
RESEARCH ARTICLE

Adaptive Optics Reveals Photoreceptor

Abnormalities in Diabetic Macular Ischemia

Peter L. Nesper1, Fabio Scarinci1,2, Amani A. Fawzi1*

1 Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,

United States of America, 2 G.B. Bietti Eye Foundation-IRCCS, Rome, Italy

* afawzimd@gmail.com

Abstract

Diabetic macular ischemia (DMI) is a phenotype of diabetic retinopathy (DR) associated

with chronic hypoxia of retinal tissue. The goal of this prospective observational study was

to report evidence of photoreceptor abnormalities using adaptive optics scanning laser oph-

thalmoscopy (AOSLO) in eyes with DR in the setting of deep capillary plexus (DCP) non-

perfusion. Eleven eyes from 11 patients (6 women, age 31–68), diagnosed with DR without

macular edema, underwent optical coherence tomography angiography (OCTA) and

AOSLO imaging. One patient without OCTA imaging underwent fluorescein angiography to

characterize the enlargement of the foveal avascular zone. The parameters studied

included photoreceptor heterogeneity packing index (HPi) on AOSLO, as well as DCP non-

perfusion and vessel density on OCTA. Using AOSLO, OCTA and spectral domain (SD)-

OCT, we observed that photoreceptor abnormalities on AOSLO and SD-OCT were found in

eyes with non-perfusion of the DCP on OCTA. All eight eyes with DCP non-flow on OCTA

showed photoreceptor abnormalities on AOSLO. Six of the eight eyes also had outer retinal

abnormalities on SD-OCT. Three eyes with DR and robust capillary perfusion of the DCP

had normal photoreceptors on SD-OCT and AOSLO. Compared to eyes with DR without

DCP non-flow, the eight eyes with DCP non-flow had significantly lower HPi (P = 0.013) and

parafoveal DCP vessel density (P = 0.016). We found a significant correlation between cone

HPi and parafoveal DCP vessel density (r = 0.681, P = 0.030). Using a novel approach with

AOSLO and OCTA, this study shows an association between capillary non-perfusion of the

DCP and abnormalities in the photoreceptor layer in eyes with DR. This observation is

important in confirming the significant contribution of the DCP to oxygen requirements of

photoreceptors in DMI, while highlighting the ability of AOSLO to detect subtle photorecep-

tor changes not always visible on SD-OCT.

Introduction

Diabetic macular ischemia (DMI) is one of the major complications of diabetic retinopathy

(DR) leading to severe loss of visual acuity [1]. Fluorescein angiography (FA) shows enlarge-

ment of the foveal avascular zone (FAZ) [2] and macular capillary closure in eyes with DMI
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[3]. While DMI may be associated with diabetic macular edema (DME) [4,5], in about 15% of

cases, however, DMI becomes the predominant feature of the retinopathy leading to vision

loss that cannot be explained by DME or neovascular complications [6,7]. In a recent study,

Sim et al found that eyes with extensive DMI had significant thinning of the outer retina, sug-

gesting that photoreceptor disruption may contribute to the associated vision loss [8].

By correcting the wavefront aberrations of the eye, adaptive optics scanning laser ophthal-

moscopy (AOSLO) enables visualization of individual cone photoreceptors [9]. On AOSLO,

photoreceptors appear as bright spots due to their waveguiding properties; light is directed by

the inner segment into the outer segment, and then reflected back toward the pupil center

[10]. Disruption of the waveguiding properties of photoreceptors on AOSLO has been shown

to correspond to disruption of the photoreceptor layers on spectral domain-optical coherence

tomography (SD-OCT) [11]. Previous studies using various AO techniques to assess the outer

retina in patients with DR have shown decreased perifoveal photoreceptor density [12–14], a

higher spread in neighbor distances between cones and a deviation from the normal cone

packing arrangement [14]. To our knowledge, none of these studies have explored the correla-

tion between photoreceptor changes on AO and the extent of overlying retinal capillary non-

perfusion.

In a previous study, we found that retinal capillary non-perfusion on FA corresponded with

outer retinal disruption on SD-OCT in eyes with DMI [15]. Then, we used OCT angiography

(OCTA) to confirm that non-flow at the overlying deep retinal capillary plexus (DCP) corre-

lated tightly to these zones of photoreceptor abnormalities on SD-OCT [16]. In the current

study, we use AOSLO with OCTA to further test the hypothesis that non-flow at the level of

the DCP is associated with photoreceptor abnormalities in patients with DR. We discuss these

findings and their pathophysiologic significance in relationship to previous experimental stud-

ies of the effects of hypoxia on cone outer segments.

Methods

Patients were prospectively recruited in the Department of Ophthalmology at Northwestern

University in Chicago, Illinois between May 27, 2015 and June 10, 2016. This study was

approved by the Institutional Review Board of Northwestern University and followed the

tenets of the Declaration of Helsinki, and was performed in accordance with the Health Insur-

ance Portability and Accountability Act regulations. Written informed consent was obtained

from all participants.

Study sample

Inclusion criteria for this study required a diagnosis of diabetic retinopathy, ranging from

minimal nonproliferative (NPDR) to high risk and quiescent proliferative (PDR), based on the

grading of color fundus photographs [17] analyzed by one experienced retinal specialist (A.A.

F.), and the ability to obtain high-quality AOSLO and OCTA images. We included patients

with both type 1 and type 2 diabetes mellitus (DM).

Exclusion criteria included eyes that have undergone surgical retinal repair, received intra-

vitreal anti-vascular endothelial growth factor or laser treatment in the macula. We specifically

excluded eyes with DME, which was evaluated using SD-OCT. We included eyes with minimal

retinal hard exudates (four eyes), but these exudates were located outside the area of study. We

excluded eyes with significant hemorrhages, astigmatism (> 3 diopters), or cataracts in order

to avoid optical artifacts. We excluded eyes with any other known retinal diseases. After image

acquisition, we excluded eyes where the OCTA images had movement or shadow artifacts,

OCTA signal strength score lower than 50, and eyes with previously undetected macular
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edema. Finally, we excluded eyes with AOSLO images that were not gradable. Electronic medi-

cal records were reviewed to extract demographic and clinical information.

Outer retinal evaluation

Outer retinal abnormalities were evaluated using the SD-OCT B-scans from the RTVue-XR

Avanti OCTA system (Optovue Inc., Fremont, California). In one patient who did not have

OCTA images, we evaluated SD-OCT from the Spectralis HRA+OCT imaging device (HRA;

Heidelberg Engineering, Heidelberg, Germany). The imaging protocol for the Heidelberg

SD-OCT included 31 horizontal B-scans per volume scan spanning 20˚ x 20˚ of the macula,

each B-scan including an average of 30 frames. The tracking feature of the Heidelberg Spectra-

lis HRA+OCT allowed each OCT B-scan to be registered to its exact location on the infrared

reflectance (IR) image.

A trained retina specialist (A.A.F.) graded the outer retina on SD-OCT as “normal” or

“abnormal”. Outer retinal abnormalities were defined as focal absence or reduced reflectivity

of the inner segment / outer segment (IS/OS) junction or the outer segment / retinal pigment

epithelium (OS/RPE) junction. We also carefully inspected the SD-OCT B-scans on both the

Optovue device and the Spectralis device to ensure any findings of photoreceptor abnormali-

ties or capillary non-flow were not due to shadowing artifacts related to overlying retinal

pathology (i.e., hard exudates) or media opacity.

Angiographic imaging

We obtained 3 x 3 mm2 OCTA images centered on the fovea using the RTVue-XR Avanti sys-

tem (Optovue Inc., Fremont, California) with split-spectrum amplitude-decorrelation angiog-

raphy (SSADA) software [18,19]. This instrument has an A-scan rate of 70,000 scans per

second and uses a light source centered on 840 nm and a bandwidth of 45 nm. The SSADA

algorithm detects flow by quantifying the decorrelation of the OCT reflectance between two

consecutive B-scans at the same location on the retina. En face OCT angiograms were auto-

matically segmented to define the superficial capillary plexus (SCP) and DCP. We then used

the built-in AngioVue Analytics software (version 2016.1.0.26) to identify regions of capillary

non-perfusion, defined as areas of “non-flow” larger than 100 microns in diameter. We also

used AngioVue Analytics to quantify the “parafoveal” vessel density of the DCP. The “parafo-

vea” was defined as an annulus centered on the fovea with inner and outer ring diameters of 1

mm and 3 mm, respectively. Vessel density was defined as the area occupied by vessels and

microvasculature, and is reported as a percentage of the total area. To calculate vessel density,

the AngioVue Analytics software extracts a binary image of the blood vessels from the gray-

scale OCTA image, and then calculates the percentage of pixels occupied by blood vessels in

the defined region. In one eye, OCTA was not available at the time of examination and FA was

used instead to define areas of macular non-perfusion. En face structural OCT images seg-

mented to include the IS/OS and OS/RPE were also obtained from the OCTA to correlate with

AOSLO.

Adaptive optics imaging

AOSLO imaging was performed using the Apaeros retinal imaging system (Boston Microma-

chines Corporation, Boston, Massachusetts). Two superluminescent diodes (SLD) were used

as light sources, centered at 780 and 830 nm with bandwidths of 20 and 15 nm, respectively.

The power at the eye was approximately 200 microwatts. A tweeter mirror (Boston Microma-

chines Corporation, Boston, Massachusetts) with 140 actuators and 5.5 μm of stroke corrected
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for higher order aberrations, while a woofer mirror (AlpAO SAS, Montbonnot, France) with

37 actuators and 25 μm of stroke corrected lower order aberrations.

Adequate pupillary dilation was ensured prior to imaging, which began in the fovea and

continued in a grid or line pattern steered by a wide field mirror. Focusing on the photorecep-

tors, the investigator acquired 2˚ x 2˚ images of the retina, as well as 1˚ x 1˚ images in areas of

interest to provide high-resolution insets. We acquired 100 frames (individual images) per

area of retina. Steps of 0.5˚ between each 2˚ x 2˚ patch of retina were taken to ensure adequate

overlap for montaging purposes.

Adaptive optics image processing and grading

Each block of frames corresponding to a 2˚ x 2˚ or 1˚x 1˚ location was averaged using a custom

MATLAB (Mathworks, Inc., Natick, Massachusetts) program [20]. This software utilizes algo-

rithms to dewarp and align frames, and then compresses each block into an averaged, high-

resolution image. The resulting 2˚ x 2˚ images were exported into i2k Retina Pro montaging

software (DualAlign LLC, Clifton Park, NY, USA) for automated montaging.

We examined the AOSLO images for outer segment signal to identify discontinuity in the

photoreceptor mosaic. Photoreceptors were defined as normal or waveguiding on AOSLO if

they were visible and hyper-reflective, appearing as a mosaic of bright, distinguishable dots

(Fig 1). To exclude the potential confounding factor of improper image focus and other image

acquisition confounders, we additionally required the presence of normal photoreceptors

within the same frame for confirmation of focal photoreceptor abnormalities.

We assessed the cone packing arrangement using Voronoi diagrams, which we imple-

mented with the voronoi MATLAB function. We created one Voronoi diagram per eye: one in

the area of DCP non-flow for the eyes with DCP non-flow, and one area at a similar eccentric-

ity for the eyes with DR without DCP non-flow. For Voronoi analysis, we used AOSLO images

that were 200 by 200 pixels, obtained from images covering 1˚ x 1˚ of the retina taken at 2˚ to

3˚ from the foveal center (or about 578 to 867 μm from the foveal center in an eye with a focal

length of 16.7 mm). Each Voronoi cell was coded by a different shade of gray corresponding to

the number of neighboring cones. From each Voronoi diagram, we calculated the heterogene-

ity packing index (HPi), developed by Lombardo and colleagues, which represents the increase

in 4- and 8-sided cones compared to 6-sided cones [14]. A lower HPi represents a greater devi-

ation from the normal packing arrangements of cone photoreceptors. Before calculating the

HPi, we manually checked each image to ensure the algorithm properly identified each cone

photoreceptor.

Image overlay

After image grading, all AOSLO images were uniformly enhanced for cone visualization by

increasing the brightness, contrast and sharpness by 22%, 11% and 37%, respectively. Using

retinal vascular landmarks as guides, AOSLO montages were then manually overlaid onto the

OCTA images to allow correlation between DCP non-perfusion, and outer retinal abnormali-

ties on SD-OCT and AOSLO. For the one patient without OCTA, we overlaid the FA and

AOSLO images onto the IR image and then used Heidelberg Eye Explorer (version 1.7.0.0,

Spectralis Viewing Module 5.4.6.0; Heidelberg Engineering, Heidelberg, Germany) to perform

correlations between the FA, SD-OCT and AOSLO images.

Statistics

Statistical analysis was performed using the SPSS software (version 17.0; SPSS, Inc., Chicago,

IL). We ran independent samples t-tests for all numerical demographic information (Table 1).

Photoreceptor Abnormalities in Diabetic Macular Ischemia
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Fig 1. Normal Photoreceptors in an Area of Non-Flow of the Superficial Capillary Plexus (SCP). Case 1, right eye. (A) Optical

coherence tomography angiography (OCTA) of the SCP shows a relatively normal contour of the foveal avascular zone (FAZ) with focal

areas of capillary non-flow inferior and superior to the FAZ, including an area imaged by adaptive optics scanning laser ophthalmoscopy

(AOSLO) (red circle). (B) OCTA of the deep capillary plexus (DCP) with location of AOSLO montage (green box) and enlarged inset (blue

box). DCP shows a normal FAZ, robust capillaries throughout, and a vessel density of 63.46%. (C) En face structural OCT image

Photoreceptor Abnormalities in Diabetic Macular Ischemia
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We also ran independent samples t-tests to assess any differences between eyes with and eyes

without DCP non-flow for parafoveal DCP vessel density and for HPi. We used a Spearman

rank test to determine the correlation coefficient between photoreceptor HPi and DCP parafo-

veal vessel density.

Results

A total of 11 eyes of 11 patients with DR (median age, 43 years; average age, 43.3 years; range

31–68 years) were included in the analysis. The median duration of DM was eight years (aver-

age, 12.9 years; range, 2–28 years). Eight eyes showed evidence of DMI at the level of the DCP

segmented at the inner segment / outer segment (IS/OS) and the outer segment / retinal pigment epithelium (OS/RPE) junctions is unable

to resolve the photoreceptor mosaic. (D) AOSLO montage stitched from 2˚ x 2˚ images with location of B-scans (yellow lines) and enlarged

inset below (blue box). (E) Enlarged 1˚ x 1˚ AOSLO image from montage with heterogeneity packing index of 0.432. Dotted lines indicate

location of B-scans. (F) Spectral domain (SD)-OCT from the OCTA device showing robust IS/OS and OS/RPE bands. Green box and blue

lines show location of AOSLO montage and enlarged inset, respectively. Green lines indicate the segmentation boundaries for the DCP.

White scale bars in A, D and E are 100 μm.

doi:10.1371/journal.pone.0169926.g001

Table 1. Characteristics of Study Participants with Diabetic Retinopathy.

Case # Sex/

Age, y

DM

Type

Duration of

DM, y

HbA1c Study

Eye

BCVA DR

Stage

Laser

Treatment

Diabetes

Medication

DCP Density

(%)

HPi

Normal DCP

1 M/48 1 7 12.0 Right 20/20 NPDR None Insulin, glucagon 63.46 0.432

2 M/37 2 6 8.1 Right 20/15 NPDR None Insulin 58.02 0.429

3 F/33 1 26 9.0 Right 20/20 PDR None Insulin 58.94 0.433

DCP Non-Flow

4 F/33 1 25 8.0 Left 20/20 PDR PRP Insulin,

Metformin

55.81 0.366

5 F/31 1 17 5.8 Right 20/20 PDR None Insulin 51.44 0.429

6 F/68 2 28 10.4 Right 20/50 PDR PRP Insulin 46.39 0.321

7 F/53 2 8 6.9 Right 20/25 NPDR None Insulin - 0.328

8 M/43 2 6 7.4 Left 20/25 PDR PRP Insulin 49.52 0.314

9 M/47 2 12 8.2 Left 20/25 PDR None Insulin 42.96 0.397

10 F/33 2 5 7.2 Right 20/20 NPDR None Insulin 57.69 0.360

11 M/47 2 2 7.8 Right 20/30 PDR PRP Metformin 47.69 0.352

Normal DCP

(1–3)

Mean (SD) 39.3

(7.8)

13.0 (11.3) 9.7

(2.0)

- - - - - 60.14 (2.91) 0.431

(0.002)

DCP Non-Flow

(4–11)

Mean (SD) 44.4

(12.5)

12.9 (9.6) 7.7

(1.3)

- - - - - 50.21 (5.21) 0.358

(0.013)

P-value 0.54 - 0.99 0.084 - - - - - 0.016 0.013

Deep capillary plexus parafoveal vessel density on optical coherence tomography angiography and the cone photoreceptor heterogeneity packing index on

adaptive optics scanning laser ophthalmoscopy were significantly reduced in patients with diabetic macular ischemia.

Abbreviations: BCVA = Best corrected visual acuity, DCP = Deep capillary plexus, DM = Diabetes mellitus, DR = Diabetic retinopathy, HbA1c = Glycated

hemoglobin, percent of total hemoglobin, HLD = Hyperlipidemia, HPi = Heterogeneity Packing index, HTN = Hypertension, KD = Kidney disease,

NPDR = Non-proliferative diabetic retinopathy, OU = Oculus uterque (both eyes), OD = Oculus dexter (right eye), OS = Oculus sinister (left eye),

PDR = Proliferative diabetic retinopathy, PRP = Panretinal photocoagulation, SD = Standard deviation, y = Years, P-value = Independent samples t-test

between Normal DCP and DCP non-flow groups for each parameter.

doi:10.1371/journal.pone.0169926.t001
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(eyes with DCP non-flow). Three eyes with DR showed normal macular perfusion of the DCP

(eyes with DR without DCP non-flow). Table 1 summarizes the ocular findings and demo-

graphic characteristics by case number. The demographics of the eyes with DCP non-flow

compared to eyes with DR without DCP non-flow were matched (Table 1).

Vessel density and voronoi analysis

We found a significant reduction in parafoveal DCP vessel density in eyes with DCP non-flow

compared to eyes with DR without DCP non-flow (50.21% ± 5.21% for DCP non-flow, and

60.14% ± 2.91% for DR without DCP non-flow; P = 0.016; Table 1). For the Voronoi analysis

of cones, we found a significant reduction in HPi in eyes with DCP non-flow compared to

eyes with DR without DCP non-flow (0.358 ± 0.013 for DCP non-flow, and 0.431 ± 0.002 for

DR without DCP non-flow; P = 0.013; Table 1). Fig 2 shows cones with Voronoi diagrams and

HPi for an eye with DR without DCP non-flow, and two eyes with DCP non-flow. A signifi-

cant correlation was found between photoreceptor HPi and parafoveal DCP vessel density for

the ten eyes that had both OCTA and AOSLO (r = 0.681, P = 0.030; Fig 3).

Local analysis

Three eyes (Cases 1–3) with DR without DCP non-flow had a normal FAZ contour and robust

DCP capillary perfusion, and showed consistently higher HPi than eyes with DCP non-flow

(Fig 1 and Table 1). All three eyes showed normal IS/OS and OS/RPE junctions on SD-OCT.

Two of the eyes showed focal areas of capillary non-flow at the level of the SCP with normal

underlying DCP and photoreceptors (Fig 1).

In eight eyes with DCP non-flow (Cases 4–11), areas of DCP ischemia corresponded to

zones of reduced photoreceptor HPi on AOSLO (Figs 4 and 5, S1 and S2 Figs). Seven of the

eyes with DCP non-flow had OCTA images, which showed ischemia localized to the level of

the DCP (with or without SCP involvement). This included irregular and enlarged contour of

the FAZ, and/or areas of DCP non-flow in the parafovea. For the eye without OCTA, an irreg-

ular and enlarged FAZ contour was seen on FA, which indicated overlapping SCP and DCP

ischemia, by definition (Fig 5).

In six of eight eyes with DCP non-flow, zones of photoreceptor abnormalities (reduced

HPi) corresponded tightly to areas of IS/OS and OS/RPE abnormalities on SD-OCT (Fig 5 and

S2 Fig). In contrast, two eyes with photoreceptor abnormalities on AOSLO had normal

appearing photoreceptor layers on SD-OCT (Fig 4 and S1 Fig). Furthermore, zones of photo-

receptor abnormalities on AOSLO in four eyes correlated tightly to hypo-reflectivity on en face
SD-OCT images segmented at the IS/OS and OS/RPE (S2 Fig). In six eyes with DCP ischemia,

some capillaries seen in the DCP were verified, by comparing the SCP to DCP, to be artifact

projections from the SCP (Fig 4, S1 and S2 Figs). This type of projection artifact may lead to an

underestimation of the extent of DCP non-perfusion when using OCTA [21].

Discussion

In the current study, we confirm the hypothesis that DCP ischemia is associated with abnor-

malities of cone photoreceptor layer in DR as revealed on AOSLO. We found that eyes with

DCP non-flow had abnormal cone packing arrangements (lower HPi) compared to eyes with

DR without DCP ischemia, and that DCP vessel density correlated significantly with HPi. We

also found that areas of photoreceptor abnormalities on AOSLO corresponded to abnormali-

ties of the photoreceptor lines on SD-OCT in some eyes, while these photoreceptor changes on

AOSLO were not detectable on OCT in others.

Photoreceptor Abnormalities in Diabetic Macular Ischemia
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In recent studies, we have used SD-OCT scans to show outer retinal disruption that co-

localized to non-perfusion on FA [15] and specifically to the DCP on OCTA in eyes with DMI

[16]. While OCT provides excellent axial resolution, its lateral resolution is limited to> 20

microns due to monochromatic aberrations of the eye [22]. In comparison, by correcting these

aberrations, AOSLO allows en face assessment of individual photoreceptor cells [23,24]. In the

current study, we confirm that the abnormalities of photoreceptor lines we observed on OCT

correspond to zones of abnormal cones on AOSLO. Furthermore, we have demonstrated the

ability of AOSLO to detect photoreceptor abnormalities that are not visualized on SD-OCT

(Fig 4 and S1 Fig).

Fluctuations in cone reflectivity on AOSLO, which can influence HPi calculations, may be

caused by molecular changes within the cell during various states of photo-transduction or

changes in outer segment length [25]. Reduced cone reflectivity may also indicate morphologi-

cal alterations that interfere with their waveguiding abilities [26]. Some studies have shown

that increased cone spacing and reduced outer segment reflectivity on AOSLO correspond to

areas of visual defects in microperimetry [27–29] as well as reduced amplitude and response

densities on multifocal electroretinography [30,31]. However, the correlation between cone

Fig 2. Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) Images and Corresponding Voronoi Diagrams with Heterogeneity Packing

Index (HPi). (A-C) AOSLO images of cone mosaic (200 by 200 pixels taken from 1˚ x 1˚ images). (D-F) Voronoi tessellation corresponding to the image

above with shading of cells indicating the number of neighboring photoreceptor cells, from dark (four neighbors) to light (eight neighbors). A lower HPi

represents a larger deviation from the normal packing arrangement of cones. (A and D) Cones in an eye with DR without deep capillary plexus (DCP) non-

flow (Case 3, HPi = 0.433). (B and E) Cones in an area of DCP non-flow (Case 10, HPi = 0.360). (C and F) Cones in an area of DCP non-flow (Case 8,

HPi = 0.314).

doi:10.1371/journal.pone.0169926.g002
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reflectivity and cone function is unclear, as even cones with low reflectivity on AOSLO can

have normal sensitivity to light. [32]

To our knowledge, this is the first study that utilizes AO to study photoreceptors in areas of

DCP non-perfusion. In a previous flood-illumination AO study, Lombardo et al found an

average of 10% decrease in parafoveal cone density in eyes with type 1 DM and a mean dura-

tion of diabetes of 13 years [12]. Lombardo also identified pathological disruptions of the par-

afoveal cone mosaic in patients with DM by using cone density, linear dispersion index, and

HPi parameters [14]. In this latter study, Lombardo found significantly decreased HPi in eyes

of patients with DM, both with and without DR, compared to healthy controls. Lammer et al

studied a number of different AOSLO parameters that measure the regularity cone photore-

ceptor packing arrangements in healthy patients and patients with diabetes (No DR, NPDR,

and PDR). The authors found that a decrease in some of these parameters was associated with

the presence of DM, with increased DR severity, and with the presence of edema [33]. While

Fig 3. Heterogeneity Packing Index (HPi) of Cones was Significantly Correlated with Deep Capillary Plexus (DCP) Vessel Density. The

Spearman rank test showed a significant correlation between HPi from adaptive optics scanning laser ophthalmoscopy imaging and parafoveal

DCP vessel density from optical coherence tomography angiography (r = 0.681, P = 0.030) for the ten eyes with both types of imaging performed.

doi:10.1371/journal.pone.0169926.g003
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these previous studies provide important insights into the status of photoreceptors in eyes with

DR, they did not study the status of the retinal circulation in relationship to the photoreceptor

compromise. In the current study, we found a significant decrease in HPi in eyes with DCP

non-flow compared to eyes with DR and normal DCP perfusion. Lower HPi indicates a devia-

tion from the normal hexagonal packing arrangements of cones in the human retina [14,34].

The correlation of these areas to DCP non-flow in our study may suggest that outer retinal

hypoxia contributed to the abnormal packing arrangement (likely associated with cone loss, as

discussed in [14]), seen in these eyes [35–40].

Photoreceptors in rats have been shown to be specifically vulnerable to hypoxemia [35].

Prior to apoptosis, hypoxic photoreceptors deconstruct their outer segments to reduce their

Fig 4. Reduced Photoreceptor Heterogeneity Packing Index (HPi) in an Area of Capillary Non-Flow of the Deep Capillary Plexus (DCP). Case 4,

right eye. (A) Optical coherence tomography angiography (OCTA) of the superficial capillary plexus (SCP) shows a relatively normal foveal avascular zone

(FAZ), along with distinct foci of capillary non-flow throughout angiogram. (B) OCTA of the DCP with location of adaptive optics scanning laser

ophthalmoscopy (AOSLO) montage (green box). DCP reveals an enlarged and irregular FAZ contour and has a vessel density of 55.81%. The red

box highlights an area of capillary non-flow and the location of the enlarged AOSLO inset. (C) En face structural OCT image segmented at the inner

segment / outer segment (IS/OS) and the outer segment / retinal pigment epithelium (OS/RPE) junctions cannot resolve photoreceptor integrity. (D)

AOSLO montage stitched from 2˚ x 2˚ images with location of B-scans (yellow lines) and enlarged inset (red box). (E) Enlarged 1˚ x 1˚ AOSLO image from

montage (HPi = 0.366). Dotted lines indicate location of B-scans. (F) Spectral domain (SD)-OCT from the OCTA device. Green box and red lines show

location of AOSLO montage and enlarged inset, respectively. The IS/OS and OS/RPE bands appear normal. Green lines indicate the segmentation

boundaries for the DCP. White scale bars in A, D and E are 100 μm.

doi:10.1371/journal.pone.0169926.g004
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energy consumption [37,38]. These structural changes and apoptosis are greatly attenuated

with induced hyperoxia in the setting of retinal detachment (RD), suggesting that oxygen dep-

rivation plays a key role in this process [38–40]. Histological evidence from RD studies in the

cat show that outer segments appear distorted, with progressive deterioration as the RD per-

sists [41]. We believe that our current work may provide some insight into the pathological

response of the photoreceptors to a different type of hypoxic condition in the living human ret-

ina, related to DCP ischemia.

The retina has a dual vascular supply from the retinal and choroidal circulations. The reti-

nal vasculature in the macula is a complex system consisting of three capillary plexuses that do

not extend deeper than the outer border of the inner nuclear layer, placing the photoreceptors

in a “watershed zone”, where both the choroidal and retinal circulations may provide oxygen

support [21,42]. While the outer retina is primarily dependent on diffusion from choroidal cir-

culation for its oxygen demand [43], experimental studies have shown that photoreceptors rely

Fig 5. Reduced Photoreceptor Heterogeneity Packing Index (HPi) in an Eye with Capillary Non-Perfusion Contiguous with the Foveal

Avascular Zone (FAZ). Case 7, right eye. (A) Infrared (IR) image with location of adaptive optics scanning laser ophthalmoscopy (AOSLO) montage

(green box). (B) Fluorescein angiography (FA) with location of AOSLO montage (green box). (C) Enlarged 1˚ x 1˚ AOSLO image from montage

(HPi = 0.328). (D) Enlarged FA from B reveals an enlarged and irregular contour of the FAZ with surrounding contiguous areas of capillary non-perfusion.

Green box shows location of AOSLO montage in F. Red box shows the location of enlarged AOSLO image (C) in the area of the enlarged FAZ. (E)

Spectral-domain optical coherence tomography (SD-OCT) registered to the IR image showing the retinal area covered by the AOSLO montage. B-scan

shows focal points where inner segment / outer segment junction is interrupted with decreased intensity of the outer segment / retinal pigment epithelium

junction. Red line shows location of enlarged AOSLO image in C. (F) AOSLO montage stitched from 2˚ x 2˚ images with location of OCT B-scan (yellow

line) and enlarged AOSLO inset (red box).

doi:10.1371/journal.pone.0169926.g005
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on the retinal circulation for 10–15% of their oxygen needs [44]. Furthermore, blunted retinal

autoregulation [45] and decreased retinal oxygen tension in the setting of DR may leave photo-

receptors particularly susceptible to ischemic insults affecting the retinal circulation [46].

Limitations of our study include a small number of eyes. This was related to the difficulties

acquiring high-resolution imaging in advanced DR, due to media opacities and vitreous hem-

orrhage. Furthermore, optical distortions (i.e., wavefront aberration, scattering, dispersion)

have been shown to be significantly higher in eyes with DR, resulting in suboptimal AO per-

formance [47]. In fact, both AOSLO and OCTA are highly susceptible to artifacts, but we took

strict measures in our study design to reduce the potential for artifacts. In the current work,

we excluded retinal regions with significant overlying optical obstructions and eyes with signif-

icant media opacity, as well as eyes with edema. This significantly decreased the number of

patients eligible for the study, but strengthened our study by reducing potential confounding

variables. Yet, since we used conventional imaging modalities to exclude eyes with these find-

ings, it is possible that subtle pathological changes (i.e. subtle edema, microaneurysms, small

hemorrhages, and lipid exudates), which are below the limits of resolution of standard imaging

techniques, could have been present and may have affected the brightness of cones and cone

visibility in AOSLO images.

This study was also limited by the extent of quantitative analyses. For example, we did not

perform cone reflectance or SD-OCT outer retinal abnormality quantifications, but as this was

a pilot study, these parameters may be appropriate for future studies. We also were unable to

quantify eccentricity in millimeters from the fovea for each area of study since we did not

obtain axial length measurements. Yet, we attempted to compare regions of similar eccentric-

ity and only included individual AOSLO images with visible, resolved photoreceptors some-

where within the image. Without axial length, we were also unable to perform cone density

measurements. Finally, OCTA is a relatively new technique, which needs larger cohort studies

to understand the reliability of the method. Yet, in a study of 135 eyes of healthy adults, the

Optovue OCTA device achieved good reproducibility, with an intraclass correlation coefficient

of 0.81 for intra-session inter-observer reproducibility and 0.74 for inter-session intra-observer

reproducibility for the parafoveal DCP vessel density measurement [48].

In conclusion, using AOSLO, this study confirms that abnormal cone packing arrange-

ments are found in eyes with non-flow at the level of the DCP. This observation improves our

understanding of the complex pathogenesis of poor visual prognosis associated with DMI. We

believe that the use of AOSLO and OCTA, in combination, provides a novel approach to

studying the pathophysiology of DMI at the microvascular and cellular level. Further studies

utilizing OCTA and split-detector AOSLO, with the addition of quantitative data, including

microperimetry, will be important to evaluate the structural and functional consequences of

these interactions. The recent development of visible light-OCT for in vivo human retinal met-

abolic imaging will also allow us to gain a deeper insight into these metabolic derangements

[49].

Supporting Information

S1 Fig. Deep Capillary Plexus (DCP) Non-Flow Associated with Low Photoreceptor Het-

erogeneity Packing Index (HPi) on Adaptive Optics. Case 5, left eye. (A) Optical coherence

tomography angiography (OCTA) of the superficial capillary plexus (SCP) shows an irregular

contour of the foveal avascular zone (FAZ) with contiguous capillary non-flow temporally. (B)

OCTA of the DCP with location of adaptive optics scanning laser ophthalmoscopy (AOSLO)

montage (green outline) and enlarged inset (red box). DCP angiogram shows capillary non-

flow areas, especially temporal to the fovea (red box), and has a vessel density of 51.44%. (C)
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En face structural OCT image segmented at the inner segment / outer segment (IS/OS) and the

outer segment / retinal pigment epithelium (OS/RPE) junctions cannot resolve the photore-

ceptor integrity. (D) AOSLO montage stitched from 2˚ x 2˚ images with location of B-scans

(yellow lines) and enlarged inset (red box). (E) Enlarged 1˚ x 1˚ AOSLO image from montage

(HPi = 0.429). Dotted lines indicate location of B-scans. (F) Spectral domain (SD)-OCT from

the OCTA device. Red lines show location of AOSLO enlarged inset. The IS/OS and OS/RPE

bands appear normal. Green lines indicate the segmentation boundaries for the DCP. White

scale bars in A, D and E are 100 μm.

(TIF)

S2 Fig. Reduced Photoreceptor Heterogeneity Packing Index (HPi) Corresponds to Defect

on En Face Structural Optical Coherence Tomography (OCT). Case 6, right eye. (A) OCT

angiography (OCTA) of the superficial capillary plexus (SCP) shows an enlarged and irregular

contour of the foveal avascular zone (FAZ) and focal capillary non-flow surrounding the FAZ.

(B) OCTA of the deep capillary plexus (DCP) with location of adaptive optics scanning laser

ophthalmoscopy (AOSLO) montage (green outline) and enlarged inset (red box). DCP angio-

gram shows capillary non-flow in same areas as SCP non-flow, although the majority of the

capillaries in the DCP slab that are within the green AOSLO outline appear to be projection

artifacts from the SCP. DCP vessel density was 46.39%. (C) En face structural OCT image seg-

mented at the inner segment / outer segment (IS/OS) and the outer segment / retinal pigment

epithelium (OS/RPE) junctions cannot resolve individual photoreceptor integrity, but dark

areas on en face OCT (red box) correspond to a zone of reduced photoreceptor HPi in E. (D)

AOSLO montage stitched from 2˚ x 2˚ images with location of B-scan (yellow line) and

enlarged inset (red box). (E) Enlarged 1˚ x 1˚ AOSLO image from montage (red box). Within

the area of DCP non-flow, this location has a photoreceptor HPi of 0.321. Dotted line shows

location of B-scan. (F) Spectral domain (SD)-OCT from the OCTA device. Green box and red

line show location of AOSLO montage and enlarged inset, respectively. The IS/OS and OS/

RPE bands appear abnormal and hypo-reflective. Green lines indicate the segmentation

boundaries for the DCP. White scale bars in A, D and E are 100 μm.

(TIF)
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