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Bioinformatic profiling identifies 
prognosis‑related genes 
in the immune microenvironment 
of endometrial carcinoma
Pu Cheng1,2*, Jiong Ma1, Xia Zheng1, Chunxia Zhou1 & Xuejun Chen1

Endometrial carcinoma (EC) is a common malignancy of female genital system which exhibits a unique 
immune profile. It is a promising strategy to quantify immune patterns of EC for predicting prognosis 
and therapeutic efficiency. Here, we attempted to identify the possible immune microenvironment‑
related prognostic markers of EC. We obtained the RNA sequencing and corresponding clinical data 
of EC from TCGA database. Then, 3 immune scores based on the Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm were computed. 
Correlation between above ESTIMATE scores and other immune‑related scores, molecular subtypes, 
prognosis, and gene mutation status (including BRCA and TP53) were further analyzed. Afterwards, 
gene modules associated with the ESTIMATE scores were screened out through hierarchical clustering 
analysis and weighted gene co‑expression network analysis (WGCNA). Differentially expressed 
analysis was performed and genes shared by the most relevant modules were found out. KEGG 
pathway enrichment analysis was conducted to explore the biological functions of those genes. 
Survival analysis was carried out to identify prognostic immune‑related genes and GSE17025 database 
was further used to confirm the correlation between immune‑related genes and the ImmuneScore. 
The immune‑related scores based on ESTIMATE algorithm was closely related to the immune 
microenvironment of EC. 3 gene modules that had the closest correlations with 3 ESTIMATE scores 
were obtained. 109 immune‑related genes were preliminarily found out and 29 pathways were 
significantly enriched, most of which were associated with immune response. Univariate survival 
analysis revealed that there were 14 genes positively associated with both OS and PFS. Among which, 
11 genes showed marked correlations with ImmuneScore values in GSE17025 database. Our current 
study profiled the immune status and identified 14 novel immune‑related prognostic biomarkers for 
EC. Our findings may help to investigate the complicated tumor microenvironment and develop novel 
individualized therapeutic targets for EC.
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KEGG  Kyoto encyclopedia of genes and genomes
DEGs  Differentially expressed genes

The global morbidity and mortality of endometrial carcinoma (EC) shows an increasing trend in recent  years1,2. 
In China, EC ranks the second place in terms of morbidity among all malignant tumors of female genital system, 
for whom the 5-year survival rate is 55.1%3. At present, FIGO staging and histological classification are still the 
chief factors applied to patient stratification and prognosis prediction in  EC4,5. Over the past few past decades, 
great individual differences have been found in the outcomes of EC treatments due to the tumor heterogeneity, 
which is partially dependent on the molecular biological features of the primary  lesion6. Moreover, quite a few 
patients show distinct responses to adjuvant therapy even though they are at the same clinical  stage7. Thus, more 
effective approaches are needed in order to hierarchically classify patients into high- or low- risk subgroups for 
monitoring and optimizing the treatment of  EC8.

As in many other types of cancer, immunotherapy is currently recognized as a novel promising therapeutic 
option in  EC9. Interactions between different infiltrating immune cells and EC cells in tumor microenvironment 
(TME) significantly affect tumor progression and  recurrence10. Besides, EC exhibits a unique immune profile 
and can be used to construct suitable models for exploring molecular crosstalk between immune and tumor 
 cells11. Great progresses have been attained in the past few years, making it possible to recognize novel molecular 
therapeutic targets within the microenvironment of  EC12. At the same time, several immune-related factors have 
been identified to predict patient prognosis, which emphasizes the significance of certain immune status on EC 
 outcomes13. Nonetheless, the vast majority of existing studies are pre-clinical basic experiments or have limited 
available clinical information, while study with a large sample size has not been carried out so  far14.

Consequently, several immune scoring systems were developed based on the immune-related gene expression 
patterns through integrated analysis of The Cancer Genome Atlas (TCGA) database to explore the relationships 
between tumor cells and immunocytes in TME, as well as to quantify the immune microenvironment for each 
individual cancer case. Of them, the inflammation-based index was reported to be associated with the local 
immune response and prognosis in various cancers, including pancreatic cancer, colorectal  cancer15, non-small 
cell lung  cancer16 and tongue  cancer17 and so on. However, limited studies have been designed in an attempt to 
develop an immune-related prognostic signature for EC.

In the current study, we obtained the RNA sequencing (RNA-seq) and corresponding clinical data of EC from 
TCGA database. Then, we calculated 3 immune scores for each EC sample based on the Estimation of STromal 
and immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm and analyzed the 
correlation between ESTIMATE immune score and molecular features of EC. Thereafter, gene modules associ-
ated with the immune scores were identified using weighted gene co-expression network analysis (WGCNA), 
and finally, 14 novel prognostic immune-related genes were screened out which were further explored in the 
GSE17025 database.

Materials and methods
Data collection and immune score calculation. All the data we used in our study are publicly acces-
sible at TCGA and NCBI GEO (accession number: GSE17025) database. Firstly, GDC application programming 
interface was utilized to download clinical follow-up, RNA-seq and SNP data. RNA-seq FPKM values were 
subsequently converted into Transcripts PerKilobase Million (TPM) files. The expression levels of 13 previously 
published immune  metagenes18 were calculated as the median of log2-transformed expression levels of clus-
tered genes for each sample. Meanwhile, the infiltration of 6 immune cells (B cells, CD4 + T cells, CD8 + T cells, 
neutrophils, macrophages and dendritic cells) were calculated and downloaded from the  TIMER19 (https:// cistr 
ome. shiny apps. io/ timer/) database. In addition, the ESTIMATEScore, StromalScore and ImmuneScore values 
for each sample were computed by the ESTIMATE function of R package.

Assessment of the correlation between ESTIMATE scores and immune status. Correlation 
analysis was carried out to assess the relevance between 3 ESTIMATE immune scores, expression of 13 immune 
metagenes and the infiltration status of 6 immune cells. Moreover, the correlation of 3 ESTIMATE immune 
scores, 13 immune metagenes expression and the infiltration of 6 immune cells were further analyzed among the 
4 previously reported EC subtypes respectively.

The correlation between ESTIMATE scores and patient prognosis. We firstly conducted survival 
analysis using Kaplan–Meier method with survival function of R package to explore the overall survival (OS) of 
above mentioned 4 EC subtypes respectively. Afterwards, patients were divided into high- and low-score groups 
according to the median of 3 ESTIMATE immune scores. Then, the differences of OS between these groups were 
examined through Kaplan–Meier method with survival package under R environment.

Exploration of the association between ESTIMATE scores and gene mutation. The mutation 
data of BRCA2, BRCA1 and TP53 were extracted from TCGA derived SNP dataset and processed with Mutect. 
Then, the correlation between different mutation status of these genes and ESTIMATE immune scores were 
analyzed using Wilcox.test Package under R environment. Furthermore, patients were divided into high- and 
low- tumor mutation burden (TMB) groups according to the median of TMB value. The correlation between 
TMB status and ESTIMATE immune scores were assessed using Wilcox.test Package under R environment.

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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Identifying immune score‑related gene modules through WGCNA. Firstly, transcripts that had 
at least 75% TPM greater than 1 and median absolute deviation (MAD) greater than the median were selected 
for following analysis according to the expression patterns. Then, samples were clustered through hierarchical 
clustering method with the distance > 80,000 considered as cut-off value of outlier sample. The distance between 
each 2 transcripts was computed according to Pearson correlation coefficient, then the R package  WGCNA20 
was used to establish the weight co-expression network, and co-expression modules were selected at the soft 
threshold of 10 in order to ensure the constructed co-expression network conformed to the scale-free network. 
That was to say, the node/k connectivity (log(k)) logarithm was negatively correlated with logarithm in terms of 
the occurrence probability of node (log(P(k)), and the correlation coefficient was > 0.8. The appropriate β value 
was also selected to ensure the scale-free network. Then, the expression matrix was converted into the adjacent 
one, followed by further conversion into the topological one for gene clustering on the basis of topological over-
lap matrix (TOM), in accordance with the average linkage hierarchical cluster approach following the mixed 
dynamic shear tree standards. In addition, more than 30 genes had been selected for every gene network module. 
The dynamic shear approach was also utilized to determine gene modules, and eigengenes values of all modules 
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Figure 1.  Correlations between ESTIMATE immune score and other immune scores for EC patients. (A) 
Correlations among the 3 ESTIMATE immune scores. (B) Correlations between 3 ESTIMATE immune 
scores and 13 metagenes scores for EC patients. (C) Correlations between 3 ESTIMATE immune scores and 
6 immunocyte infiltration scores for EC patients. Coefficients of Spearman correlation were displayed color-
coded, so as to demonstrate the negative (red) or positive (blue) association.
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were calculated. Cluster analysis was then carried out on the modules, adjacent modules were fused together to 
obtain a novel one, and appropriate minModuleSize, deepSplit, and height values were assigned. Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed to explore the potential 
biological functions of genes within these 3 modules using the ClusterProfiler package under R environment, 
with the significant FDR level of < 0.05. Then, the associations between the recognized gene modules and ESTI-
MATEScore, StromalScore as well as ImmuneScore values were calculated, respectively, in order to mine the 
gene modules having highest correlation.

Construction of gene interaction network and functional analyses. We separated patients into 
two groups equally based on the ImmuneScore and ESTIMATEScore. The DESeq2 function of R package was 
utilized to screen differentially expressed genes (DEGs) between these groups. The cut-off criterion for DEGs 
was set as p < 0.05 and |log2(Foldchange)|> 1. Genes shared by the most relevant module, DEGs of ImmuneScore 
and ESTIMATEScore groups were finally screened out. All genes were subsequently mapped into the String 
 database21 separately using the STRINGdb package under R environment, with the threshold of > 0.4 to obtain 
the gene–gene interaction. Cytoscape was used for visualization. At the same time, the R package  clusterprofile22 
was utilized to carry out KEGG enrichment analyses for visualizing the signaling pathways affected by genes. 
The prognostic value of each immune-related gene was calculated using survival package under R environment. 
The correlations between immune-related genes and ImmuneScore were further explored with an independent 
external GEO dataset (GSE17025) through Pearson correlation analysis.

Results
The immune scoring system based on the ESTIMATE algorithm was closely related to the 
immune microenvironment of EC. The expression levels of 13 immune metagenes, infiltration status 
of 6 types of immunocytes, and 3 immune-related scores based on ESTIMATE algorithm (ESTIMATEScore, 
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StromalScore, and ImmuneScore) were computed. Additionally, Spearman correlation coefficient was employed 
for quantifying the relationships between these scoring systems (Fig. 1). Our results suggested that, immune-
related scores calculated using the ESTIMATE algorithm had an average internal correlation > 0.8 and also high 
correlations with the other 2 algorithms. Above findings indicated that immune-related scores computed based 
on the ESTIMATE algorithm was closely related to the immune microenvironment of EC.

Besides, ESTIMATEScore, ImmuneScore, and StromalScore among the 4 recognized  subtypes23 had also 
been examined (Fig. 2A–C). It was clear that, differences in ESTIMATEScore and ImmuneScore levels among 
different molecular subtypes of EC were statistically significant. Moreover, distribution of 6 types of immunocytes 
infiltration (Fig. 2D–I) and 13 metagenes expression (Fig.S1) among these 4 subtypes was also analyzed. Statistical 
significances were observed in 6 out of 13 metagenes expression and 5 out of 6 types of immunocytes infiltration.

To assess the relationship between 3 ESTIMATE scores and patient prognosis, the prognosis of above 4 
subtypes was firstly examined. As shown in Fig. 3A, difference in patient prognosis across those 4 subtypes was 
statistically significant, among which, the copy − number high subtype had the poorest prognosis. Next, all sam-
ples were classified according to median of ESTIMATE scores followed by survival analysis, which was consistent 
with previous  report24 (Fig. 3B–C). Obviously, the prognosis for samples with the high ESTIMATEScore and 
ImmuneScore was much better than that with low scores, suggesting that ESTIMATE immune scoring system 
might be used as novel promising markers to predict the prognosis for EC.

Afterwards, correlations between those 3 ESTIMATE scores and 3 independent prognostic gene mutations 
(BRCA2, BRCA1 and TP53) were  explored25,26. As a result, 3 immune-related scores of different mutant groups 
were generally higher when compared with those of wild-type groups, especially in TP53 and BRCA1 subgroups 
(Fig. 4A–I). Subsequently, the TMB of each sample was computed, and the relationships between 3 ESTIMATE 
scores and TMB level were analyzed. As presented in Fig. 4J–L, the ESTIMATEScore and ImmuneScore showed 
significant positive correlation with TMB.

To sum up, the immune-related scores based on ESTIMATE algorithm was closely related to the immune 
microenvironment of EC and could be used to be the optimal immune scoring methods for prognosis prediction.

Identification of immune score‑related gene modules by WGCNA. Samples were firstly selected to 
performed hierarchical clustering analysis (Fig. 5A). After excluding outlier data, 579 samples were finally used 
to construct a weight co-expression network through WGCNA (Fig. 5B,C). Then, gene modules were exam-
ined by dynamic shear, and all the recognized modules were further clustered. Next, adjacent gene modules 
were fused to form a new one, with minModuleSize, deepSplit and height set at 30, 2 and 0.25, respectively. 17 
modules were ultimately obtained (Fig. 5D,E), and 5362 transcripts were assigned to 16 co-expression modules 
except the grey module. Correlations between eigenvectors of these 16 modules and 3 ESTIMATE scores were 
then calculated (Fig. 5E), from which we could see that the red (170 genes), purple (55 genes) and tan (49 genes) 
modules had the closest correlations with 3 ESTIMATE scores, with the average correlation coefficients > 0.5.

As following, we performed KEGG pathway enrichment analysis to explore the potential biological functions 
of the 274 genes within these 3 modules. According to the results, there were 23 and 54 pathways enriched to the 
purple module and red module, respectively (Fig. 6). It was easy to find that the genes were primary enriched 
to immune-related pathways, including T cell differentiation, primary immunodeficiency, chemokine signaling 
pathway, cytokine-cytokine receptor interaction, B cell receptor signaling pathway and so on. Thus, it can be 
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inferred that the ESTIMATE score-related genes may closely associate with the immune microenvironment of 
EC.

Identification of immune microenvironment‑related prognostic genes. To seek out the most 
immune-related genes, correlations between previously obtained ESTIMATE score-related modules and genes 
were computed. As illustrated in Fig. 7, the correlation coefficients were distributed in a bimodal manner, with 
the intersection point value of 0.77. Based on this, 136 genes with the maximum correlation coefficients with 
those 3 modules greater than 0.77 were screened out.

According to the previously described screening method, 379 DEGs were identified among high- and low-
ESTIMATEScore subgroups (Fig. 8A,B) using the R package  DESeq227. At the meantime, 526 DEGs were acquired 
among ImmuneScore-high and -low subgroups (Fig. 8C,D). The results were presented in a volcano plot and a 
heatmap for each subgroup. Obviously, the DEGs showed distinct expression patterns in low-ESTIMATEScore 
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Figure 5.  Immune score-related gene modules identified via WGCNA. (A) Cluster analysis of samples. (B,C) 
Network topological analysis for different soft-thresholding powers. (D) Module colors and gene dendrogram. 
(E) Correlations between different gene modules and 3 ESTIMATE Scores. The intensity of red and green colors 
indicates the value of correlation coefficient.

Figure 6.  The KEGG pathway enrichment analysis of the genes in purple (A) and red (B) module.
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subgroup compared with high-ESTIMATEScore subgroup. Similar results were also observed in low- and high-
ImmuneScore subgroups.

To further investigate the immune-related genes, we integrated above 3 gene sets (136 genes with the maxi-
mum correlation coefficients with 3 modules, 379 DEGs in high- and low-ESTIMATEScore subgroups and 
526 DEGs in high- and low-ImmuneScore subgroups). After intersection, 133 common genes were obtained 
and 24 genes belonged to 13 metagenes were eliminated subsequently. Finally, 109 immune-related genes were 
preliminarily found out (Fig. 9A).

Subsequently, KEGG enrichment analyses was conducted with clusterProfiler package under R environment. 
As shown in Fig. 9B, 29 pathways were significantly enriched, most of which were associated with immune 
response. Afterwards, the R STRINGdb  package28 was utilized to analyze the protein–protein interaction network 
of those 109 genes. All these genes were mapped to String database in order to acquire the relationship network 
and 67 nodes were finally obtained (Fig. 9C). As is depicted in Fig. 9D, the degree value of each node was high 
(5.49 on average), which demonstrated the close association between those immune-related genes.

Then, univariate survival analysis was performed to identify the immune microenvironment-related prog-
nostic markers using the survival and expression data of above 109 genes. The results revealed that there were 
34 and 19 genes associated with OS and PFS, respectively. Among which, 14 genes were found to be positively 
correlated with both OS and PFS (Table 1, Fig. 10).

Further exploration of the correlations between 14 immune‑related prognostic genes and 
ImmuneScore using an external database. The independent dataset  GSE1702529 was chosen and nor-
malized expression matrix was downloaded. Then, the R package ESTIMATE was used to calculate the sample 
ImmuneScore values. Pearson correlation coefficients between expression levels of 12 genes (2/14 genes were 
excluded due to unavailable expression data) and ImmuneScore values were further determined. As illustrated 
in Fig. 11, 11 genes (except S1PR4) showed marked correlations with ImmuneScore values.

Discussion
Until recently, the 5-year survival of advanced or recurrent EC is still not optimistic. Even though postoperative 
adjuvant therapy (chemotherapy and/or radiotherapy) can improve patient outcome, great individual differ-
ences in therapeutic effect exist due to the biological heterogeneity of EC cells. Hence, there is a critical need 
for reliable prognostic biomarkers to evaluate the risk of cancer progression and develop the patient-tailored 
treatment strategy.

With the rapid development of next generation sequencing techniques, numbers of novel molecular biomark-
ers have been identified, which were of great help to the personalized treatment of  EC8,30. Nevertheless, most 
studies are conducted on animal models, surgical cancer tissues samples or cell lines under in vitro conditions.

Figure 7.  The distribution of maximum correlation coefficients of 274 module-related genes.
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Tumor microenvironment, which is comprised of tumor cells, stromal cells and the secreted inflammatory 
mediators and cytokines, is a complex system and supports various tumor biological behaviors, including tumor 
genesis, progression, metastasis and so on. Stromal cells are mainly made up of immunocytes, fibroblasts, mes-
enchymal cells and tumor-associated endothelial cells. The abnormal infiltration of stromal cells, especially for 
immunocytes (such as neutrophils, monocytes and lymphocytes), has been verified in numerous  studies11,31. For 
now, great attention has been paid to the association between immune system and tumor  biology32. A growing 
number of studies have not only revealed the interaction between EC cells and the host immune system, but also 
enhanced the efficacy of  immunotherapies33. As mentioned before, EC has been widely accepted as a kind of 
immunogenic malignancy. The treatment of EC has reached a new milestone through artificially manipulating 
the tumor immune microenvironment. Therefore, it is of great importance for us to explore the immune-related 
prognostic and therapeutic biomarkers for  EC34.

In current study, we used the RNA-seq data downloaded from TCGA database to calculated 3 immune-related 
scores based on ESTIMATE algorithm, which showed marked correlation with the immune status, survival time, 
prognosis-related gene mutations, and molecular subtypes of EC. Next, ESTIMATE immune score-related gene 
modules were obtained by means of WGCNA. 109 immune-related genes were then screened out using dif-
ferential expression analysis and their functions were examined through enrichment analysis. Survival analysis 
was then performed and 14 novel immune-related prognostic genes were finally screened out, among which, 
12 genes were further confirmed having marked correlations with ImmuneScore values in GSE17025 dataset.

Our newly discovered 14 immune-related prognostic markers include WAS, GZMH, CD7, NKG7, 
LINC01871, TRAC, CD8A, TRBC2, CD3E, IGSF6, RASAL3, ITGAL, S1PR4 and CCL4. Unfortunately, only 
a few studies have explored the roles of these genes in EC. Among these, 4 genes (CD8A, CD3E, CCL4 and 
ITGAL) were reported to have close relationship with tumor immune microenvironment and to be involved in 
various pathological processes of  EC35–37. TRBC2 encodes a specific region of the T-cell receptor beta-2  chain38 
and has been identified as a promising biomarker for the distinction of multiple cancer types, including breast 
cancer, colorectal cancer, glioblastoma, hepatobiliary cancer, lung cancer and pancreatic cancer and so  on39. 
It is worth mentioning that, our findings demonstrated that TRBC2 had the most significant correlation with 

Figure 8.  Gene expression profile of high- and low-ImmuneScore /ESTIMATEScore groups. (A,C) Volcanic 
maps. (B,D) Heatmap.
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Figure 9.  Mining of the immune-related genes. (A) The co-expressed genes that were markedly correlated 
with ImmuneScore/ESTIMATEScore. (B) KEGG enrichment analysis of the 109 genes. (C) Protein–protein 
interaction network of the 109 genes. (D) The degree value of each node within protein–protein interaction 
network.

Table 1.  14 immune-related genes positively correlated with both OS and PFS of EC.

Gene symbol Gene name p value (OS) p value (PFS)

WAS Wiskott-Aldrich snydrome 0.005103711 0.033465715

GZMH Granzyme H 0.008033252 0.006877271

CD7 CD7 molecule 0.010859632 0.006642321

NKG7 Natural killer cell granule protein 7 0.000412089 0.030792653

LINC01871 Long intergenic non-protein coding RNA 1871 0.000140799 0.007739673

TRAC T cell receptor alpha constant 4.40E-05 0.009042146

CD8A CD8a molecule 0.003341004 0.012404753

TRBC2 T cell receptor beta constant 1.03E-05 0.001855756

CD3E CD3e molecule 0.000106431 0.002676012

IGSF6 Immunoglobulin superfamily menmer 6 0.00173721 0.043427798

RASAL3 RAS protein activator like 3 0.006739461 0.039618006

ITGAL Inergrin subunit alpha L 0.004923864 0.041623366

S1PR4 Sphingsine-1-phosphate receptor 4 0.007261307 0.029160931

CCL4 C–C motif chemokine ligand 4 0.001976119 0.034895726
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both OS and PFS of EC patients. Nevertheless, no studies have validated the specific role of TRBC2 in EC yet. 
Thus, it really deserves further study to elucidate the clinical importance and underlying molecular mechanism 
of TRBC2 in EC.

Conclusion
Briefly, our current study focuses on gene features associated with EC immune microenvironment. According 
to our findings, these genes participate in the progression of EC, and affect patient prognosis. Our work helps 
to investigate the complicated interactions in EC microenvironment. At the same time, our work may help to 
develop novel potential prognostic biomarkers and therapeutic targets for EC.

Figure 10.  Correlations between 14 novel immune-related genes and OS (A) and PFS (B) of EC patients. H 
high-expression, L low-expression.
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Data availability
The data generated are included in the manuscript and supplementary data. All the data we used in our study 
are publicly accessible at TCGA and NCBI GEO database.
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