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Variable selection is an important issue in regression and a number of variable selection methods have been proposed involving
nonconvex penalty functions. In this paper, we investigate a novel harmonic regularization method, which can approximate
nonconvex 𝐿𝑞 (1/2 < 𝑞 < 1) regularizations, to select key risk factors in the Cox’s proportional hazards model using micro-
array gene expression data. The harmonic regularization method can be efficiently solved using our proposed direct path
seeking approach, which can produce solutions that closely approximate those for the convex loss function and the nonconvex
regularization. Simulation results based on the artificial datasets and four real microarray gene expression datasets, such as real
diffuse large B-cell lymphoma (DCBCL), the lung cancer, and the AML datasets, show that the harmonic regularization method
can be more accurate for variable selection than existing Lasso series methods.

1. Introduction

One of the most important objectives for survival analysis
is to select a small number of key risk factors from many
potential predictors [1]. Commonly, the Cox proportional
hazardsmodel [2, 3] is used to study the relationship between
predictor variables and survival time. Suppose a dataset has a
sample size of 𝑛 to study the survival time 𝑇 on covariate 𝑥;
we use the data formof (𝑡

1
, 𝛿
1
, 𝑥
1
), . . . , (𝑡

𝑛
, 𝛿
𝑛
, 𝑥
𝑛
) to represent

the individual’s sample, where the survival time 𝑡
𝑖
being

complete if 𝛿
𝑖
= 1 and right censored if 𝛿

𝑖
= 0. As in

regression, 𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑝
) is a potential prediction

vector.
ByCox’s proportional hazardsmodel, the hazard function

is given as

ℎ (𝑡 | 𝛽) = ℎ
0
(𝑡) exp (𝑥𝑇𝛽) , (1)

where the baseline hazard function ℎ
0
(𝑡) is unspecified and

𝛽 = (𝛽
1
, 𝛽
2
, . . . , 𝛽

𝑝
)
𝑇 is the regression coefficient vector of 𝑝

variables. Cox’s partial log-likelihood is expressed as

𝑙 (𝛽) =

𝑛

∑

𝑖=1

𝛿
𝑖

{

{

{

𝑥
𝑇

𝑖
𝛽 − log(∑

𝑗∈𝑅𝑖

exp (𝑥𝑇
𝑖
𝛽))

}

}

}

, (2)

where 𝑅
𝑖
denotes the set of indices of the survival individuals

at time 𝑡
𝑖
.

In practice, only a small number of the predictor variables
actually affect the hazard rate. The goal of variable selection
in Cox’s proportional hazards model is to select the key
risk factors. Recently a series of penalized partial likelihood
methods, such as the 𝐿

1
[4–7], 𝐿𝑞 (0 < 𝑞 < 1) [8] and 𝐿

1/2
[9,

10] penalized methods were proposed for Cox’s proportional
hazards model. These penalized partial likelihood methods
find important risk factors by shrinking some regression
coefficients to zero.
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The standard penalized methods cannot directly be
applied to the nonlinear Cox model to obtain parameter
estimates. Therefore, Tibshirani [11] proposed an iterative
procedure to transform the Cox’s partial log-likelihood func-
tion (2) to linear regression problem. Let 𝑥 = (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑝
)
𝑇,

𝑖 = 1, . . . , 𝑛, and denote the 𝑝 × 𝑛 predictor variable matrix,
𝜂 = 𝑥

𝑇
𝛽, 𝜇 = −(𝜕𝑙/𝜕𝜂), 𝐴 = −(𝜕

2
𝑙/𝜕𝜂𝜕𝜂

𝑇
), and 𝑧 =

𝜂 + 𝐴
−
𝜇, where 𝐴− is a generalized inverse of 𝐴. Since the

general quadratic programming cannot be directly solved to
the cases with 𝑝 ≫ 𝑛, Gui and Li [12] applied the Choleski
decomposition to obtain 𝐶 = 𝐴

1/2 such that 𝐶𝑇𝐶 = 𝐴,
𝑦 = 𝐶𝑧, and 𝑥 = 𝐶𝑥. By the Taylor expansion, the partial
log-likelihood 𝑙(𝛽) is approximated by the quadratic form:

(𝑦 − 𝑥
𝑇
𝛽)
𝑇

(𝑦 − 𝑥
𝑇
𝛽) . (3)

Thus, the regularization methods can directly solve the
penalized regression problem:

𝛽 = arg min
𝛽

(
󵄩󵄩󵄩󵄩󵄩
𝑦 − 𝑥
𝑇
𝛽
󵄩󵄩󵄩󵄩󵄩

2

+ 𝜆

𝑝

∑

𝑗=1

𝑃 (𝛽
𝑗
)) , (4)

where 𝜆 is the tuning parameter.
Tibshirani [5] proposed the Lasso (least absolute shrink-

age and selection operator) method, which has 𝐿
1
penalty

𝑃(𝛽
𝑗
) = |𝛽

𝑗
|, which shrinks small coefficients to zero and

hence results in a sparse representation of the solution.
Fan and Li [4] proposed the smoothly clipped absolute
deviation (SCAD) penalty, which avoids excessive penalties
on large coefficients and enjoys the oracle properties. Zhang
[7] proposed the minimax concave plus (MCP) method,
which is a continuous and nearly unbiased approach in high-
dimensional linear regression. Zhang and Lu [6] suggested an
adaptive Lassomethodwith an adaptively𝐿

1
penalty estimate

the parameters, which uses the penalty 𝑃(𝛽
𝑗
) = |𝛽

𝑗
|/|𝛽
󸀠

𝑗
|,

where the weights 1/|𝛽󸀠
𝑗
| are chosen adaptively by the data.

Zou and Hastie [13] proposed an elastic net method that
combines the 𝐿

1
and 𝐿

2
(𝑃(𝛽
𝑗
) = |𝛽

𝑗
|
2) penalties.

The above mentioned series of regularized regression
methods were based on the 𝐿

1
penalty. Recently, several

works on learning sparse models have stressed the need
of other penalties for achieving better sparsity profile. For
instance, Rosset and Zhu [14] suggested the use of a 𝐿𝑞

penalty, which simply consists in replacing the 𝐿
1
norm with

nonconvex 𝐿𝑞 norm (0 < 𝑞 < 1). Zhang [15] presented a
multistage convex relaxation scheme, which can be relaxed to
a smoothed 𝐿𝑞 regularization. Mazumder et al. [16] pursued
a coordinate-descent approach with nonconvex penalties
(SparseNet) and study its convergence properties. Xu et al.
[9, 10] further explored the properties of the 𝐿𝑞 (0 < 𝑞 <

1) penalty and revealed the extreme importance and special
role of the 𝐿

1/2
regularization. In our previous work [17, 18],

we developed several fast algorithms using the 𝐿
1/2

penalty
to solve the logistic regression model and the Cox model.
Our computational results showed that 𝐿

1/2
regularization

outperforms some 𝐿
1
regularization methods. In this paper,

we propose a novel harmonic regularization method which
approximates to the 𝐿𝑞 (1/2 < 𝑞 < 1) penalties. We

also investigate the fast harmonic regularization algorithm to
solve the Cox model for the high dimension low sample size
problem (“large 𝑝 small 𝑛 problem”).

The rest of the paper is organized as follows. Section 2
describes the harmonic regularization method. Section 3
gives a harmonic regularization algorithm to obtain estimates
form Cox model. Section 4 evaluates our method by simula-
tion studies and application to four real microarray datasets,
such as the diffuse large B-cell lymphoma (DLBCL) datasets
with the survival times and gene expression data. Section 5
concludes the paper with some useful remarks.

2. Harmonic Regularization

In general, a united framework of the regularization in
machine learning has a form:

𝛽 (𝜆) = arg min
𝛽

[𝑅 (𝛽) + 𝜆𝑃 (𝛽)] , (5)

where 𝑅(𝛽) is a loss function, 𝑃(𝛽) is a penalty function, and
𝜆 is a tuning parameter. Different 𝜆 here is in correspondence
with different penalized constraint to the model, so different
solution is to be got, respectively. The penalized constraint is
the weakest when 𝜆 = 0 and becomes stronger as 𝜆 increases.

Obviously a regularization (5) can be divided by two
elements, the loss function 𝑅(𝛽) and the penalty function
𝑃(𝛽). Moreover, different loss function and different penalty
will result in different algorithm. For example, when the loss
function is hinge loss and the penalty 𝑃(𝛽) = ‖𝛽‖

2, the
result is a support vector machine algorithm. Let the loss
function be square loss and using 𝑃(𝛽) = ‖𝛽‖

𝑞 denote the
𝐿𝑞 regularization methods, if 𝑞 = 2, it is the ridge regression
[19] and can be used to solve the ill-posed problem. If 𝑞 = 0, it
is the subsets regression [20], which applies 𝐿

0
regularization

with the penalty function 𝑃(𝛽) = (1/2)𝐼
(|𝛽 ̸=0|)

. When 𝑞 = 1, it
is the Lasso algorithm [21], which applied 𝐿

1
regularization.

Lasso and its variations (or the Lasso type algorithms), such
as elastic net [13], SCAD [4], MCP [7], adaptive Lasso [6],
and stage-wise Lasso [22] are extensively studied and applied
in recent years in the fields of statistics andmachine learning.

It is well known that 𝐿
0
regularization is ideal sparsest

for variable selection. Unfortunately, 𝐿
0
regularization is a

combinatorial optimization problem, which is difficult to
be solved. In contrast, 𝐿

1
regularization leads to a convex

optimization problem and easy to be solved, but it does not
yields sufficiently sparse variable selection. Donoho et al.
[23, 24] had shown that 𝐿

0
regularization is equivalent to

𝐿
1
regularization under certain conditions. These imposed

conditions therefore characterize those problems for which
no matter what 𝐿

1
or 𝐿
0
regularization is applied, the same

sparse solutions will be produced. However, for many practi-
cal problems, the sparsity of solutions yielded through 𝐿

1
and

𝐿
0
regularization is far from being equivalent. Particularly,

the solutions found with 𝐿
1
regularization is very often less

as sparse as the solutions found with 𝐿
0
regularization.

In fact, when 0 ≤ 𝑞 ≤ 1, the 𝐿𝑞 regularization auto-
matically performs variable selection by removing predictors
with very small nonzero estimated coefficients. The smaller
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the 𝑞 is, the sparser the solutions foundwith 𝐿𝑞 regularization
will be. This leads researchers to study 𝐿𝑞 regularization
with 0 < 𝑞 < 1 because it can find the more sparse
solutions than those found with 𝐿

1
regularization and easier

to be solved than 𝐿
0
regularization. For example, Zhang [15]

presented a multistage convex relaxation scheme for solving
problems with nonconvex objective functions. For learning
formulations with sparse regularization, they analyzed the
behavior of a specific multistage relaxation scheme.

Nevertheless, the applications to the 𝐿𝑞 penalty function
with 0 < 𝑞 < 1 not often attracts much attention done mainly
due to the reason that when 0 < 𝑞 < 1, the penalty function
changes from a convex function to a nonconvex one and so
the corresponding optimization problem is not easy to solve.
Meanwhile, another difficulty in fact is that the differential
quotient of the penalty function at origin is +∞which results
in the invalidation of the ordinarily optimization algorithms.

In this paper, we propose the harmonic regularization
which can approximate the 𝐿𝑞 penalty with 1/2 ≤ 𝑞 < 1,
because some research works show that the 𝐿

1/2
penalty can

be taken as a representative of the 𝐿𝑞 (0 < 𝑞 < 1) penalty [22].
The harmonic regularization scheme can be expressed as

𝛽 = arg min
𝛽

{

{

{

1

𝑛

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝑥
𝑖
𝛽)
2

+𝜆

𝑝

∑

𝑖=1

√
2

𝑎 (𝑎 − 1)

󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨 + (

2 − 𝑎

𝑎 − 1
)

2

−
2 − 𝑎

𝑎 − 1

}

}

}

,

(6)

where 1 < 𝑎 < 2. When the shrinkage parameter 𝑎 is
close to 1,√(2/𝑎(𝑎 − 1))|𝛽| + ((2 − 𝑎)/(𝑎 − 1))

2
−((2−𝑎)/(𝑎−

1)) ≈ |𝛽|, the harmonic regularization approximates to
the 𝐿

1
regularization. When the parameter 𝑎 is close to 2,

√(2/𝑎(𝑎 − 1))|𝛽| + ((2 − 𝑎)/(𝑎 − 1))
2
−((2−𝑎)/(𝑎−1)) ≈ √|𝛽|

and the harmonic regularization approximates to the 𝐿
1/2

regularization. Moreover, comparing with the 𝐿𝑞 (1/2 < 𝑞 <

1) penalties, the harmonic regularization has the property
that its first derivative is finite at origin, which implies that
the corresponding regularization problem can be efficiently
solved via the direct seeking techniques.

3. The Harmonic Regularization Algorithm for
the Cox Model

In this section, we propose a generalized path seeking
algorithm of the harmonic regularization for Cox’s model.
As mentioned in the last section, when 𝐿𝑞 (0 < 𝑞 <

1) regularization is to be applied, an inevitable difficulty is
how to efficiently solve the nonconvex optimization problem
caused by the 𝐿𝑞 (0 < 𝑞 < 1) regularization (It is easy to
see that in the case of 𝐿𝑞 (𝑞 > 1) regularization is applied,
the penalty term becomes convex). Fortunately, direct path
seeking makes it possible to overcome that difficulty. Direct
path seeking, which sequentially constructs a path directly in
the parameter space, closely approximates that for a penalty

function without having to repeatedly solve numerical opti-
mization problems. Popular path seeking based on squared-
error includes partial least squares regression (PLS, [23]),
forward stepwise regression [22], least angle regression [25],
piecewise linear path [14], and gradient boosting. Friedman
[26] proposed the generalized path seeking, which can pro-
duce solutions that closely approximate those for any convex
loss function and nonconvex constraints. The advantages of
path seeking methods provide us a new way to solve the
problem of regularization with nonconvex penalty. We will
propose a new generalized path seeking method to solve the
harmonic regularization.

We let

𝑃 (𝛽) =

𝑝

∑

𝑗=1

𝑃
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
) , (7)

where 𝑃
𝑗
(𝛽
𝑗
) = √(2/𝑎(𝑎 − 1))|𝛽

𝑗
| + ((2 − 𝑎)/(𝑎 − 1))

2
− (2 −

𝑎)/(𝑎 − 1). Note that

𝜕𝑃
𝑗
(𝛽
𝑗
)

𝜕
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

=
1

√2𝑎 (𝑎 − 1)
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
(V)

󵄨󵄨󵄨󵄨󵄨
+ 𝑎2(𝑎 − 2)

2

> 0, (8)

which shows that each additive term𝑃
𝑗
(𝛽
𝑗
) is amonotonically

increasing function of absolute value of its argument. This
implies that the net regularization penalty function we have
suggested meets the validity of the general path seeking
algorithm [11]. Let V measure length along the path and
ΔV > 0 a small increment. Define

𝑔
𝑗
(V) = − [

𝜕𝑅 (𝛽)

𝜕𝛽
𝑗

]

𝛽=𝛽(V)

=
1

𝑛

𝑛

∑

𝑖=1

(𝑦
𝑖
− 𝑥
𝑖
𝛽) 𝑥
𝑖𝑗
,

𝑝
𝑗
(V) = −[

𝜕𝑃
𝑗
(𝛽
𝑗
)

𝜕|𝛽
𝑗
|
]

𝛽=𝛽(V)

=
1

√2𝑎 (𝑎 − 1)
󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
(V)

󵄨󵄨󵄨󵄨󵄨
+ 𝑎2(𝑎 − 2)

2

,

(9)

and let

𝜏
𝑗
(V) =

𝑔
𝑗
(V)

𝑝
𝑗
(V)

. (10)

Then, we give the harmonic regularization algorithm proce-
dures for the Cox model as follows:

(1) initialize V = 0, 𝑘 = 0, {𝛽𝑘
𝑗
(V = 0) = 0}

𝑝

𝑗=1
;

(2) compute 𝑥 and 𝑦 based on (3) using the current value
𝛽
𝑘

𝑗
(V), 𝑗 = 1, . . . , 𝑝;

(3) loop {

(4) compute 𝜏
𝑗
(V) = 𝑔

𝑗
(V)/𝑝
𝑗
(V), 𝑗 = 1, . . . , 𝑝;

(5) 𝑆 = {𝑗 | 𝜏
𝑗
(V) × 𝛽

𝑘

𝑗
(V) < 0, 𝑗 = 1, . . . , 𝑝};

(6) if (𝑆 = empty) 𝑗∗ = arg max
𝑗
|𝜏
𝑗
(V)|;
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(7) else 𝑗∗ = arg max
𝑗∈𝑆

|𝜏
𝑗
(V)|;

(8) 𝛽
𝑘

𝑗
∗(V + ΔV) = 𝛽

𝑘

𝑗
∗(V) + ΔV × sign(𝜏

𝑗
∗(V));

(9) 𝛽
𝑘

𝑗
(V + ΔV) = 𝛽

𝑘

𝑗
(V), 𝑗 = 1, . . . , 𝑛 and 𝑗 ̸= 𝑗

∗;

(10) V ← V + ΔV;

(11) } until 𝜏
𝑗
(V) = 0, 𝑗 = 1, . . . , 𝑝;

(12) 𝑘 ← 𝑘+1, and go back to Step 2 until the convergence
criterion is met.

In the above algorithm, after Step 2, at each step those
coefficients 𝛽

𝑘

𝑗
(V) with sign opposite to that of the cor-

responding 𝜏
𝑗
(V) are identified. When the set 𝑆 is empty,

the coefficient corresponding to the largest component of
{𝜏
𝑗
(V)}𝑛
𝑗=1

, an absolute value is selected at Step 6. And when
there are one or more elements in the set 𝑆, the coefficient
with corresponding largest 𝜏

𝑗
(V) within this subset is instead

selected. The selected coefficient is the increments by a small
amount in the direction of the sign of its corresponding 𝜏

𝑗∗
(V)

while all other coefficients remain unchanged, yielding the
solution for the next path point V+ΔV.The iterations continue
until all components of 𝜏

𝑗
(V) = 0 and the algorithm then

reaches a regularized solution for the harmonic regularized
Cox model.

4. Simulation

4.1. Selection of the Shrinkage Parameter 𝑎 and the Tuning
Parameter 𝜆. To select the shrinkage parameter a and the
tuning parameter 𝜆, we use the maximization of the cross-
validation partial likelihood (CVPL) method proposed by
van Houwelingen et al. [27], which is defined as

CVPL (𝑎, 𝜆) = −
1

𝑘

𝑘

∑

𝑖=1

{𝑙 (𝛽
(−𝑖)

(𝑎, 𝜆)) − 𝑙
(−𝑖)

(𝛽
(−𝑖)

(𝑎, 𝜆))} ,

(11)

where 𝛽
(−𝑖)

(𝑎, 𝜆) represents the estimation of 𝛽 based on the
harmonic regularization procedure with the parameters 𝑎

and 𝜆 from the data without the 𝑖th subject. The terms 𝑙(𝛽)
and 𝑙
(−𝑖)

(𝛽) are the log partial likelihoods with all the subjects
and without the 𝑖th subject, respectively.The optimal value of
the parameters 𝑎 and 𝜆 are chosen to maximize the sum of
the contributions of each subject to the log partial likelihood
over a grid of (𝑎, 𝜆). CVPL is the special case of amore general
cross-validated likelihood approach for model selection and
has been demonstrated to perform well in prediction in the
context of the penalized Cox regression.

4.2. Model Validation Measures. The performance measures
of censored survival data is more complicated: the measure
can only be computed if the case is not right censoring.
Thus, several specially designed measure method have been
proposed in the literatures. In this paper, we employ the inte-
grated brier score (IBS) [28] and the concordance index (CI)

[29] to evaluate the prediction ability of the regularization
methods.

Integrated Brier Score (IBS).The brier score (BS) is defined as
a function of time 𝑡 > 0 by

BS (𝑡) = 1

𝑛

𝑛

∑

𝑖=1

[

[

𝑆(𝑡 | 𝑋
𝑖
)
2

1 (𝑡
𝑖
≤ 𝑡 ∧ 𝛿

𝑖
= 1)

𝐺 (𝑡
𝑖
)

+

(1 − 𝑆 (𝑡 | 𝑋
𝑖
))
2

1 (𝑡
𝑖
> 𝑡)

𝐺 (𝑡)

]

]

,

(12)

where 𝐺(⋅) denotes the Kaplan-Meier estimation of the
censoring distribution and 𝑆(⋅ | 𝑋

𝑖
) stands to estimate

survival for patient 𝑖. Note that the BS(𝑡) is dependent on
the point in time 𝑡, and its values are between 0 and 1.
Good predictions at time 𝑡 result in small values of BS. The
integrated brier score (IBS) is given by

IBS =
1

max (𝑡
𝑖
)
∫

max(𝑡𝑖)

0

BS (𝑡) 𝑑𝑡. (13)

The IBS is used to assess the goodness of the predicted
survival functions of all observations at every time between 0
and max(𝑡

𝑖
).

Concordance Index (CI). The concordance index (CI) can
be interpreted as the fraction of all pairs of subjects which
predicted survival times are correctly ordered among all
subjects that can actually be ordered. By the CI definition, we
can determine 𝑡

𝑖
> 𝑡
𝑗
when 𝑓

𝑖
> 𝑓
𝑗
and 𝛿

𝑗
= 1, where 𝑓(⋅)

is survival function. The pairs for which neither 𝑡
𝑖
> 𝑡
𝑗
nor

𝑡
𝑖
< 𝑡
𝑗
can be determined are excluded from the calculation

of CI. Thus, the CI is defined as

CI =
∑
𝑖
∑
𝑗
1 (𝑓
𝑖
< 𝑓
𝑗
∧ 𝛿
𝑖
= 1)

∑
𝑖
∑
𝑗
1 (𝑡
𝑖
< 𝑡
𝑗
∧ 𝛿
𝑖
= 1)

. (14)

Note that the values of CI are between 0 and 1, the perfect
predictions of the building model would lead to 1 while have
the CI value of 0.5 at random.

4.3. Analyses of the Simulated Data. In this section, we
evaluate the performance of the harmonic regularization
method for the Cox model in simulation study. We generate
high-dimensional and low sample size data which contain
many irrelevant features. Six methods are compared with
our proposed harmonic regularization approach (HRA): the
Lasso penalty (𝐿

1
), the smoothly clipped absolute deviation

penalty (SCAD), the minimax concave penalty (MCP), the
adaptive Lasso (A-Lasso), the elastic net (𝐿en), and the 𝐿

1/2

penalty (𝐿
1/2

).
We adopted the Cox model simulation scheme in Ben-

der’s work [30]. The data generation procedure is as follows.

Step 1. We generated the vectors 𝛾
𝑖0
, 𝛾
𝑖1
, . . . , 𝛾

𝑖𝑝
(𝑖 = 1, . . . , 𝑛)

independently from a standard normal distribution and the
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Table 1: Average number of the variable selected and the recovery rate by the seven regularization methods on the simulated data in 500
runs.

Corr. Size Average of variable selected
𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA

𝜌 = 0.1

𝜎 = 0.2

100 33.4 11.6 9.2 17.8 35.8 6.6 6.6
150 29.7 9.8 7.9 12.8 31.2 5.9 6.3
200 24.4 8.4 6.1 9.4 24.8 5.7 5.8

𝜌 = 0.1

𝜎 = 0.5

100 43.2 14.8 11.7 22.9 46.9 9.9 9.7
150 34.5 11.2 8.7 16.5 36.3 7.2 7.3
200 26.7 9.7 7.7 11.4 28.2 6.5 7

𝜌 = 0.5

𝜎 = 0.2

100 45.1 15.1 12.2 27.2 47.8 10.8 10.9
150 39.3 11.9 10.8 20.1 44.3 8.4 8.3
200 27.1 10.1 8.4 12.6 30.6 7.3 7.7

𝜌 = 0.5

𝜎 = 0.5

100 55.6 17.7 16 32.7 56.3 13.9 15.2
150 47.3 15.9 14.8 25.9 48.6 9.4 10
200 36.8 13.7 12.5 19.5 41.6 7.8 7.8

Corr. Size Recovery rate
𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA

𝜌 = 0.1

𝜎 = 0.2

100 0.14 0.43 0.54 0.28 0.13 0.71 0.72
150 0.16 0.51 0.63 0.39 0.16 0.8 0.79
200 0.2 0.59 0.81 0.53 0.2 0.87 0.86

𝜌 = 0.1

𝜎 = 0.5

100 0.11 0.33 0.42 0.21 0.1 0.5 0.51
150 0.14 0.44 0.57 0.3 0.13 0.65 0.63
200 0.18 0.51 0.64 0.43 0.17 0.7 0.71

𝜌 = 0.5

𝜎 = 0.2

100 0.11 0.33 0.4 0.18 0.1 0.46 0.45
150 0.12 0.42 0.46 0.24 0.11 0.59 0.6
200 0.18 0.49 0.59 0.39 0.16 0.62 0.63

𝜌 = 0.5

𝜎 = 0.5

100 0.08 0.28 0.31 0.15 0.08 0.35 0.32
150 0.1 0.31 0.33 0.19 0.1 0.51 0.5
200 0.13 0.36 0.4 0.25 0.12 0.61 0.61

predictor vector 𝑥
𝑖
is generated by 𝑥

𝑖𝑗
= 𝛾
𝑖𝑗
√1 − 𝜌 +

𝛾
𝑖0√𝜌 (𝑗 = 1, . . . , 𝑝), where 𝜌 is the correlation parameter of
the predictor vectors.

Step 2. The survival time 𝑡
󸀠

𝑖
(𝑖 = 1, . . . , 𝑛, 𝑛 indicates the

sample size) is constructed from a uniformly distributed
variable 𝑈 by 𝑡

󸀠

𝑖
= (1/𝛾) log(1 − (𝛾 × log(𝑈))/(𝜔 exp(𝑥

𝑖
𝛽 +

𝜎 × 𝜀))), where 𝛾 is the shape parameter, 𝜔 is the scale
parameter, 𝛽 is the ground-true regression coefficients, 𝜀 is
the independent random error generated from 𝑁(0, 1), and
𝜎 is the parameter which controls the signal to noise.

Step 3. Censoring time point 𝑡󸀠󸀠
𝑖
(𝑖 = 1, . . . , 𝑛) is obtained

from an exponential distribution𝐸(𝜃), where 𝜃 is determined
by the specify censoring rate.

Step 4. Here we define 𝑡
𝑖
= min(𝑡󸀠

𝑖
, 𝑡
󸀠󸀠

𝑖
) and 𝛿

𝑖
= 𝐼(𝑡
󸀠

𝑖
≤ 𝑡
󸀠󸀠

𝑖
),

the observed data represented as (𝑡
𝑖
, 𝛿
𝑖
, 𝑥
𝑖
) for the Cox model

(1) are generated.

In every simulation, the dimension 𝑝 of the predictor
vector 𝑥

𝑖
is 1000, and the first five true coefficients are

nonzero: 𝛽
1

= 1, 𝛽
2

= 0.8, 𝛽
3

= −1, 𝛽
4

= −0.8, 𝛽
5

=

1, and 𝛽
𝑗

= 0 (6 ≤ 𝑗 ≤ 1000). About 25% of the data
are right censored. We consider the cases with the training
sample sizes 𝑛 = 100, 150, 200, the correlation coefficient
𝜌 = 0.1, 0.5, and the noise control parameter 𝜎 = 0.2,
0.5, respectively. To assess the variability of the experiment,
each method is evaluated on a test set including 100 random
generated samples.

The estimation of the optimal tuning parameter 𝜆 in
the regularization models can be done in many ways and
is often done by 𝑘-fold cross-validation (CV). Note that the
choice of 𝑘 will depend on the size of the training set. In our
experiments, we use 10-fold cross-validation (𝑘 = 10). The
elastic net method has two tuning parameters; we need to
cross-validate on a two-dimensional surface.

Table 1 shows the average number of variable selected
and the recovery rate by each regularization method in 500
runs. The recovery rate is defined as the ratio of the average
number of the selected relevant variables (𝑥

1
–𝑥
5
) to the

average number of the selected variables [9]. As shown in
Table 1, when the sample size 𝑛 increases, the prediction
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Table 2: Average IBS and CI results of by the seven regularization methods on the simulated data in 500 runs.

Corr. Size Average IBS
𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA

𝜌 = 0.1

𝜎 = 0.2

100 0.084 0.094 0.086 0.084 0.082 0.091 0.086
150 0.081 0.087 0.084 0.08 0.08 0.084 0.079
200 0.078 0.086 0.079 0.083 0.076 0.078 0.076

𝜌 = 0.1

𝜎 = 0.5

100 0.096 0.092 0.097 0.096 0.094 0.098 0.093
150 0.092 0.091 0.094 0.094 0.087 0.089 0.09
200 0.088 0.088 0.086 0.087 0.085 0.086 0.086

𝜌 = 0.5

𝜎 = 0.2

100 0.105 0.098 0.101 0.102 0.097 0.101 0.094
150 0.098 0.096 0.099 0.102 0.092 0.098 0.091
200 0.091 0.092 0.096 0.096 0.089 0.095 0.09

𝜌 = 0.5

𝜎 = 0.5

100 0.108 0.103 0.108 0.106 0.099 0.01 0.098
150 0.101 0.097 0.1 0.096 0.093 0.094 0.097
200 0.084 0.094 0.086 0.084 0.082 0.091 0.086

Corr. Size Average CI
𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA

𝜌 = 0.1

𝜎 = 0.2

100 0.749 0.788 0.822 0.757 0.851 0.838 0.845
150 0.832 0.853 0.869 0.838 0.868 0.865 0.87
200 0.85 0.847 0.857 0.859 0.864 0.859 0.862

𝜌 = 0.1

𝜎 = 0.5

100 0.728 0.758 0.767 0.716 0.727 0.761 0.763
150 0.82 0.841 0.833 0.831 0.853 0.847 0.837
200 0.847 0.857 0.862 0.846 0.869 0.862 0.866

𝜌 = 0.5

𝜎 = 0.2

100 0.726 0.758 0.752 0.745 0.752 0.758 0.748
150 0.781 0.818 0.821 0.793 0.819 0.813 0.821
200 0.786 0.835 0.826 0.792 0.839 0.824 0.828

𝜌 = 0.5

𝜎 = 0.5

100 0.699 0.712 0.701 0.685 0.719 0.716 0.714
150 0.766 0.777 0.817 0.788 0.814 0.818 0.814
200 0.776 0.801 0.82 0.808 0.821 0.819 0.819

performances of all the seven methods are improved. For
example when 𝜌 = 0.1 and 𝜎 = 0.2, the average of the
variables selected by the harmonic regularization method
decreased from 6.6 to 5.8 and its recovery rate is improved
from 0.72 to 0.86 with the sample sizes 𝑛 increased from
100 to 200. When the correlation parameter 𝜌 and the noise
parameter 𝜎 increase, the variable selection performances
of all the seven methods are decreased. For example, when
𝜌 = 0.1 and 𝑁 = 200, the average of the recovery rate from
the harmonic method decreased from 0.86 to 0.71, in which
𝜎 increased from 0.2 to 0.5. When 𝜎 = 0.5 and 𝑛 = 150,
the average of the recovery rate of the harmonic method
decrease from 0.63 to 0.50, in which 𝜌 increased from 0.1 to
0.5. Moreover, in our simulation, the influence of the noise
may be slightly larger than that of the variable correlation for
the prediction performance of all the seven methods. On the
other hand, at the same parameter setting case, the recovery
rates of the harmonic method and 𝐿

1/2
penalty are almost

better than the results of the other fivemethods. For example,
when 𝜌 = 0.1, 𝜎 = 0.2 and 𝑛 = 100, the recovery rate of the
harmonic method is 0.72 much better than 0.14, 0.43, 0.54,
0.28, and 0.13 got by the Lasso, SCAD, MCP, adaptive Lasso,

and elastic net, respectively, slight better than 0.71 got by 𝐿
1/2

penalty method.
To evaluate prediction performance of the seven regu-

larization methods for the Cox model, we presented their
average IBC and CI values on the simulated datasets among
500 times in Table 2.

In terms of IBC and CI, for different parameters’ settings,
no methods almost performed better than others, but their
prediction performances are only small differences. For
example, when 𝜌 = 0.1, 𝜎 = 0.2, and 𝑛 = 150, the average
of IBS from the harmonic method is 0.079, better than 0.081,
0.087, 0.084, 0.08, 0.08, and 0.084 got by Lasso, SCAD, MCP,
adaptive Lasso, and elastic net and 𝐿

1/2
penalty. When 𝜌 =

0.1, 𝜎 = 0.2, and 𝑛 = 100, the average of CI from the
harmonic method is 0.845, better than 0.749, 0.788, 0.822,
0.757, and 0.838 got by Lasso, SCAD, MCP, adaptive Lasso,
and 𝐿

1/2
, but slight worse than 0.851 got by elastic net penalty

method.
Combined with the results reported in Table 1, we con-

cluded that the harmonic penalizedmethod showed better or
equivalent predictive performance than the other regulariza-
tion methods.
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Table 3: The gene expression datasets are used in experiments.

Datasest Number of genes Number of samples Number of censored
DLBCL (2002) 7399 240 102
DLBCL (2003) 8810 92 28
Lung cancer 7129 86 62
AML 6283 116 49

Table 4: Results of the gene selected by the seven methods on the four public datasets.

Datasest 𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA
DLBCL (2002) 174 129 129 146 180 76 71
DLBCL (2003) 138 106 95 168 142 32 37
Lung cancer 188 104 97 233 196 56 48
AML 161 120 110 176 166 65 70
In bold is the best performance.

Table 5: The IBS results obtained by the seven methods on the four public datasets.

Datasets Average IBS
𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA
DLBCL (2002) 0.207 0.205 0.205 0.205 0.198 0.203 0.205
DLBCL (2003) 0.121 0.119 0.12 0.12 0.12 0.118 0.119
Lung cancer 0.169 0.161 0.167 0.164 0.169 0.163 0.161
AML 0.174 0.174 0.173 0.172 0.171 0.173 0.171

Datasets Average CI
𝐿
1

SCAD MCP A-Lasso Len 𝐿
1/2

HRA
DLBCL (2002) 0.553 0.554 0.564 0.555 0.568 0.563 0.566
DLBCL (2003) 0.583 0.604 0.586 0.589 0.606 0.603 0.606
Lung cancer 0.628 0.634 0.666 0.646 0.675 0.673 0.674
AML 0.599 0.611 0.634 0.626 0.641 0.638 0.643
In bold-the best performance.

4.4. Analysis of the Real Microarray Datasets. In this section,
we evaluated the performance of the harmonic regularization
methods on the real survival gene expression datasets. Four
publicly available datasets are used in this part. A brief
description of these datasets is given below and summarized
in Table 3.

Diffuse Large B-cell Lymphoma Dataset (DLBCL) 2002. This
dataset published by Rosenwald et al. [31]. The dataset
consists of 240 samples from patients. For each sample, 7399
gene expression measurements were obtained. The clinical
outcome was survival time, either observed or censored.

Diffuse Large B-cell Lymphoma Dataset (DLBCL) 2003. This
dataset is from Rosenwald et al. [32]. It consists of 92
lymphoma patients, and each patient has 8810 genes.

Lung Cancer Dataset. The lung cancer dataset is from Beer
et al. [33]. It consists of gene expressions of 4966 genes for 83
patients. The survival time as well as the censoring status is
available.

AMLDataset.TheAMLdataset is fromBullinger et al. [34]. It
contains the expression profiles of 6283 genes for 116 patients,
and the number of censored cases is 49.

We evaluated the prediction accuracies of the seven
estimated regularization methods using random partition: a
training set of about 2/3 of the patients used for estimation
and a test set of about 1/3 of the patients used for testing of
the prediction capability. For estimating 𝜆, we employed the
five-fold cross-validation scheme using the training set. We
repeated each procedure 200 times.

Table 4 reports the average number of genes selected by
eachmethod.The harmonic regularizationmethod performs
better than those of 𝐿

1
type methods (Lasso, SCAD, MCP,

adaptive Lasso, and elitist net), and slightly better than that
of 𝐿
1/2

penalty. As shown in Table 4, for DLBCL (2002)
dataset, the harmonic penalized methods selected about 71
genes, compared to about 174, 129, 129, 146, and 180 about
five Lasso, SCAD,MCP, adaptive Lasso and elitist net, slightly
better than 76 got by 𝐿

1/2
penalty. For DLBCL (2003) and

AML datasets, the best one is 𝐿
1/2

penalty and the second is
harmonic methods.

To assess predictive performance, we summarize the
results of IBS and CI obtained by the seven methods,
respectively, in Table 5. Both the results of IBS and CI, the
results of all regularizationmethods, were not much different
and the elitist net and harmonic penalized method almost
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outperforms than other five penalized methods. Combined
with the results reported in Tables 4 and 5, we concluded
that the harmonic penalized method selected the smaller
subset of the key geneswhile give best or equivalent predictive
performance.

5. Conclusion

Variable selection is a fundamental problem in statistics
and machine learning, and the regularization method is
one of the ways to solve this problem. Generally speaking,
a regularization algorithm is always a combination of a
loss function and a penalty function in the past research
and applications. Particularly, in the procedure of variable
selection, the harmonic regularization is like a net which
can always catch the correct model. This demonstrates the
stronger sparsity and better correctness of the harmonic
regularization. We have provided a serous of simulations
to demonstrate that 𝐿

1
type regularization methods are

inefficient; the harmonic regularization and 𝐿
1/2

penalty
methods proved are efficient and effective.

In the simulation part, we use four real datasets.There are
the DLBCL (2002), the DLBCL (2003), the Lung cancer, and
the AML. Results indicate that our harmonic regularization
algorithm is very competitive in analyzing high dimensional
survival data in terms of sparsity. Simulation results indicate
that the harmonic penalizedCoxmodel is very competitive in
analyzing high dimensional survival data, because it was able
to reduce the size of the predictor even further at moderate
costs for the prediction accuracy [8].The harmonic penalized
Cox model will provide an efficient tool in building a pre-
diction model for survival time based on high dimensional
biological data.
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