezoelectricity. 
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with piezoelectric layers between PDMS:Carbon black electrodes, with varying load.

However, the proposed hybrid FNG behaved somewhat non-typically due to the
temporary triboelectric effects of adjacent materials as the load compressed the device.
Although the distance between the charged media was decreased, the capacitance value
was elevated. The results showed that the dielectric constant was also affected on the FNG,
especially based on the fundamental working principle of triboelectricity, which acquires
electrical charge from frictional contact between substances. Consequently, FNG perfor-
mance was enhanced by combining piezoelectric materials in terms of energy provision,
piezoelectricity, and triboelectricity.

4. Conclusions

In this article, a capacitor-structured FNG was synthesized and developed to take
advantage of synergistic effects for energy-harvesting and piezoelectric materials. A de-
tailed compositional analysis of ZnO/PVDF hybrid structure was analyzed. The proposed
ZnO/PVDF hybrid sandwiched between PDMS:Carbon black electrodes inherited the
core piezoelectric property, which enhanced performance under load. The detailed I–V
characteristics were also investigated with varying loads from 0 g to 20 g, and stability
was checked by applying and removing load alternately with time. The average electrical
output was found to be ≈5 V under open-circuit, with an average short-circuit current of
92.5 nA at 10 g load, which is a significant enhancement compared to previously reported
outcomes. This is because of the combination of piezo- and triboelectricity observed in the
ZnO/PVDF which, due to such, can be used as an FNG. Similarly, the capacitance was also
measured with varying load, and an increase in capacitance was observed from ZnO or
PVDF to ZnO/PVDF due to an increase in piezoelectricity.
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