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It is important to identify which proteins can interact with RNA for the purpose of protein annotation, since interactions between
RNA and proteins influence the structure of the ribosome and play important roles in gene expression. This paper tries to identify
proteins that can interact with RNA using voting systems. Firstly through Weka, 34 learning algorithms are chosen for investigation.
Then simple majority voting system (SMVS) is used for the prediction of RNA-binding proteins, achieving average ACC (overall
prediction accuracy) value of 79.72% and MCC (Matthew’s correlation coefficient) value of 59.77% for the independent testing
dataset. Then mRMR (minimum redundancy maximum relevance) strategy is used, which is transferred into algorithm selection.
In addition, the MCC value of each classifier is assigned to be the weight of the classifier’s vote. As a result, best average MCC values
are attained when 22 algorithms are selected and integrated through weighted votes, which are 64.70% for the independent testing
dataset, and ACC value is 82.04% at this moment.

1. Introduction

Protein-RNA interactions play significant roles in a wide
range of biological processes, including regulation of gene
expression, protein synthesis and replication, and the assem-
bly of many viruses [1–4]. A good knowledge of protein-
RNA interactions is fundamentally important for the under-
standing of how proteins regulate gene expression. Machine
learning and data mining methods have been widely applied
in the fields of computational biology and bioinformatics [5–
9], and the same principles are also applied to determine
whether a protein participates in RNAbinding [10–16]. Some
investigations code a protein using primary amino acid
compositions [10, 11, 13, 14], and some code with protein
chemical or physical properties and structural information
[10–12, 14–16]. In terms of machine learning methods,
support vector machine (SVM) [10, 14], artificial neural
networks [17], Naive Bayes [18], and so forth, were all found
in the literature to uncover the interaction between proteins
and RNA. A specific study [19] was carried out to determine

the interaction sites between RNA and Rev proteins of
HIV-1 and EIAV, in which both protein-protein interface
residues and protein-RNA interface residues were predicted,
by first training the predictors using known protein-protein
and protein-RNA complexes and then using the trained
predictors to predict the binding sites of HIV-1 and EIAV Rev
proteins.

The above reviewed papers applied a single classifier to
determine the interactions between RNA and proteins. How-
ever, for a specific biological dataset, an individual classifier
has its own strengths and weaknesses. Underfit or overfit of a
single classifier will affect the accuracy or the generalization
of the prediction performance. Thus, people are inspired to
integrate multiple classifiers [20, 21], in attempts to improve
the prediction/classification performance. Recently, Chen et
al. [21] proposed a few voting systems for the classification
(prediction) of protein structural classes. Chen et al. [21]
used an unprecedented number of machine learning algo-
rithms from Weka (http://www.cs.waikato.ac.nz/∼ml/weka/)
for the voting systems and realized that some of the classifiers
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Figure 1: The average ACC values of 34 algorithms in basic training dataset.

may be redundant since they could worsen the overall
classification performance if included. Therefore, mRMR
(minimum redundancy maximum relevance) [22] strategy,
which is originally developed for feature selection [23, 24],
was transferred into classifier selection. As a result, four
voting systems were developed [21]. They are simple major-
ity voting system (SMVS), weighted majority voting system
(WMVS), SMVS with algorithm selection (SMVS AS); and
WMVS with algorithm selection (WMVS AS). In this paper,
these voting systems are adopted and applied to predict the
interaction between proteins and RNA.

2. Materials and Methods

2.1. Data Preparation

(i) The Rough “Positive” Dataset: Using “RNA binding”
as keywords to search the SWISS-PROT database (version
54.2), 20132 proteins were retrieved. This collection was
designated as “positive” dataset.

(ii) The “Contrast” Dataset: A “contrast” set of 72331
proteins was retrieved from SWISS-PROT by searching with
a list of keywords which possibly imply RNA/DNA-binding
functionality, using the “or” logic, which was proposed by
Cai and Lin [10].

(iii) The Rough “Negative” Dataset: the proteins in the “con-
trast” dataset were removed from the SWISS-PROT database
(it has 232345 sequence entries) and 160014 proteins were
obtained to form the “negative” dataset.

(iv) The RNA-Binding Protein Dataset: protein sequences
with length >6000 aa or <50 aa were removed since they
might be protein complexes or protein fragments. Proteins
including irregular amino acid characters such as “x” and
“z” were also removed. Moreover, the redundancy among the
sequences in “positive” and “negative” datasets was removed
by using CD-HIT [25] and PISCES [26] program, with a
threshold of 40%. As a result, 2063 and 21562 proteins were
produced in nonredundant RNA-binding and “negative”
datasets, respectively. To achieve data balance, datasets were
built in the following manner: first all the proteins in the
“positive” subset were selected as the first part. Then the
proteins in the “negative” subset were randomly selected
as the second part. The number of proteins selected in
the “negative” subset equals that of the first part. Thirdly
we combined the first part and the second part together
to be total dataset; finally we randomly drew out third of
that total dataset to be test dataset, the rest to be train
dataset and Consequently, the RNA-binding protein training
dataset of 2752 proteins and the RNA-binding protein testing
dataset of 1374 proteins (see Table 1, “A” means RNA-
binding protein and “B” means RNA-nonbinding protein)



Journal of Biomedicine and Biotechnology 3

AdaBoostM1
J48
IBk

MultiClassClassifier
PART

MultilayerPerceptron
KStar

Bagging
NBTree

Decorate
RandomForest

JRip
RandomCommittee

FilteredClassifier
ClassificationViaRegression

Dagging
AttributeSelectedClassifier

REPTree
SMO

J48graft
Ridor

RandomSubSpace
EnsembleSelection

SimpleLogistic
DecisionTable

DataNearBalancedND
RacedIncrementalLogitBoost

SimpleCart
LogitBoost

ND
BayesNet

ClassBalancedND
OrdinalClassClassifier

END

A
lg

or
it

h
m

0 0.2 0.4 0.6 0.8 1

MCC value of train set

Figure 2: The average MCC values of 34 algorithms in basic training dataset.

Table 1: The distribution of proteins in training dataset and test
dataset.

Dataset A B

Basic training dataset 1376 1376

Independent test dataset 687 687

are available in Supplementary Material (see Supplementary
Material available online at doi:10.1155/2011/506205). In
order to ensure the stability of the built model, we repeat
these steps ten times. That is to say, we build ten train datasets
and ten test datasets randomly, and all of ACC (overall
prediction accuracy) value and MCC (Matthew’s correlation
coefficient) value in our paper are the average value.

2.2. Feature Vector. A successful classification requires an
effective way to represent a protein. Under current tech-
niques, it is not possible to know every aspect of a protein
from its sequential information. However, the biological
properties of the amino acids that compose a protein
are known, and they may reveal some properties of a
whole protein sequence. Thus, in this paper a protein is
represented by amino acid compositions and the biological
properties of each amino acid [14] which is one of the
popular representation methods in the literature. The biolog-
ical properties include hydrophobicity, predicted secondary
structure, predicted solvent accessibility, normalized Van Der

Waals volume, polarity, and polarizability. As a result, totally
132 features are derived, among which 112 features come
from biological properties and 20 from the amino acid
compositions. Detailed information of these features can be
found in [14].

2.3. Machine Learning Algorithms. 34 machine learning
algorithms in Weka [27] were selected and integrated using
various voting systems. These algorithms are listed below.

BayesNet, DecisionTable, JRip, PART, Ridor, AttributeS-
electedClassifier, Bagging, ClassificationViaRegression, Dag-
ging, Decorate, END, EnsembleSelection, FilteredClassi-
fier, LogitBoost, MultiClassClassifier, OrdinalClassClassifier,
RacedIncrementalLogitBoost, RandomSubSpace, ClassBal-
ancedND, ND, DataNearBalancedND, RandomCommittee,
IB1, AdaboostM1, Kstar, MultilayerPerceptron, SimpleLogis-
tic, SMO, J48, J48graft, NBTree, RandomForest, REPTree,
SimpleCart.

Readers may refer to [27] for detailed introduction about
these algorithms.

2.4. Ensemble Approach. Four ensemble approaches, Sim-
ple majority voting system (SMVS), weighted majority
voting system (WMVS), SMVS with algorithm selec-
tion (SMVS AS), and WMVS with algorithm Selection
(WMVS AS), are introduced briefly here. Readers may refer
to [21] for the detailed information about these voting
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Figure 3: The average ACC values of 34 algorithms in independent test dataset (including the results of SMVS and WMVS MCC).

systems. SMVS takes the class label that gains the majority
votes as the class of a processed data. WMVS weighs each vote
with the overall prediction accuracy of the corresponding
classifier on a training dataset. SMVS AS first selects some
classifiers using mRMR method, and then the selected
algorithms are integrated through SMVS. WMVS AS is like
the SMVS AS to first select some classifiers using mRMR
method, but then WMVS is used instead of SMVS in the
integration.

3. Results and Discussion

3.1. Prediction Results of the 34 Algorithms. 34 algorithms
were tested by tenfold cross-validation (10-CV) on both the
basic training dataset and the independent testing dataset.
The detailed outputs of 10-CV on the basic training dataset
and independent testing dataset are listed in Supplementary
Material.

Figures 1, 2, 3, and 4 depicted both the average values of
ACC and MCC of each algorithm in basic training dataset
and independent test dataset, respectively. Figures 3 and
4 also included the average values of ACC and MCC in
SMVS and WMVS MCC (WMVS based on MCC value, all of
WMVS values are based on MCC value in our paper). SMO
performs best on the training dataset, with 79.40% of ACC
value and 58.81% of MCC value, and also SMO performs
best on the testing dataset, with 79.29% of ACC value and

58.58% of MCC value. The standard deviation of ten datasets
of the 34 algorithms is listed in Table 2; it seems that the
results are stable.

The Matthew’s correlation coefficient (MCC) is used
in machine learning as a measure of the quality of binary
(two-class) classifications. It takes into account true and
false positives and negatives and is generally regarded as a
balanced measure which can be used even if the classes are of
very different sizes. The MCC can be calculated directly from
the confusion matrix using the following formula:

MCC = TP× TN− FP× FN
√

(TN + FN)×(TN + FP)×(TP + FN)×(TP + FP)
.

(1)

In this equation, TP is the number of true positives, TN the
number of true negatives, FP the number of false positives,
and FN the number of false negatives.

3.2. Results of SMVS and WMVS. Average predicted results
and standard deviation of SMVS and WMVS are shown
in Table 3. SMVS and WMVS perform better than any
individual algorithm selected in Weka, and WMVS performs
a little better than SMVS. It implies that as a whole
the 34 algorithms collaborate to improve the prediction
accuracy through voting. The values of standard deviation
also decrease significantly through voting. It implies that
voting system increases the stability of prediction model.
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Figure 4: The average MCC values of 34 algorithms in independent test dataset (including the results of SMVS and WMVS MCC).
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Figure 5: The average MCC value of SMVS AS and WMVS AS.

3.3. Results of SMVS AS and WMVS AS. Algorithms are
added into the voting system one by one according to the
order of mRMR. The voting result of each added algorithm
is plotted in Figure 5.

SMVS AS and WMVS AS achieve the highest average
MCC value of 64.40% and 64.70% when the 22th algorithm
is added. The curve in Figure 5 shows that WMVS AS per-
forms better than SMVS AS in most cases, especially when
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Figure 6: Distribution of algorithms.

the voting system involves an even number of algorithms.
Voting systems with algorithm selection perform better than
those without, indicating that some of the 34 algorithms
cause a negative effect or no effect and should be excluded in
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Table 2: The standard deviation of the 34 algorithms.

Algorithm

Standard deviation

Basic training dataset Independent test dataset

ACC (%) MCC (%) ACC (%) MCC (%)

AdaBoostM1 0.61 1.16 1.00 1.94

J48 0.88 1.76 1.42 2.84

IBk 0.52 1.01 1.18 2.21

MultiClassClassifier 0.60 1.21 1.04 2.09

PART 0.55 1.25 1.26 2.54

MultilayerPerceptron 1.26 2.52 2.22 3.04

KStar 0.72 1.41 1.07 2.00

Bagging 0.76 1.51 0.43 0.88

NBTree 0.82 1.64 2.04 4.09

Decorate 0.73 1.47 1.16 2.25

RandomForest 0.67 1.32 0.62 1.25

JRip 0.48 0.96 2.25 4.43

RandomCommittee 0.51 0.99 1.23 2.59

FilteredClassifier 1.11 2.22 1.16 2.32

ClassificationViaRegression 0.96 1.91 0.80 1.57

Dagging 0.70 1.38 1.00 2.00

AttributeSelectedClassifier 0.85 1.71 0.66 1.40

REPTree 0.71 1.46 1.32 2.66

SMO 0.55 1.10 1.06 2.11

J48graft 1.06 2.12 1.40 2.81

Ridor 1.01 2.14 1.70 3.44

RandomSubSpace 0.91 1.84 1.22 2.44

EnsembleSelection 0.78 1.60 1.35 2.42

SimpleLogistic 0.41 0.83 0.92 1.84

DecisionTable 0.98 2.06 1.86 3.87

DataNearBalancedND 0.88 1.76 1.42 2.84

RacedIncrementalLogitBoost 0.63 1.59 1.68 3.61

SimpleCart 0.63 1.26 1.13 2.25

LogitBoost 0.43 0.87 1.23 2.47

ND 0.88 1.76 1.42 2.84

BayesNet 0.51 1.02 1.02 2.10

ClassBalancedND 0.88 1.76 1.42 2.84

OrdinalClassClassifier 0.88 1.76 1.42 2.84

END 0.88 1.76 1.42 2.84

Table 3: The comparison of the predictors.

Predictor
Average predicted results Standard deviation

ACC (%) MCC (%) ACC (%) MCC (%)

Best individual
algorithm

79.29 58.58 1.06 2.11

SMVS 79.72 59.77 0.76 1.49

WMVS 80.82 61.94 0.68 1.32

SMVS AS 81.88 64.40 0.55 1.02

WMVS AS 82.04 64.70 0.42 0.81

the voting. Thus algorithm selection is essential for a better
classification performance.

3.4. Result of mRMR. In Weka version 3.5.7, the 34 algo-
rithms are divided into Bayesian classifiers (Bayes), trees,
rules, functions, metalearning algorithms (meta), and lazy
classifiers (lazy). The number of algorithms of different
types involved in the voting before algorithm selection
and after algorithm selection is shown in Figure 6 (the
number of algorithms used by WMVS AS is average value
of 22 algorithms). In terms of proportion, all adopted lazy
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and rules classifiers are selected by the voting system, and
around half of functions and tree classifiers are selected,
indicating that there is less redundancy among these types
of classifiers. The Bayes classifier is excluded, indicating that
it performs negatively or has no effect in the voting. Because
the number of metaclassifiers is the greatest among all types
of classifiers involved, many of them are redundant and
excluded from the voting. Nevertheless, more metaclassifiers
remain in the voting than any other types of classifiers
after the algorithm selection. On the whole, the number
of classifiers of different types becomes evener after the
algorithm selection, indicating that classifiers from different
types tend to collaborate better in the voting than those from
the same type.

4. Conclusions

To predict the interaction between proteins and RNA, we
integrate a number of machine learning algorithms selected
from Weka using four voting systems [21]. As a result,
voting systems perform better than any single classifier,
voting systems with algorithm selection perform better than
those without, and weighted voting systems perform better
than those without weighting. Weighted voting systems with
algorithm selection achieve the best prediction results with
82.04% (ACC value) and 64.70% (MCC value) on the
independent dataset.
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