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We have developed a new methodology for examining and extracting patterns from brain electric activity by using data mining and
machine learning techniques. Data was collected from experiments focused on the study of cognitive processes that might evoke
different specific strategies in the resolution of math problems. A binary classification problem was constructed using
correlations and phase synchronization between different electroencephalographic channels as characteristics and, as labels or
classes, the math performances of individuals participating in specially designed experiments. The proposed methodology is
based on using well-established procedures of feature selection, which were used to determine a suitable brain functional
network size related to math problem solving strategies and also to discover the most relevant links in this network without
including noisy connections or excluding significant connections.

1. Introduction

Recently, there has been an outburst in the number of
investigations related to the applications of data mining tools
to neuroscience [1, 2]. Data mining in this domain is usually
related, on one hand, to processing/analyzing three-
dimensional images from different medical imaging modali-
ties that capture structural (e.g., MRI, CT, and histology) and
functional/physiological (e.g., PET, fMRI, and SPECT) infor-
mation about the human brain [3, 4]. On the other hand,
some tools and approaches have been specifically tailored
to grasp the complexity of brain electric activity through
the analysis of electroencephalographic (EEG) signals [5].
However, the vast majority of these studies commonly seek
to discover patterns in electrophysiological signals and
images correlated with the diagnosis, prognosis, and evolu-
tion of a particular pathology or brain disorder and with
the image analysis of normal/disease resting state fMRI
[6, 7]. Comparatively, only very few works in this area
use machine learning techniques for studying normal

brain cognitive high level functions; probably because in
these cases, the interpretation of the effects of single brain
regions or connections between these regions on the separa-
tion of pattern classes is more complicated, given that dis-
criminative brain pattern is a description of the cumulative
contributions of many features that contribute to cognitive
underpinning of brain high-level functions.

In this work, we use machine learning techniques to dis-
cover patterns of synchrony in functional brain networks,
constructed from the EEG registers of a group of healthy
individuals while they were solving specially designed math
problems. The problems were devised specifically to detect
and measure analytic processing. An intuitive resolution
could lead to a quick and simple but incorrect response that
should be overridden analytically. This study aims to corre-
late types of responses (correct or incorrect) with specific
patterns of neural synchronization. The primary finding is
that classification of these patterns using data mining tools
on datasets from complex cognitive processes related to math
performance is achievable. For each pair of EEG channels,
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corresponding to time windows associated with correct and
incorrect answers given by the participants, correlations
and phase synchrony were calculated. With these measures
as entries, we construct connectivity (synchronization) net-
works as proxies of functional brain networks. A novel
feature selection methodology that identifies the most
relevant connections in these networks is proposed by
using a nonlinear SVM-based classifier. This methodology
allows us to determine not only a suitable network size but
also the most relevant connections in the network, reducing
the complexity and, therefore, facilitating the interpretation
of mined patterns.

1.1. Synchronization/Correlation Networks of Normal Brain
Cognitive High-Level Functions Used in Resolution of Math
Problems. Lately, investigations have shifted from the
study of local activation of large groups of neurons to
the analysis of integration patterns among these groups.
It is thought that the physiological bases of information
processing and mental representation are provided by
functional networks [8]. In fact, there is a great deal of
current interest in the recent development of different
techniques to extract large-scale functional and anatomical
brain connectivity networks based on methods for creating
correlation networks [9-11].

Researchers have developed a widely used method for
creating correlation networks by using neural synchroniza-
tion. Neural synchronization is a fundamental process in
cortical computation which is believed to play an impor-
tant role in information processing in the brain at both
cellular and macroscopic levels [12, 13]. Brain oscillations
that are ubiquitous phenomena in all brain areas become
synchronized and consequently allow an implementation
of the whole range of brain functions [12]. In particular,
in our work, we use neural synchronization to measure the
integrated activity of the functional brain network responsi-
ble for different math performances. Specifically, we use
linear correlation and phase synchronization as measures
for neural synchronization.

The correlation coefficient estimates linear coupling
among signals of EEG channels, and its values are distributed
over the unit interval. But the assumption that only linear
interdependencies are relevant is actually not correct. Strictly
speaking, linear correlation analysis based on Pearson’s cor-
relation coefficient and its derivatives can potentially miss
important features of any dynamic system, particularly when
we study brain functional network integration dynamics.
Thus, in addition to linear correlation, we use phase synchro-
nization between distant brain oscillating foci [14-18].

Phase synchrony in EEG channels assesses the stability of
differences between phases of EEG signals at equivalent fre-
quencies taken simultaneously by different electrodes. More
simply stated, it is a measure of how the relative phase is
distributed over the unit circle. If the two signals are phase
synchronized, the relative phase will occupy a small portion
of the circle, and the mean phase coherence is high. Phase
synchronization has previously been considered to be a very
good indicator of the functional coupling of neural activity
in distant brain areas [19, 20]. To our knowledge, to date,
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phase synchrony in EEG channels has not been used to
study brain networks involved in mathematical activities.
So, using it creates a relevant contribution to understand-
ing the collaborative and integrative nature of neural func-
tioning in mathematics.

The large-scale functional integration of different brain
zones is a relevant aspect of understanding the neural
mechanisms responsible for the use of diverse problem-
solving strategies in mathematics. The cognitive underpin-
nings of several mathematical activities have previously
been related to a widely distributed brain network that
includes parietal, temporal, and frontal structures as their
main nodes [21-23]. Our research uses electroencephalo-
graphic (EEG) analysis [18] for the study of the whole-
brain connectivity network and shows how mathematical
cognition depends upon the integration of activities from dis-
tributed brain regions.

Some researches on EEG analysis have shown that spe-
cific aspects of mathematical reasoning could be related to
different features of electric activity in some frequency bands
(see, e.g., [24, 25]). In [25], for example, it is shown that
incorrect performance in simple mathematical tasks is pre-
ceded by higher delta activity (signal frequencies <4Hz) in
the lateral and medial areas of the right prefrontal cortex
and by higher theta activity (4-8 Hz) bilaterally in the medial
frontal zones. These slow wave patterns precede the subject’s
erroneous performance and show inhibited activity of the
error-monitoring areas during erroneous mathematical cal-
culations (i.e, these areas were simply not recruited).
Therefore, a failure in the functional integration of these
zones during problem resolution would be responsible for
the subject’s erroneous mathematical performance. On the
other hand, correct answers were preceded by alpha activity
(8-12Hz) in the right posterior parietal area, a zone previ-
ously linked to mathematics. These early findings suggest
that the size and integration of the functional network of
different brain zones entailed in the resolution of problems
are a relevant issue for understanding the neural mechanisms
underlying math performance.

1.2. Graph Theoretical (Network) Approaches and SVM
Working Together. Network theory is helpful in characteriz-
ing the interdependencies of various brain zones. However,
graph theoretical (network) approaches in the study of brain
functional networks suffer from some important methodo-
logical difficulties [26, 27]. For example, graph measures are
strongly dependent on the network size (number of nodes),
network density (percentage of links present), and degree
(number of connections per vertex). This makes comparing
results from different studies, which generally use distinct
criteria to build functional networks, very difficult. Indeed,
to construct unweighed networks, one has to apply a thresh-
old on the connectivity values of the original weighted net-
work. This results in scaling of the network properties as a
function of the threshold [26]. The threshold can be chosen
in a variety of ways, for example, based on an arbitrary
choice, or using statistical criteria of connectivity strength,
based on the average degree, or based on the density of the
network. Fixing a standard number of vertices and the
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average degree could solve these size effects but could also
introduce spurious connections or ignore strong connections
in the network [27].

Recently, the use of a minimum spanning tree (a sub-
network of the original weighted network that connects all
vertices in the network without forming loops and has the
minimum total weight of all possible spanning trees), see
[28], has been proposed to solve many of these methodo-
logical difficulties.

1.3. Top-Down Approach and Main Motivations for This
Study. Students often arrive at universities without a well-
formed background in abstract reasoning and with limited
experience in the application of mathematical strategies.
They lack proper understanding of some mathematical
topics and often use inappropriate associations of different
facts while trying to solve mathematical problems. These
associations are fast internal reactions to external stimuli
and appear to be related to the way in which the mind
processes information.

Many authors in educational research have pointed out
the persistence of student errors and misconceptions with
respect to specific topics and tasks. For example, in [29],
the authors observed that students react in a similar way to
a wide variety of conceptually nonrelated problems that share
some external common features. This fact led them to suggest
that many responses described in the literature as alternative
conceptions (misconceptions) could be better explained as
evolving from a few common intuitive rules such as More
of A—More of B, Same A—Same B, Everything can be divided,
and Over-generalized linearity.

The present work applies a dual-process model of
cognitive processing to these kinds of problems, testing
the hypothesis that relative amounts of intuitive/analytic
processing by the brain promote different strategies in the
resolution of mathematical problems, leading to accurate or
faulty solutions.

This work aims to solve these methodological difficulties
by using some advanced tools from data mining. Specifically,
the main methodological contribution is twofold: First, we
extend the £-SOCP method [30], originally developed for
linear binary classification, to nonlinear modeling thanks
to the use of kernel functions. This model proposes a robust
setting based on second-order cone programming, in which
the traditional maximum margin approach for SVM is
adapted by replacing the reduced convex hulls by ellipsoids
[31], leading to a potentially superior classification perfor-
mance [30, 31]. Additionally, we propose a novel feature
selection methodology that identifies the most relevant con-
nections in the network of interest while constructing the
classifier using the £-SOCP method [30].

The rest of this article is structured as follows: Section 2
presents the methodology for capturing the data used in the
modelling process. Section 3 provides a brief description of
developments for feature selection and SVM, in which our
£-SOCP method and the novel-embedded feature selection
strategy is highlighted. Section 4 describes our results using
neural synchronization datasets collected for this study.
A summary of this paper can be found in Section 5, where

we provide the main conclusions of this study and address
future developments.

2. Materials and Methods:
Cognitive Neuroscience

2.1. The Dual Process Theory. As our theoretical framework,
we use the dual process theory (DPT) [32, 33]. According
to DPT, our cognition and behavior operate in parallel with
two quite different modes, called system 1 (S1) and system
2 (82), roughly corresponding to our commonly held notions
of intuitive and analytical thinking. The SI and S2 modes are
activated by different parts of the brain and have different
evolutionary origins (S2 being more recent evolutionary
and, in fact, largely reflecting cultural evolution). Like
perception, S1 processes are characterized by being fast,
automatic, effortless, unconscious, and inflexible (hard to
change or overcome). Unlike perception, S1 processes can
be language-mediated and relate to events not in the here-
and-now (i.e., events in faraway locations and in the past or
future). In contrast, S2 processes are slow, conscious, effort-
ful, and relatively flexible. The two systems differ mainly
along the dimension of accessibility: how fast and how easily
things come to mind. Although both systems can at times run
in parallel, S2 often overrides the input of S1 when analytic
tendencies are activated and cognitive resources are available.
For example, it is known that in geometry-related math prob-
lems, students tend to handle attributes of the problems such
as distance, size, and similarity that are automatically regis-
tered by S1 quickly and spontaneously. We used this fact to
design tests with some salient stimuli in such a way that each
alternative for answering the problem would clearly indicate
whether the participant took an intuitive/wrong strategy or
an analytic/correct one.

The use of S2, consciously accessed, analytical processes
trigger global and large-scale patterns of integrated neural
activity. This fact appears as a variation on the global amount
of synchrony between different brain areas. A greater propor-
tion of S2 processes will appear as a greater amount of global
synchrony. On the other hand, typical math errors due to
semiautomatic use of heuristics will appear neurally as a
reduced coupling of central work space neurons. Central
work space neurons are thought to be particularly dense in
the parietal, prefrontal, and cingulate cortices [21].

2.2. Test Designing Based on Cognitive Neuroscience. DPT
enables understanding diverse phenomena because it pre-
dicts different judgments qualitatively depending on which
reasoning system is used. DPT has been applied successfully
to diverse domains and phenomena across a wide range of
fields. While heuristic processing may render some man-
ageable mathematics problems (by reducing the number
of consciously driven operations), on some occasions, it
can lead to errors and bias, reducing the effectiveness of
a strategic plan of resolution. Available evidence and theory
suggest that a converging suite of intuitive cognitive pro-
cesses facilitates and supports some common rule-based flaw
strategies in the resolution of math problems, which is a cen-
tral aspect of deficient mathematical performance. In this



way, stereotyped errors come from the semiautomatic and
insufficiently evaluated application of highly repeated S1
system heuristics for solving problems. Under most circum-
stances, S1 procedures lead to correct answers (e.g., linearity
is a common property of many, but not to all, mathematical
operations) but in certain cases, it can lead to mistakes. To
avoid these errors, the subjects must inhibit their semiauto-
matic responses to allow proper, conscious evaluation of
the problem [34]. Some neuroscience researches have linked
response inhibition to prefrontal activity, especially in its
medial zones [35]; error monitoring in general (see [36],
for detailed review) and mathematical error monitoring in
particular [22] have been linked to the frontal lobes, mainly
to their medial structures.

However, individual differences in the tendency to
override initially flawed intuitions in reasoning analytically
could be associated with different mathematical perfor-
mances. In fact, elaborative processing must entail a deeper
level of consciously controlled stimulus analysis. This pro-
cessing is assumed to involve more effortful, analytical
thought and is less likely to lead to errors and biases,
although sometimes it may prove to be dysfunctional due
to effects such as paralysis by analysis—the tendency to
become overwhelmed by too much information processing.

Some attributes of the problem denominated in DPT as
natural assessments could lead to wrong strategies and
answers, because students could ignore other, less accessible,
attributes of the problem, or some instructions that should be
considered in the resolution.

Another possible source of errors is called attribute
substitution. According to [32], when people try to solve
a complex problem, they often substitute attributes. That
is to say, an individual assesses a specific real attribute of
the problem heuristically by means of another attribute,
which comes to mind more easily. The real attribute is less
accessible, and another, related attribute which is more
available replaces the first one. This substitution is so fast
that S2 monitoring functions cannot be activated. The
individual does not notice that he/she is really answering
another question.

The math tasks in our experiments were designed to
highlight different problem resolution strategies. An intui-
tive approach, for example, will produce a quick and easy,
yet incorrect, answer that must be analytically overridden
to be correct. In every case, participants choosing different
resolution strategies will at the same time choose different
alternatives to answer the math problem. Appendix B pre-
sents three of the math problems for illustrative purposes.
The complete list of the 20 math problems can be found
as supplementary material (available here).

2.3. Preprocessing the Dataset from EEG Recording. The raw
data for the training and test subsets (see the next sections)
were extracted from the EEGs of a group of engineering stu-
dents that were recorded while each one of them was solving
a set of 20 math problems. The relevant metadata for the var-
ious participants is presented in Appendix A. These EEGs
(10-10 position convention) were registered in a semidark
room with a low level of environmental noise while each
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student was sitting in a comfortable chair. The data were
recorded with the 64-channel Geodesic Sensor Net (EGI,
USA) at the sampling frequency of 1000 Hz.

Since the sensors in the outer ring of the net were
excluded from the analysis, because of low-quality signals,
only 61 sensors were used for computations. The data were
previously filtered (FIR, band-pass of 1-100Hz), rerefer-
enced against the common average reference, and segmented
into nonoverlapping 1-s epochs using NS3 software.

As preliminary work for cleaning the dataset, we sepa-
rated the oscillatory EEG-evoked electric activity from the
induced one [37]. To do this, the EEG-evoked activity for
each subject and his/her specific math problem was mea-
sured and averaged. This evoked activity was then subtracted
from the total EEG activity through tests, subjects, and elec-
trodes. The resulting EEG subtraction signal was analyzed
with a fast Fourier transform on mobile overlapping and
longtime windows between 5 and 10 seconds, because we
did not know a priori what the interesting cognitive events
to measure would be.

The measurement for each subject-math problem was
segmented into time intervals ranging from —0.1s to 61s.
In t=0, the math problem is presented, while at t=60s,
the question mark appears. The value =500 ms is considered
to be the baseline of before the occurrence of the problem.

2.4. Constructing the Correlation and Synchronization
Matrices from the Raw Dataset. As will be shown in the fol-
lowing sections, a new method for feature extraction from
EEG signals was developed by choosing elements of the
correlation or synchronization matrices. The EEG time
series recorded for each participant/math problem were used
to construct the correlation and synchronization matrices of
the functional brain networks with rows and columns
representing sensors. These matrices contain information
about (linear) interdependence and long-range synchronies
between EEG channels. Both types of information would
be used for classification purposes. Moreover, in the case of
the synchronization matrix, we would also manage informa-
tion about frequency bands.

The correlation coefficient r, , is perhaps one of the most
well-known measures for (linear) interdependence between
two signals x and y:

! > (x(k) = %) (r(k) - ¥) (1)

0,0

k=1 Y

where N is the length of the signals, X and y are the (sample)
means of x and y, respectively, and 0% and 0; are the (sample)
variances of x and y, respectively.

The correlation coeflicient r, , quantifies the linear corre-
lation between x and y. If x and y are not linearly correlated,
Ty 18 close to zero; on the other hand, if both signals are iden-
tical, thenr, , = 1.

Every correlation coeflicient r;; is a bivariate measure
that serves as a coupling coeflicient that links the electrode
nodes i and j. With these coeflicients as entries, we construct
a connectivity matrix (adjacency matrix) Corr, representing
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FIGURE 1: An example of the synchronization matrix for an
individual and specific mathematics problem, in this case,
corresponding to the beta (14-30Hz) band. The colors indicate
the extent to which two sensor locations are synchronized, which
are quantified by the normalized PLV between every two EEG-
recording sites i and j with 4, j=1, ..., 61.

a functional brain network. Thus, we have a connectivity
matrix 61 x61 composed of undirected and weighted
edges consistent with the correlation coefficients. The matrix
Corr is symmetric, so it has N(N —1)/2=1830 indepen-
dent elements. Zeros are placed in diagonal elements.

In order to discover to what extent two sensor locations
were synchronized, we also used the phase locking value
(PLV) [18, 19]. Sample PLV is one of the most widely used
measures of brain synchronization. It quantifies the phase
relationship between two signals with high temporal resolu-
tion without making any statistical assumptions on the data.

Given two time series of signals x(¢) and y(¢) and a fre-
quency of interest f, the procedure computes a measure of
phase locking between the components of x(¢) and y(t) for
each latency at frequency f. This requires the extraction of
the instantaneous phase of every signal at the target fre-
quency. The phases are calculated by convolving each signal
with a complex wavelet function:

Y(t) = e—(tZ/za,Z)eszt’ (2)

that is,

where A)(t) represents the signal amplitude. Following
(19], we take 0, =7/f and we define W (t) in the same
way as y(t). Next, we can calculate the phase differences
d)x(t) =0V (1) - (D;V(t). The phase locking value is then
defined at time t, as the average value:

PLV,, Z ¢y (07) (4)

for all time-bins ¢ and trial n € {1, ..., N}.

In our experiments, PLV measures were normalized rela-
tive to a baseline [38]. Specifically, this was done by using the
500 ms baseline before the onset of the math problem. The
normalized signal was obtained by subtracting the average
activity of the baseline from the raw signal and then dividing
by the standard deviation of the baseline in a frequency-by-
frequency manner.

By construction, PLV will be zero if the phases are not
synchronized at all and will be one when the phase difference
is in perfect, constant synchronization. The key feature of
PLV is that it is only sensitive to phases, irrespective of the
amplitude of each signal.

From the N = 61 EEG channels, we computed a symmet-
ric 61 x 61 synchronization matrix S for each participant and
for each math problem within a specific frequency band.
Each element §;; of the matrix S corresponds to the
PLV computed for the electrode pair i and jPLV;(t). The
matrix S is also symmetric, so it has N(N —1)/2=1830
independent elements and, as before, zeros are placed in
diagonal elements.

Each matrix element of S is the PLV computed for the
corresponding pair of sensors. An illustrative example of
the synchronization matrix is presented in Figure 1.

2.5. From the Correlation (Corr) and Synchronization (S)
Matrices to a Binary Classification Problem. For classifica-
tion purposes, we prepared two datasets using the correla-
tion Corr and synchronization S matrices separately. Each
data point corresponds to an answer of a participant to a
specific mathematics problem. The participant could answer
the math problem in a correct way (y=+1) or incorrectly
(y=-1).

With the help of these matrices, we further constructed
feature vectors x of size N(N —1)/2, whose components are
in one case the elements of the matrix Corr, and in other
cases elements of the matrix S. Here, N is the number of
EEG sensors used in signal recordings, and we also used the
fact that both matrices Corr and S are symmetric.

This way, the datasets for the learning machine are given

by the set:
(x(lu),yl), e (xl(a),y,>, (5)

with characteristic vectors x(@ e RNWN-D2 5~ {Corr, S}
corresponding to Corr or S matrix entries, respectlvely, and
the output label y; € {-1, +1}, where the subindex ! denotes
the number of participants multiplied by the number of math
problems given to each participant.

Thus, with the previously preprocessed dataset collected
from 14 participants, with a 61-channel (N = 61) EEG Geo-
desic Sensor Net (EGI) and with 20 math problems for each
of them, we have [ = 14 x 20 = 280 sample vectors of dimen-
sion N(N —1)/2=1830 to train SVM models and make a
preliminary classification for each Corr and S cases.



For the case of synchronization matrix S, we further
developed the datasets considering the analysis for frequen-
cies in three distinct domains, which we have called as fol-
lows: Low, corresponding to § (<4Hz) and 6 (4-8Hz)
bands; Medium, corresponding to the a (8-12Hz) and S
(14-30Hz) bands; and High, corresponding to y (30—
80 Hz) bands. In the case of the Medium frequency domain,
we also studied the 3 band in a separate way. A classification
study is performed using each frequency domain for syn-
chrony detection in order to find the one that lead to
the best classification.

3. Materials and Methods: Support Vector
Machines and Feature Selection

Among the existing machine learning methods, SVM has
demonstrated superior performance in several domains
and, in particular, in neuroscience [39]. Its appealing char-
acteristics, such as the absence of local minima and an
adequate generalization of new samples, thanks to the struc-
tural risk minimization principle [40], made SVM one of the
preferred classification approaches among researchers and
practitioners [41].

Feature selection is a very important topic in high-
dimensional applications, and, in particular, in neurology
[1]. Finding the adequate subset of relevant variables for a
given data mining task reduces the risk of overfitting,
improving the model’s predictive performance, and provides
important insight into the process that generates the data,
enhancing the interpretability of the model [42]. Support
Vector Machine, however, cannot derive the feature’s impor-
tance within the respective model, and therefore variable
selection methods need to be used in order to reduce the level
of noise in high-dimensional datasets [43].

In this section, the traditional SVM model developed for
binary classification by [44] is presented in both linear- and
kernel-based versions. Subsequently, two recently developed
extensions are discussed, namely, the twin SVM method
[45, 46] and the SVM method based on second-order cone
programming presented in [30] (§-SOCP). Finally, two fea-
ture selection approaches used to address the issue of high
dimensionality are described: the Fisher score and RFE-
SVM method.

Among all SVM variations, we chose Twin SVM and
SOCP SVM due to their superior performance we observed
in previous studies (see e.g., [30, 47]). Twin SVM has shown
positive empirical performance compared with the standard
SVM formulation, being also computationally more efficient
since the construction of these classifiers can be done by split-
ting the optimization problem into two smaller subproblems
[45, 46]. Regarding &-SOCP, it is based on robust optimiza-
tion, considering the worst-case setting for the class condi-
tional densities related to the two training patterns in
binary classification. In machine learning, robustness is a
valuable property since it reduces the risk of overfitting,
guaranteeing that the test performance does not deteriorate
too much compared to the training performance when slight
changes in the data distribution occur [30, 47].
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3.1. Soft-Margin SVM. Let {(x;,y,)}1, be a set of examples
x; € R” with labels y, € {-1,+1},i=1, ..., m. The traditional
soft-margin SVM formulation [44] finds a classifier of the
form w'x + b = 0 by solving the following model:

. 1 S
min —||w||2+CZEi
¢ 2 -1

w,b,
sty (wai + b) >1-¢, (6)
&0,
i=1,...,m.

For each training example, a slack variable ; is intro-
duced, while C is a positive parameter that controls the
trade-off between margin maximization and model fit.

A nonlinear decision surface can be obtained by using a
kernel function [48]. A maximum margin classifier is con-
structed in a higher dimensional space by computing the dual
of Formulation 4 and applying the kernel trick, leading to the
following problem:

min > Y aayyKx,x)- Y &
i,s=1 i=1 (7)

where a is a vector in R™ of the dual variables corresponding
to the constraints in 4 and K : R" xR" - R is a kernel
function. A typical choice of kernel is the Gaussian kernel,
which usually leads to better results [43]. This kernel is
as follows:

K(x;,x,) = exp <— M) (8)

2072
where 0 > 0 is the kernel width parameter [46].

3.2. Twin Support Vector Machine. The twin SVM method
[45] constructs two nonparallel hyperplanes instead of the
single classifier used in the soft-margin SVM formulation.
Formally, two hyperplanes of the form wlx + b, =0, wlx +
b, = 0 are obtained in such a way that each of the functions
is closer to the samples of one of the two labels and, at the
same time, is as far as possible from those points of the other
class. The following two problems are solved in order to find
the following hyperplanes:

. 1 c
wr:})lll,lgz 5 [[Aw, + e1b1||2 + 73 (||W1 H2 + b%) + Cleszz

s.t. - ng] + ezbl) > € — 52) 52 >0, (9)
. Cy T
wr21})121’1.51 5\|Bw2+e2b2\|2+ E(||w2||2+b§) +cye &
st. (Aw,+eb,)>e -&, & >0,

where A and B are the data matrix for the positive and neg-
ative class, respectively, ¢; are trade-off positive parameters
(i={1,2,3,4}), and e, and e, are vectors of one’s appro-
priate dimension. Previous formulation is known as twin-
bounded SVM (TB-SVM) [46], which is similar compared
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to the twin SVM (TW-SVM) method proposed by Jayadeva
et al. [45] when setting ¢, =¢, =e¢.

Similarly to the soft-margin formulation, a nonlinear
decision surface can be obtained by applying the kernel
trick. The kernel-based twin SVM method solves the follow-
ing two problems:

. 1 2 C
u?})?,}jz 3 HK(AT,X)u1 +e1b1H + 53(||u1||2 +bf) +c1e2T§2

st. - (K(B',X)u, +e,b)) 2e,- &, & 20,

(10)

. 1 2 ¢
Jnin o |K (BT, X)u, +e,b,||" + 54 (JJuy|)* +b3) + c,ef &

st. (KA, X)u, +eb,) 2e &, & 20,
(11)

where X = [AT B7] is the matrix of both training patterns
(sorted by class) and K:R"xR" >R is the kernel
function.

Finally, a new data point is assigned to label +1 (k=1) or
—1 (k =2) according to its proximity to the two hyperplanes.
That is, x € R" belongs to the label k* iff

T
k* = argmin {M} (12)

The twin SVM method has been recently applied in neu-
roscience [49] and, in particular, in pattern analysis with EEG
signal data [50, 51].

3.3. &-Second-Order Cone Programming SVM. In this study,
we also used the robust SVM version based on second-
order cones presented by [30]. For instance, if we suppose
that X, and X, are random vector variables that generate
samples of positive class (brain synchrony pattern of a partic-
ipant that made a good resolution of the math problem) and
negative class (brain synchrony pattern of participant that
made an incorrect resolution of the math problem), respec-
tively, we should construct a maximum margin linear classi-
fier such that the false-negative and false-positive error rates
do not exceed 7, € (0,1] and #, € (0, 1], respectively, in the
following Quadratic Chance-Constrained Programming
(QCCP) problem:

1 2
in - +C
min 5 [[wl]” + C&

st. Pr{w'X;+b21-¢&} 27, (13)
Priw'X, +b<-1+&} 27,
£>0.

False negative could appear, for example, due to not
completely reliable math assessment. In this case, there is a
possibility of correct answers to a math problem, despite that

it is registered as a pattern of low synchronization in the
brain activity, that is, when a student correctly solves the
problem without performing a deep analytical thinking.
The proposed robust setting suggests classifying each
label correctly, up to the rate #;, even for the worst data dis-
tribution. Thanks to Chebyshev’s inequality [52, Lemma 1],
this approach leads to the following deterministic problem:

1

min = ||w||*+ CE

w,b,¢ 2

st. wig +b>1-E+x/wiZw, (14)
—(Wiay+b) 21-E+x,0/WIS,w,  £20,

where pu; and X, are the means and covariance matrices for
eachclass k=1,2and x;, = /#,/1 — 17, and C > 0 is a tradeoff
parameter. The constraints appearing in the previous prob-
lem are called second-order cone constraints [53]. Thus, we
refer to this problem as the £-SOCP formulation.

Similar to [54], a nonlinear version can be also derived
for £-SOCP via the kernel trick. The kernel-based £-SOCP
method is as follows:

1
min —s'Ks+ CE
sb,¢ 2
st. sTg +b>1-E+x,\/sTEs, (15)
—(s"g, +b) 21 -E+x,4/sTEys, £20,
where K=[K,;,K;; K,;, Ky] € R™, with K;, =AAT,
K,, =KI, =BAT, K,, =BB" and

K, kex

8k = m,

>

Korer
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3.4. Feature Selection for SVM. In this work, two feature
selection strategies that have been used frequently for binary
classification with SVM are considered: the Fisher score and
RFE-SVM [42]. The first technique assesses variable rele-
vance before applying SVM, constructing a ranking of attri-
butes that can be used as input for the SVM model. This
ranking is based on the distance between y; and y;, the

1
k:—
k

Klk
K2k

[1]

means for the jth attribute in the positive and negative labels
are as follows:

+ —

Ui — Y
(o) (o)

where a]f (0;) is the standard deviation for the positive

E(j) =

(negative) label. RFE-SVM, in contrast, performs a feature
selection process embedded in the model, eliminating those
variables that have the lowest contribution iteratively [42].
The variable contribution (the SVM margin when removing
a given attribute) can be written in terms of the dual variables
as follows:



Wz(“) = Z “i“syiysK(xi’ xs)' (18)

i,s=1

The RFE-SVM algorithm was successfully applied to
linear Twin SVM in [55]. However, the RFE algorithm
has not been extended before to £-SOCP, to the best of
our knowledge. In this work, we implement the RFE algo-
rithm for the £-SOCP method. This strategy together with
the kernel-based £-SOCP formulation is a novel methodo-
logical contribution of this work. We should note that the
characteristics of feature vectors x are elements of the
synchronization matrices, which represent the weights of
network edges. So, this procedure determines the most signif-
icant features or, in other words, the most noticeable network
edges that make the difference in separation of the strategies
used in the resolution of mathematical problems, in a correct
or incorrect way.

4. Results and Discussion

We applied the classification and feature selection
approaches described in the previous section on five different
datasets corresponding to correlation data Corr and to
synchronization data S which comprise three frequency
domains (Low, Medium, and High) and the f frequency
band. Each of the datasets has 280 samples (100 right answers
and 180 wrong answers) described by 1830 variables.

For model evaluation, we chose a nested cross-validation
(CV) strategy: training and test subsets were obtained using a
10-fold CV (outer loop), and the training subset was further
split in training and validation subsets in order to find the
right hyperparameter setting. The final feature ranking and
classification were then performed with the full training
subset from the outer loop for the best combination of hyper-
parameters, and the classification performance was com-
puted by averaging the test results. This way, the test
subsets from the outer loop remain unseen during the hyper-
parameter selection procedure. The following values for the
hyperparameters were studied: C, ¢; and o€ {27,...,27}
and 7, € {0.2,0.4,0.6,0.8}.

All experiments were performed on an HP Envy dv6
with 16GB RAM, 750GB SSD, an Intel Core Processor
i7-2620 M (2.70 GHz), and using Microsoft Windows 8.1
OS (64 bits). The toolbox LibSVM [56] was used for standard
SVM approaches, while the SeDuMi Matlab Toolbox [57]
and the codes provided by Shao et al., the author of Twin-
Bounded SVM [46] (publicly available in http://www.
optimal-group.org/), were used for £&-SOCP and TB-SVM,
respectively.

Table 1 presents the best performance of the model selec-
tion procedure for all classification methods (standard SVM,
TB-SVM, and £-SOCP in their linear and nonlinear versions)
and for all five datasets without performing feature selection.
The average performance among all techniques for each data
is also reported. The two best performances among all
methods are highlighted in bold type.

From Table 1, we observe that Medium and Corr are the
ones with better average performance among the five
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TaBLe 1: Performance summary for different classification
approaches. All datasets.

High Medium Low Corr Beta
SVM, 64.6 68.6 67.9 67.9 65.0
SVM,, 67.5 67.9 67.9 66.1 65.0
TB-SVM 66.1 66.8 67.5 66.4 64.6
TB-SVM,, 65.0 66.5 65.7 67.1 61.8
£-sOCP 58.6 63.2 63.9 65.7 65.3
£-soCp,, 65.7 67.1 64.3 66.1 63.6
Average 64.6 66.7 66.2 66.5 64.2

TaBLE 2: Performance summary for different feature selection
approaches. Medium and Corr datasets.

Medium n Corr n
Fisher + SVM; 66.8 50 67.9 50
Fisher + SVM,,, 67.1 1000 67.5 50
Fisher + TB-SVM 68.2 500 67.1 50
Fisher + TB-SVM,, 67.5 1000 67.9 500
Fisher+&-SOCP 67.1 250 68.2 250
Fisher+£-SOCP,,; 66.4 500 68.6 100
RFE +SVM, 68.2 20 68.2 10
RFE +SVM,, 682 250 67.5 20
RFE + TB-SVM 67.5 500 67.1 20
RFE+&-SOCP 65.4 1000 68.2 10

different datasets. For the remaining analysis, we focus on
these two datasets.

Next, we studied both feature selection approaches
(Fisher score and recursive feature elimination) with the fol-
lowing number of selected attributes: 10, 20, 50, 100, 250,
500, 1000, and 1830 (i.e., with no features removed). The
nested cross-validation strategy was performed for each sub-
set of features, and the best performance is reported in
Table 2, indicating the optimal number of selected variables
for each case. The best performance among all methods is
highlighted in bold type for each dataset.

In Table 2, we first observe that feature selection can
improve predictive performance compared to a case with
all available information, confirming what the specialized
literature on this topic suggests [42]. In our case, an improve-
ment of around 2% is achieved by eliminating those attri-
butes that introduce noise in the modelling process. The
best strategies are £-SOCP in its kernel-based version in com-
bination with Fisher score and standard linear SVM in com-
bination with RFE for the Corr and Medium datasets,
respectively. Notice that the best approach is the one with
fewer selected attributes in case of ties in accuracy.

Next, we construct the accuracy curves for the different
subsets of selected variables, based on the four best methods
presented in Table 2. For both frequency domains, we plot
the classification performance of the four selected strategies
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FIGURE 2: Accuracy versus the number of selected variables for
Corr dataset.
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FIGURE 3: Accuracy versus the number of selected variables for
Medium dataset.

to assess stability and overall predictive power. These results
are presented in Figures 2 and 3.

In Figures 2 and 3, we first observe that no method out-
performed others, and a reasonably broad range of classifiers
is needed to define a good classifier adequately. The overall
best performance is achieved with £&-SOCP as the classifica-
tion method and using Fisher score for feature ranking,
although the most stable strategy corresponds to standard
SVM with linear kernel, and the RFE algorithm for variable
elimination. Notice also that the best performance is usually

achieved between 10 and 100 attributes, discarding more
than 90% of the available information.

Finally, we select the most relevant variables for each
dataset. This is performed by combining the two best ranking
strategies, namely, Fisher score and standard linear SVM in
combination with RFE, and selecting the common variables
(notice that each of these variables means a link between
two EEG channels) that appear in both rankings (those with
the highest importance).

Figures 4(a) and 4(b) show resulting networks con-
structed with statistically significant connections for the best
classification methods and the set of connections that best
discriminates the two classes of correct and incorrect answers
during solving of math problems for correlation Corr and
synchronization S matrices, respectively.

5. Conclusions

The discriminative brain pattern is a description of the
cumulative contributions of many features. Therefore, the
interpretation of the effects of single brain regions or connec-
tions between regions on the separation of the pattern classes
is a complicated matter. However, some marked contribu-
tions aimed to solve this problem are present in this study.

It is well known that neural synchrony, which is involved
in the large-scale transient integration of functional areas
widely distributed over the brain, is required for normal cog-
nitive operations [18]. Figure 4(a) shows precisely how the
correlation can and should be used to measure this integra-
tion of different functional areas in normal processes related
with math problem resolution.

Despite the apparent differences in patterns of connec-
tions (that were obtained by different methodologies),
there are nodes that are common to both figures: AF4,
F1, Fz, FI7, CF3, Cl1, C5, C6, P3, P7, and Ol. These
nodes precisely correspond to a widely distributed brain
network previously identified as related to several mathe-
matical activities [21-23].

The most discriminative connections (selected features)
for the S case happen in the Medium range of frequencies
from 8 to 30 Hz. Interestingly, these relevant connections
are present in both the o and f bands. The « frequency band
is widely associated with attention processes [58-62], and
there is a large consensus that under conditions of inatten-
tion, some stimuli fail to be seen because the subject’s atten-
tion is occupied with a different task and/or with another
salient stimulus [63-65]. In such cases, perceptual, lexical,
and/or semantic processing of the math problems could
occur in the absence of conscious perception. As a result,
stronger nonconscious effects are observed that may lead to
erroneous mathematical performance.

In [66], it was suggested that focused attention elicits «
large phase locking during the processing of a target stimulus.
This phase response can be interpreted as reflecting temporal
attention. Thus, the a phase should also play a crucial role in
the attentional blink phenomenon, which represents reduced
ability to report a second target after identifying the first tar-
get in visual stimuli. The explanations of the phenomenon
proposed so far have focused primarily on some cognitive
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Phase synchronization (Medium) network

(b)

FIGURE 4: Graphic representation in which the vertices indicate EEG sensor locations (according to 10-10 position convention), and the edges

represent the most significant features in the SVM classification and feature selection procedure. The colors represent different disconnected
network components. BrainNet Viewer software [75] was used for the graph visualization.
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FIGURE 5: Average synchrony for relevant connections in the case of Medium dataset. Note that for every relevant connection, the average

PLV is higher for correct answers than for incorrect ones.

aspects, such as attentional filters, capacity limitation, and
retrieval failure processes [67, 68].

Figure 5 shows the average PLV calculated for relevant
connections that were determined by the procedure of fea-
ture selection explained in Section 3.4. This average was
taken for all measurements made for both classes of mathe-
matical problems, that is, the ones that were answered prop-
erly and the ones that were answered incorrectly.

Figure 5 depicts two important results. First, the mea-
sures of the synchronization in the relevant connections indi-
cate two types of different behaviors in regard to the cases of
correct responses and incorrect responses. In the first case,
synchronization is consistently higher than in the case of
incorrect responses, indicating a different kind of resolution
strategy whose neurological correlate shows a coordinated
integration of different brain areas.
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Secondly, synchronization measured by PLV values is
not excessively high. The interpretation of this fact is
interesting. It indicates that by building a proxy of a func-
tional brain network, using synchronization networks able
for distinguishing underlying normal cognitive processes
in solving complex problems, the crucial point is not the
detection of a high level of synchronization but rather
the determination of which areas or groups are integrated
with a stable synchronization. Traditional methods based
on the choice of a threshold value in correlation/synchroni-
zation networks (e.g., using a threshold value greater than
0.5) would exclude much of the analysis described in this
paper, which inevitably cause the loss of relevant information
related to the neurological correlates that support the cogni-
tive processes studied.

The primary finding of this study is that classification
using automated SVM of datasets from complex cognitive
processes related to math performance is feasible. Moreover,
feature selection is a valuable procedure for reducing the
complexity and, therefore, facilitating the interpretation of
the mined patterns.

The observed differences in the math performance of
participants and the success of SVM classification with a rea-
sonable statistical significance suggest the potential use of
this methodology as a novel approach to study patterns of
connectivity in functional brain networks related to normal
cognitive processes beneath the execution of complex tasks.

A still unsolved problem in graph theoretical approach
for studying brain functional network integration is that net-
work threshold can be chosen in a variety of ways based on
an arbitrary choice or using statistical criteria of connectivity
strength, based on the average degree or based on the net-
work density. Particularly, when the threshold is based on a
fixed number of connections in the network, this choice
may result in either inclusion of spurious or noisy connec-
tions in networks (for too high density values or too high
average degree) or the exclusion of relevant connections in
networks (for too low density values or too low average
degree) [27]. The procedure proposed here, based on feature
selection tools, allows to determine not only a suitable net-
work size by decreasing the size of feature vector but also
the most relevant connections in network, that is, the ones
that contribute most to the classification. As was shown in
Table 2, feature selection improves predictive performance,
which means that the optimal choices of the numbers of sig-
nificant variables (connections) happen without including
noisy connections or exclusion of significant connections.

There are some limitations to our study. First, the present
analysis was performed on EEG data in sensor space, which
contains some inherent spurious correlations because vol-
ume conduction causes the signal at each sensor to be a
mixture of blurred activity from different inner cortical
sources. More accurate inferences about anatomical locations
need a source reconstruction of the activity in the cortex [69].
Second, in pattern classification, there are always uncer-
tainties, for example, training datasets may contain incom-
plete information, there is input noise, there is noise in
measurements, or underlying process is stochastic. As a
result of such a probabilistic setting, uncertainties arise in

11
TaBLE 3: Metadata for all participants.

s Gender_hge et ot Kt
1 Male 21 7 35 13 65 Null
2 Male 22 4 20 16 80 Null
3 Female 20 5 25 15 75  Null
4 Male 20 9 45 11 55 33091.80
5 Male 20 9 45 11 55 50645.45
6 Male 21 6 30 14 70 38395.85
7 Male 24 10 50 10 50 46157.05
8 Female 21 8 40 12 60 36193.85
9 Male 19 4 20 16 80 43862.60
10 Male 22 4 20 16 80 40500.10
11 Male 20 6 30 14 70 36475.95
12 Female 20 4 20 16 80 32184.35
13 Male 23 6 30 14 70 37211.10
14 Male 23 7 35 13 65 39002.50
15 Male 22 6 30 14 70 36721.80
16 Male 20 15 75 5 25 42437.95
17 Female 23 6 30 14 70 32250.65
Ave. — 21.24 7 36 13 64 38938.00

learning from data. In order to get more reliable and repro-
ducible results, we constructed a classifier whose misclassifi-
cation rate does not exceed a defined maximum tolerable
limit. For this, we presented in Section 3.3 a methodology
for classification with uncertainties using SVM. However,
general approaches of chance-constrained problems require
the use of more suitable numerical methods for solving
problems with linear constraints of probability to get compu-
tationally tractable approximations.

Appendix
A. Basic and Behavioral Data

The subjects in the experiment were first-year engineering
students enrolled in calculus and algebra courses. All partic-
ipants were right-handed, healthy individuals, without any
known neurological disorder, and with an average age of
21.24 + 1.43. The basic metadata is presented in Table 3.

B. Mathematical Problems

Example 1 (attribute substitution). According to Kahneman
et al. [32], attribute substitution often occurs when people
try to solve a complex problem. This happens when an indi-
vidual heuristically assesses a specific real attribute of the
problem by means of another attribute, which comes easier
to the mind. The real attribute is less accessible, and another
related attribute, which is more available, replaces the first
one. This substitution occurs so fast thatthe S2 monitoring
functions cannot be activated, so it happens in a practically
unconscious way. In geometry problem resolution, for
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example, students quickly handle attributes such as distance,
dimensions, and similarity that are automatically/uncon-
sciously recorded. These attributes are called “natural assess-
ments.” Managing these estimators can lead to errors,
essentially because students ignore less accessible attributes
that are critical to successfully solve the problem. We used
this fact in Problem 1. In the resolution of this problem, some
students ignored the values of angles and seem to have in
mind the idea that the square has twice the area of the trian-
gle. The average score obtained by students in this problem
was 1.26 of a maximum of 4, showing that this was a fairly
common error.

Problem 1. In the figure, the area of the triangle BCE is S. The
area of the square ABCD is as follows:

(a) 2S.
(b) 24/38. v
A B
30°
S
fo
D C E

Example 2 (intuitive rules). In [29, 70, 71], the authors
observed that students react in a similar way to a wide variety
of conceptually nonrelated problems but share some com-
mon features. This fact allowed them to suggest that many
misconceptions described by educational research literature
could be explained as consequences of some few common
intuitive rules, such as “More of A—More of B,” “Same
A—Same B,” “Everything can be divided,” and “Over-
generalized linearity.” The fundamental contribution of the
intuitive rules is the observation that human response is often
determined by irrelevant externalities of the tasks and not by
the really important concepts and ideas. Intuitive rules
showed that subjects during the resolution of a problem,
under certain circumstances, can completely ignore some
important data to save the immediacy. Using this fact, Prob-
lem 3 and Problem 4 were constructed. Problem 3 is intuitive
and evident; the score obtained in this problem was the max-
imum possible: 4.0. However, equal areas do not necessarily
imply equal volumes, and this mistake led to an average score
1.89 from a maximum of 4.0 for Problem 4. Problem 2 was
also constructed by following intuitive rules, in particular,
“Same A—Same B” [29].

Problem 2

(a) Angle 2 is greater than angle 1. v/
(b) Angle 1 is equal to angle 2.
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Problem 3. The rectangle A, is rotated 90° to obtain the
rectangle A,.

90°

Ay t A,

Indicate the correct alternative:

(a) The area of rectangle A, is different from the area
of triangle A,.

(b) The areas of both rectangles are equal. v/

Problem 4. The rectangle A is wound in the ways indicated in
the figures to construct the cylinders B and C.

-
A —>

n
v =lle )

Indicate the correct alternative:

(a) The volume of cylinder C is different from the
volume of cylinder B.

(b) The volumes of both cylinders are equal.

Example 3 (mathematical sets and conceptual metaphors).
Lakoff and Nunez [72] stated that the concept of mathemat-
ical set is internalized using the image-schema CONTAINER
[73]. The container is the source domain, whereas the
mathematical set is the target domain of a conceptual met-
aphor. The various properties of the set are conceptualized
through the metaphor “sets are containers.” Thus, for
example, “an element belongs to the set” is conceptualized
as “the element is inside the container,” and “A is a subset
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of B” is conceptualized as “The container A is inside the con-
tainer B.” In contrast, Fischbein and Baltsan [74] postulated
that the mathematical set is conceptualized as an image-
schema COLLECTION. Although Fischbein does not use
the term metaphor, using tacit model instead, there are no
major differences if we assume “sets are collections” as a
new metaphor about the mathematical sets. We focus on
common mistakes to detect the use of this type of conceptu-
alizations. For this, we build Problem 6 to Problem 10
(see the supplementary material). In Problem 5, for example,
the conceptualization of mathematical sets as collections was
difficult in practice. It is counterintuitive to think of a collec-
tion of elements without any elements. For this reason, we
should expect incorrect answers in cases of conceptualiza-
tions through collections. The average score on this problem
was 0.42 out of a maximum of 4.0.

Problem 5. Given the proposition,

P =“with the solutions of the system of equations
4x+3y=2,
4x +3y=-2,
(B.1)

it is possible to build a set,” indicate the correct alternative:

(a) p is false.
(b) pis true. v/
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