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Abstract

Aims: The gastrointestinal hormone GIP promotes pancreatic islet function and exerts pro-survival actions on cultured b-cells.
However, GIP also promotes lipogenesis, thus potentially restricting its therapeutic use. The current studies evaluated the
effects of a truncated GIP analog, D-Ala2-GIP1–30 (D-GIP1–30), on glucose homeostasis and b-cell mass in rat models of diabetes.

Materials and Methods: The insulinotropic and pro-survival potency of D-GIP1–30 was evaluated in perfused pancreas
preparations and cultured INS-1 b-cells, respectively, and receptor selectivity evaluated using wild type and GIP receptor
knockout mice. Effects of D-GIP1–30 on b-cell function and glucose homeostasis, in vivo, were determined using Lean Zucker
rats, obese Vancouver diabetic fatty rats, streptozotocin treated rats, and obese Zucker diabetic fatty rats, with effects on b-
cell mass determined in histological studies of pancreatic tissue. Lipogenic effects of D-GIP1–30 were evaluated on cultured
3T3-L1 adipocytes.

Results: Acutely, D-GIP1–30 improved glucose tolerance and insulin secretion. Chronic treatment with D-GIP1–30 reduced
levels of islet pro-apoptotic proteins in Vancouver diabetic fatty rats and preserved b-cell mass in streptozotocin treated rats
and Zucker diabetic fatty rats, resulting in improved insulin responses and glycemic control in each animal model, with no
change in body weight. In in vitro studies, D-GIP1–30 exhibited equivalent potency to GIP1–42 on b-cell function and survival,
but greatly reduced action on lipoprotein lipase activity in 3T3-L1 adipocytes.

Conclusions: These findings demonstrate that truncated forms of GIP exhibit potent anti-diabetic actions, without pro-
obesity effects, and that the C-terminus contributes to the lipogenic actions of GIP.
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Introduction

Glucose homeostasis is maintained in the majority of people

with insulin resistance through adaptive responses in the function

and mass of their pancreatic b-cells [1]. However some individuals

lack the underlying genetic program to adequately adapt [2], in

which case insulin responses to circulating glucose progressively

deteriorate, resulting in the development of type 2 diabetes.

Clinical studies have shown that b-cell function is reduced ,50%

in patients with ‘pre-diabetes’ and ,80% in type 2 diabetes [3],

and autopsy studies revealed a progressive loss in b-cell mass

during disease development, with increased b-cell apoptosis being

the major contributor [4,5]. Consequently, it has recently been

argued that therapeutics targeted at improving b-cell function

should be implemented early in disease progression in order to

increase the probability of achieving glycemic control and

reducing associated morbidities [6].

Decreased b-cell function and mass in type 2 diabetes involves

the generation of b-cell stress [7,8] resulting from chronic

exposure to elevated glucose and free fatty acids [9], pro-

inflammatory cytokines [10] and human islet amyloid polypep-

tide [11]. Therapeutics counteracting these b-cell stressors should

therefore have beneficial effects in patients with type 2 diabetes.

The incretin hormones glucagon-like peptide 1 (GLP-1) and

glucose-dependent insulinotropic polypeptide (GIP) are gut

derived peptides that act on G protein coupled receptors in

multiple organs [12,13]. The best established physiological role of

incretins is to potentiate meal-induced insulin secretion and

incretin-based therapeutics have recently been introduced, in the

form of incretin mimetics [14,15] and inhibitors of the incretin-

degrading enzyme dipeptidyl peptidase IV (DPP-IV) [16].

Additionally, since activation of receptors for GLP-1 and GIP

exerts pro-survival effects on b-cells [17], incretins may also be

capable of maintaining b-cell mass in diabetes.
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Both GLP-1 receptor agonists and DPP-IV inhibitors improve

b-cell function and glycemic control in patients with type 2

diabetes [18], but there is controversy regarding the anti-diabetic

potential for GIP receptor (GIPR) agonists [12]. The main reasons

for this are that many patients with diabetes exhibit greatly

reduced insulin responses to GIP and that elimination of GIP

signaling promotes resistance to obesity in rodents [19,20,21,22],

suggesting that GIPR agonists would be ineffective in restoring b-

cell function and may increase obesity in patients with type 2

diabetes. However, pharmacological doses of DPP-IV resistant

GIP analogs are insulinotropic in rodents that are unresponsiveness

to physiological levels of GIP [23,24]. Moreover, normalization of

glycemia improves b-cell sensitivity to GIP in diabetic rats [25] and

in patients with type 2 diabetes [26,27]. Since GIPR signaling

promotes survival of cultured b-cells [28,29,30,31] we examined

the effects of chronic treatment of diabetic rats with a long-acting

DPP-IV resistant GIP analog and observed superior b-cell function

and increased mass, as well as improved glycemic control.

Surprisingly, although the GIP analog had comparable potency

to native human GIP (GIP1–42) on b-cells it exhibited weak

potency on adipocytes. Therefore, GIPR agonists may benefit

patients with type 2 diabetes without risk of promoting obesity.

Results

A DPP-IV Resistant GIP Analog (D-GIP1–30) Demonstrates
Equivalent Islet Actions to GIP1–42

The effects of GIP1–42 are transient, due to rapid N-terminal

cleavage by DPP-IV [12]. However, substitution of a D-alanine

(Ala) at position 2 renders GIP1–42 DPP-IV resistant [32], while

retaining full biological activity [24]. A truncated form, D-Ala2-

GIP1–30 (D-GIP1–30), was utilized in the current studies since

GIP1–30 was shown to exhibit full insulinotropic activity in studies

on cell lines [33].

Acute insulinotropic effects of D-GIP1–30 were first evaluated in

Vancouver Diabetic Fatty (VDF) rats, an obese sub-strain of the

Zucker Fatty rat, but with milder hyperglycemia [34]. The obese

rats exhibit mild fasting hyperglycemia, but marked hyperglycemia

during an oral glucose tolerance test (OGTT; Figure 1A), with

elevated fasting insulin levels and blunted insulin responses

(Figure 1B). Administration of linear gradients of D-GIP1–30 and

GIP1–42 (0 to 1 nM) to isolated perfused pancreases from obese

VDF and Lean rats, in the presence of 16.7 mM glucose,

demonstrated equivalent insulinotropic potencies for the two

peptides (Figure 1C). However, responsiveness of pancreata from

obese VDF rats to both peptides was greatly attenuated, consistent

with an earlier study [34]. In intraperitoneal (i.p.) glucose

tolerance tests (IPGTT), subcutaneous (s.c.) injection of D-GIP1–30

(8 nmol/kg BW) resulted in a moderately improved glucose profile

in obese VDF rats, with profound reductions in glucose excursions

in Lean rats (Figure 1D) and increased insulin responses in

both obese VDF and Lean rats (Figure 1E). The specificity

of D-GIP1–30 induced effects was assessed in GIPR knockout

(GIPR2/2) mice. The s.c. injections of PBS or D-GIP1–30

(8 nmol/kg BW) immediately prior to an IPGTT (2 g glucose/

kg BW) improved glucose tolerance in WT mice but not in

GIPR2/2 mice (Figure 1F). Similarly, treatment of static mouse

islet cultures with D-GIP1–30 potentiated insulin release from WT

islets but not GIPR2/2 islets, and this occurred at 11 mM, but not

3 mM, glucose (Figure 1G), consistent with the glucose threshold

required for GIP stimulated insulin secretion [12]. The in vitro

effects of D-GIP1–30 and GIP1–42 on b-cell survival were also

compared by monitoring the onset of cell death in staurosporine

treated INS-1 cells co-treated with D-GIP1–30 or GIP1–42

(0–100 nM). Both suppressed INS-1 cell death with similar

maximal effects. Although D-GIP1–30 demonstrated slightly

reduced mean efficacy (EC50 values: D-GIP1–30 9786134 pM

vs GIP1–42 5096114 pM; Figure 1H), the difference was not

significant. Together these data show that D-GIP1–30 and

GIP1–42 demonstrate almost identical effects on b-cells.

Effects of D-GIP1–30 in Streptozotocin Treated Rats
The capacity for chronic GIPR activation to promote b-cell

survival was then examined by determining the effects of D-

GIP1–30 on rats exposed to the b-cell toxin, streptozotocin (STZ).

Lean rats were treated twice daily with PBS or D-GIP1–30 (8 nmol/

kg BW) from day 22 to day 1, as outlined in Figure 2A. On day 0,

animals received a single i.p. injection of STZ (35 mg/kg BW) and

blood glucose levels were monitored from day 22 to day 4;

controls did not receive any treatment. OGTTs were performed on

day 5 and pancreas samples collected for histological analysis on

day 6. As expected, rats receiving STZ had elevated morning blood

glucose levels and reduced glucose tolerance and insulin responses

during OGTTs compared to untreated rats (Figure 2A–C).

However all parameters were significantly improved in STZ

treated rats receiving D-GIP1–30 injections, when compared to rats

receiving PBS, indicating that D-GIP1–30 partially protected b-cells

from STZ exposure. Histological analysis of pancreas samples

revealed that islets in STZ treated rats had obvious structural

derangements as well as apparent alpha cell expansion and

increased localization to the islet core (Figure 2D). However, these

derangements were much less severe in rats treated with D-

GIP1–30. Consistent with a pro-survival effect, b-cell areas in STZ

treated rats receiving D-GIP1–30 injections were significantly

greater than those receiving PBS injections (Figure 2E and S1).

Effects of D-GIP1–30 in VDF Rats
In order to establish whether chronic stimulation with D-

GIP1–30 could evoke improvements in b-cell function, obese VDF

rats were treated with s.c. injections of D-GIP1–30 (8 nmol/kg BW)

or vehicle control (PBS) twice daily for 10 days. Although GIP is

considered a ‘pro-obesity hormone’, there were no significant

differences in final body weights at the end of the 10 day treatment

period (Figure S2), in fact weight gain was significantly less in D-

GIP1–30 treated (2.260.3 g/day) versus PBS treated (3.660.3 g/

day) obese VDF rats. Approximately 48 h following final

treatment, thus allowing complete peptide clearance from blood,

OGTTs were performed, which showed that D-GIP1–30 treatment

of obese VDF rats significantly improved glucose tolerance and

acute insulin responses (0 to 30 min), whereas PBS treatment had

no effect (Figure 3A–D). Following the OGTTs (,24 h) islets were

isolated and protein samples collected from PBS and D-GIP1–30

treated obese VDF rats along with age matched Lean rats.

Western blot analysis revealed that islets from PBS treated obese

VDF rats expressed significantly increased levels of pro-apoptotic

proteins, when compared to Lean rats (p53, bax, bad, bim, chop,

cleaved caspase-3) The anti-apoptotic protein bcl-2 was also

elevated in PBS treated obese VDF rats, but only the increases in

pro-apoptotic protein levels were reduced by D-GIP1–30 treatment

(Figures 3E & F), resulting in a decrease in the bax/bcl-2 ratio.

Effects of D-GIP1–30 in Zucker Diabetic Fatty (ZDF) Rats
Since GIPR activation with D-GIP1–30 improved b-cell

responses to glucose and b-cell survival, the effects of longer D-

GIP1–30 treatment on glycemic control and b-cell mass were

examined in male obese Zucker diabetic fatty (ZDF) rats. This

model was chosen because male obese ZDF rats incur an

aggressive onset of b-cell apoptosis and are one of the most

Modified GIP Protects b-Cells
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commonly used and well characterized models of type 2 diabetes

[35,36]. Male Lean and obese ZDF rats (starting at 6 weeks of age)

were monitored from day 26 to day 18 (see Figure 4A). Treatment

with PBS or D-GIP1–30 (8 nmol/kg BW) began at day 0. Lean rats

treated with PBS or D-GIP1–30 showed no significant changes in

any parameter throughout the study. No differences between the

groups of obese ZDF rats were observed between day 26 to day 0

but, following onset of treatment, glycemia was lower in obese

ZDF rats treated with D-GIP1–30, reaching significance by day 9

(Figure 4B). The difference in glycemia between D-GIP1–30 and

PBS treated groups increased over the subsequent 9 days (day 18

glucose values: D-GIP1–30 11.160.3 mM vs PBS 17.760.9 mM).

Body weights did not differ between obese ZDF groups

(Figure 4C), but food intake was significantly reduced in D-

GIP1–30 treated obese ZDF rats by day 15 (Figure 4D). More

striking was the markedly reduced water intake in the D-GIP1–30

treated obese ZDF rats as early as day 12 (Figure 4E). These

changes correlated with glucose levels, indicating a reduction in

the onset of diabetes-induced polydipsia; polyuria was also evident

in rats having polydipsia. On the final treatment day (day 18),

glucose levels were monitored every 3 h over a 24 h period. Obese

ZDF rats treated with D-GIP1–30 had significantly lower glucose

levels than PBS treated obese ZDF rats at all time points

(Figure 4F). Collectively this indicates that D-GIP1–30 exerted

potent anti-diabetic effects on obese ZDF rats.

The anti-diabetic effects of D-GIP1–30 were likely a result of

improved b-cell function and mass. This was examined by

performing OGTTs on Lean and obese ZDF rats approximately

48 h following final injections to allow complete peptide clearance.

Lean rats treated with PBS or D-GIP1–30 had similar glucose and

insulin profiles. However, obese ZDF rats treated with D-GIP1–30

had reduced fasting glycemia and greatly improved glucose

tolerance compared to PBS treated obese ZDF rats (Figure 5A).

Importantly, D-GIP1–30 was so effective in obese ZDF rats that

fasting and 2 h post-prandial glucose levels were similar to Lean

rats. Insulin measurements revealed that obese ZDF rats had

Figure 1. A DPP-IV resistant GIP analog (D-GIP1–30) demonstrates equivalent islet actions to GIP1–42. A, OGTTs were performed on fasted
Lean (n = 3) and obese VDF (n = 6) rats and blood glucose levels measured. Mean 6 SEM; ***, p,0.001 vs Lean rats. B, Insulin levels were determined
from blood samples collected in A. Mean 6 SEM with significance as indicated. C, Pancreas perfusions with 16.7 mM glucose + D-GIP1–30 or GIP1–42

(0–1 nM) were performed on Lean and obese VDF rats and insulin levels determined in perfusate. Mean 6 SEM (n = 3). D, i.p. glucose tolerance tests
(IPGTT) were performed on fasted Lean (n = 3) and obese VDF (n = 4) rats that received the glucose immediately following s.c. injections with PBS or
D-GIP1–30 (8 nmol/kg BW) and blood glucose levels measured. Mean 6 SEM; **, p,0.01, ***, p,0.001 vs Lean controls; #, p,0.05 vs VDF controls. E,
Insulin levels were determined from blood samples collected in D. Mean 6 SEM; ***, p,0.001 vs Lean controls; #, p,0.05, ###, p,0.001 vs VDF
controls. F, IPGTTs were performed on fasted wild type (GIPR+/+) mice and GIPR knockout (GIPR2/2) mice that received the glucose immediately
following s.c. injections with PBS or D-GIP1–30 (8 nmol/kg BW), and blood glucose levels measured. Mean 6 SEM (n = 3); *, p,0.05 vs GIPR+/+ mice
treated with PBS. G, Islets from GIPR+/+ and GIPR2/2 mice were incubated for 2 h in 3 or 11 mM glucose 6 10 nM D-GIP1–30 and secreted insulin
levels determined. Mean 6 SEM (n = 3); significance as indicated. H, INS-1 cells were treated without or with 100 nM staurosporine + increasing
concentrations of D-GIP1–30 or GIP1–42 (0–100 nM) for 6 h and cell death determined. Mean 6 SEM (n = 4); ###, p,0.001 vs control (no
staurosporine); ***, p,0.001 vs staurosporine alone. In the upper right is the calculated EC50 value for GIP1–42 and D-GIP1–30.
doi:10.1371/journal.pone.0009590.g001
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markedly elevated insulin levels compared to Lean rats, consistent

with an insulin resistant phenotype (Figure 5B). However, obese

ZDF rats treated with D-GIP1–30 had significantly greater insulin

responses following glucose challenge and HOMA SI calculations

revealed that b-cell compensation was much greater in obese ZDF

rats treated with D-GIP1–30 (Figure 5C). Histological analysis of

pancreas samples was performed on samples collected ,24 h

following OGTTs. As expected [36], many islets from PBS treated

obese ZDF rats were greatly enlarged compared to Lean rats, but

with a discontinuous appearance and some alpha cell infiltration

into the islet core (Figure 5D). In contrast, although most islets

from D-GIP1–30 treated obese ZDF rats exhibited even greater

enlargement (many exceeding a millimeter in diameter), they

maintained structural integrity, with alpha cells residing in the islet

periphery. Furthermore, b-cell area in obese ZDF rats treated with

D-GIP1–30 was significantly greater than in those treated with PBS

(Figure 5E and S3). The b-cell areas in PBS and D-GIP1–30 treated

Lean rats were similar. Staining for apoptotic (Figure 5F) and

proliferating (Figure 5G) b-cells revealed that enhanced b-cell area

in D-GIP1–30 treated obese ZDF rats was mainly due to a

significant reduction in b-cell apoptosis, although there was a

modest increase in mean b-cell proliferation. Collectively these

findings indicate that D-GIP1–30 exerted potent anti-diabetic effects

in obese ZDF rats via improvements in b-cell function and mass.

Cultured Adipocytes Differentially Respond to D-GIP1–30

and GIP1–42

GIP has been considered a pro-obesity hormone [20] as a result

of its ability to promote lipogenesis [12]. However the lack of

weight gain in Lean and obese ZDF rats (Figure 4C) and reduced

weight gain in obese VDF rats (Figure S2) suggested that D-

GIP1–30 might exhibit reduced lipogenic effects, compared to

GIP1–42. It has previously been established that GIP1–42 increases

lipoprotein lipase (LPL) activity in cultured 3T3-L1 adipocytes

[37]. In the current study, cultured 3T3-L1 adipocytes were treated

with D-GIP1–30, GIP1–30, GIP1–42, or D-GIP1–42 (0–1000 nM)

and LPL activity determined 24 h later. Although GIP1–42 and

D-GIP1–42 promoted equivalent increases in LPL activity,

D-GIP1–30 and GIP1–30 had markedly reduced effects (Figure 6);

indeed, concentrations as high as 1 mM of D-GIP1–30 or GIP1–30

were unable to achieve maximal responses. The C-terminus of

native GIP is therefore important for stimulatory actions in

adipocytes, but not b-cells.

Discussion

The main target for anti-diabetic therapies is a sustained

reduction in glycemia, in order to lower the incidence of

morbidities such as retinopathy, renal dysfunction and peripheral

Figure 2. D-GIP1–30 partially protects b-cells in streptozotocin (STZ) treated rats. A, Glucose levels were monitored 2 days prior to (day 22) and
4 days (day 4) following an i.p. injection of STZ (35 mg/kg BW; on day 0) to Lean rats treated twice daily with PBS or D-GIP1–30 (8 nmol/kg BW) from day
22 to day 1 as well as in untreated Lean rats. B, On day 5, OGTTs were performed on rats described in A and blood glucose levels measured. C, Insulin
levels were determined from blood samples collected in B. For A–C, Mean 6 SEM (n = 4); *, p,0.05, **, p,0.01, ***, p,0.001 vs rats treated with STZ and
PBS. D, Representative images of pancreases collected on day 6 stained with hematoxylin & eosin or with insulin (green), glucagon (red) and DAPI (blue);
scale bar = 100 mm. E, Mean 6 SEM of -cell (insulin positive) area relative to pancreas area (n = 4; 4 sections per animal); significance as shown.
doi:10.1371/journal.pone.0009590.g002
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neuropathy [38]. Prospective studies show that many insulin

resistant individuals are capable of maintaining euglycemia via

compensatory responses [1], but that b-cell dysfunction and

reduced b-cell mass are characteristics of those that develop type 2

diabetes [4,6]. Therapies that improve the functional capacity and

mass of b-cells should therefore offer important benefits to

patients.

There is increasing evidence supporting an important role for

GIPR signaling in the promotion of b-cell function and survival.

Profound insulinotropic effects are achieved with physiological

concentrations of GIP in normal animals [12] and with

pharmacological doses of DPP-IV resistant GIP analogs in diabetic

rodents [15,23,24]. Studies on cultured INS-1 cells and primary b-

cells showed that GIPR activation promotes pro-survival responses

via multiple signaling modules and reduces expression and activity

of pro-apoptotic bcl-2 family proteins [28,29,30,31,39,40]. How-

ever, although there have been extensive studies on the b-cell

secretory actions of long-acting forms of GIP [20], there is a

paucity of information on their b-cell protective effects. The

truncated analog D-GIP1–30 demonstrated similar effects to the

intact peptide, potentiating acute insulin responses and improving

glucose tolerance in both obese VDF and Lean rats (Figure 1D&E),

as well as stimulating insulin secretion from the isolated perfused

pancreas preparation (Figure 1C). D-GIP1–30 also exhibited

similar effects to GIP1–42 on b-cell survival in staurosporine

treated INS-1 cells (Figure 1H).

It is important to note that the beneficial effects of D-GIP1–30 on

glucose homeostasis were observed in glucose tolerance tests

performed at least 48 h following the last treatment, when

circulating peptide would be cleared from the circulation. These

sustained responses therefore result from protective effects on islet

survival, and they were observed in all three of the animal models

examined. In STZ-treated rats, D-GIP1–30 afforded partial

protection of b-cells, resulting in greater glycemic control and

insulin responses (Figure 2). Protective effects of exendin-4, but not

D-Ala2-GIP1–42, were recently reported in studies on STZ-induced

diabetes in mice [41]. Although the reasons are not clear, a more

aggressive STZ-treatment regimen was utilized compared to the

current study, resulting in much greater b-cell destruction.

Additionally, higher peptide dosing in their study may have also

resulted in GIPR down-regulation [12] and species differences

could also play a role. In the current studies on both male obese

Figure 3. D-GIP1–30 improves islet function and diminishes islet pro-apoptotic protein levels in VDF rats. A, OGTTs were performed on
obese VDF rats ,24 h prior to and ,48 h following 10 days of twice daily treatment with PBS or D-GIP1–30 (8 nmol/kg BW) and blood glucose levels
measured. Mean 6 SEM (n = 6); **, p,0.01 vs same VDF rats prior to treatment. B, Integrated glucose profile for OGTTs described in A. Mean 6 SEM
(n = 6); significant differences as shown. C, Insulin levels were determined from blood samples collected in A. Mean 6 SEM (n = 6); *, p,0.05 vs same
VDF rats prior to treatment. B, Integrated acute insulin response (from 0 to 30 minutes) for insulin profiles described in C. Mean 6 SEM (n = 6);
significant differences as shown. E, Islets were isolated from VDF rats and age matched Lean rats ,24 h following OGTTs and Western analysis
performed on cell lysates with indicated antibodies. F, For quantification, protein levels were normalized to beta-actin and expressed relative to Lean
controls. Mean 6 SEM (n = 3); $, p,0.05 vs Lean; #, p,0.05 vs VDF controls.
doi:10.1371/journal.pone.0009590.g003
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VDF (Figure 3) and obese ZDF (Figures 4&5) rats, significantly

improved glycemic control and compensatory insulin responses

resulted from D-GIP1–30 treatment. The impact of D-GIP1–30

treatment on diabetes progression in obese ZDF rats was also

evident in the delayed onset and reduced severity of polydipsia

(Figure 4E), that we attributed to the improvements in glycemia.

Similarly, since GIP has not been shown to exert any major effects

on food intake in rodents [12,42,43], the small decrease observed

(Figure 4D) was likely secondary to the improved glycemia,

perhaps resulting from altered hypothalamic sensing of peripher-

ally-derived signals.

Increased b-cell area was a major factor underlying D-GIP1–30

induced improvements in glycemia in obese ZDF rats (Figure 5E),

enabling stronger compensatory insulin responses (Figure 5C).

This was mainly a result of reduced levels of b-cell apoptosis

(Figure 5F) since there were no significant effects on b-cell

proliferation (Figure 5G). However, previous in vitro studies on

cultured b-cell lines [28,44,45] and primary islets [46] have shown

that activation of GIP receptor signaling in b-cells is capable of

stimulating proliferation. The lack of effect of D-GIP1–30 in the

obese ZDF rats may be due to the elevated levels of b-cell

proliferation in this model (Fig. 5G and [47]). There is, however,

suggestive evidence in the literature for an effect on proliferation.

Long-acting GIP analogs were found to increase islet area and

number in ob/ob mice [48], although the relative contributions of

proliferative and anti-apoptotic effects were not established. As

observed with previous in vitro studies on GIP1–42

[28,29,30,31,39,40], D-GIP1–30 greatly decreased islet pro-apo-

ptotic protein levels in obese VDF rats (Figure 3E&F), an

important factor in reducing b-cell loss. Bcl-2 levels were also

elevated in the PBS treated obese VDF rats. However, it was the

only protein examined which was not decreased by D-GIP1–30

treatment, resulting in an overall reduction in the bax/bcl-2 (pro-

apoptotic/anti-apoptotic) ratio in response to treatment. In obese

VDF rats of this age, increases in b-cell bcl-2 levels may reflect

responses to the stress, thus attempting to promote survival. At any

one time of tissue sampling, increases in both pro- and anti-

apoptotic proteins may be detected, as compensatory responses

occur. Similar observations have been previously reported, for

example with apoptotic b-cells in cultured and developing rat islets

[49,50] and following serum deprivation in MIN6 b-cells [51]. It is

possible, that the milder diabetes that develops in obese VDF rats,

when compared to obese ZDF rats, is due to a more robust anti-

apoptotic response, since the latter exhibit reduced b-cell bcl-2

levels [35], although we have no direct evidence to support this

suggestion.

In developing GIP-based therapies for type 2 diabetes a major

caveat has been the possibility of GIP promoting obesity [20,22].

Such an effect would be consistent with the lipogenic actions of

GIP [12] and with studies demonstrating that mice lacking

functional GIP responses show resistance to the development of

obesity [19,20,52]. However, neither mice administered long

acting analogs of GIP1–42 [42,43] nor GIP-overexpressing

transgenic mice [53] exhibit increases in body weight, food intake,

adiposity or insulin resistance, questioning whether GIPR agonists

would promote obesity in patients with type 2 diabetes.

Additionally, there are only weak data linking over-nutrition,

GIP hypersecretion and obesity in humans [12]. Nevertheless,

although the findings clearly need to be substantiated by studies on

primary adipocytes and in vivo, the unexpected difference observed

in stimulatory effects of D-GIP1–30 (or GIP1–30) and GIP1–42 (or D-

GIP1–42) on LPL activity in 3T3-L1 adipocytes is intriguing

Figure 4. D-GIP1–30 improves glycemic control in ZDF rats. A, Schematic depicting the treatment protocol in which Lean or obese ZDF rats
(starting at 6 weeks of age) were monitored every 3 days from day 26 to day 18 and treated twice daily with PBS or D-GIP1–30 (8 nmol/kg BW) from
day 0 to day 18. B–E, Routine monitoring involved measurements of blood glucose (B), body weight (C), food intake (D), and water intake (E). Mean 6
SEM (n = 6); *, p,0.05, **, p,0.01, ***, p,0.001 vs ZDF rats treated with PBS. F, On day 18, blood glucose levels were determined every 3 h over a
24 h period. Mean 6 SEM (n = 6); **, p,0.01, ***, p,0.001 vs ZDF rats treated with PBS.
doi:10.1371/journal.pone.0009590.g004
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(Figure 6). The high affinity binding region of GIP resides in

amino acids 6–30, but the N-terminus has proven critical for

actions on the pancreatic islet [12] and, as shown in the current, as

well as a previous [33] study, GIP1–30 and GIP1–42 exert very

similar b-cell effects. However, the C-terminal 12 amino acids

have been previously shown to be important for actions on some

tissues, as GIP1–30 exhibited much lower potency than GIP1–42 for

inhibiting gastric acid secretion from the perfused rat stomach

[54]. Since, in addition to islets and adipose tissue, GIP also

appears to act as a physiological regulator in bone, the

gastrointestinal tract, cardiovascular system and brain [12], there

may still be tissue specific differences in responses to GIP1–42 and

GIP1–30 that need to be identified. Additionally, evidence has

recently been presented for the production of a C-terminally

truncated version of GIP in pancreatic a-cells [55]. Therefore

GIP1–30 may play a physiological role as either an autocrine or

paracrine regulator of islet cell function and, possibly, as an

endocrine hormone. Since K-cell derived GIP1–42 is secreted

mainly during a meal, whereas a-cell secretion is elevated during

the inter-digestive phase, there may be differences in the temporal

activity of the two peptides; whether administration of GIP1–30 and

GIP1–42 analogs during fasting and feeding results in selective

tissue target effects is currently unknown. Additionally, the basis

for the differential cellular activity is unclear. It is possible that the

two peptides induce alternative conformational changes in the

GIPR residing in different tissues, possibly due to variations in the

membrane environment. However, it is more likely that cell-

specific splice variants of the GIPR account for the different

responses [56]. This possibility could impact on the development

of clinically relevant GIP analogs.

Materials and Methods

Animal Studies
All studies were performed in accordance with guidelines put

forth by the University of British Columbia Committee on Animal

Figure 5. D-GIP1–30 improves b-cell function and mass and glucose tolerance in ZDF rats. A, OGTTs were performed on fasted Lean and
ZDF rats (described in figure 4) ,48 h following the last day of treatment and blood glucose levels were measured. Mean 6 SEM (n = 6); **, p,0.01,
***, p,0.001 vs ZDF rats treated with PBS. B, Insulin levels were determined from blood samples collected in A. Mean 6 SEM (n = 6); **, p,0.01 vs
ZDF rats treated with PBS. C, Integrated acute insulin response (from 0 to 30 minutes) for profiles described in B was plotted with respect to HOMA SI.
Mean 6 SEM (n = 6). D, Representative images of pancreases collected ,24 h following OGTTs. Pancreases were stained with hematoxylin & eosin or
with insulin (green), glucagon (red) and DAPI (blue); scale bar = 100 mm. E, Mean 6 SEM of b-cell (insulin positive) area relative to pancreas area (n = 3;
4 sections per animal); significance as shown. E, Mean percent 6 SEM of b-cells undergoing apoptosis as determined via TUNEL positive nuclei (n = 6);
significance as shown. F, Mean percent 6 SEM of -cells undergoing proliferation as determined via PCNA positive nuclei (n = 6).
doi:10.1371/journal.pone.0009590.g005
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Care and the Canadian Council on Animal Care. The protocols

for the experiments performed were previously reviewed, and

approved, by the UBC Animal Care Committee. All studies were

performed on male animals that were maintained on a 12 hr

light/dark cycle with free access to standard rodent chow and

water. Obese (400–500 g) and Lean (200–250 g) Vancouver

Diabetic Fatty (VDF) Zucker rats (13–15 weeks of age) and

C57Bl/6 GIPR knockout (GIPR2/2) [57] or wild type littermate

mice (20–25 g; 10–14 weeks of age) were bred and maintained at

the University of British Columbia (UBC). Obese ZDF (strain 370;

age 4–5 weeks; 140–170 g) and Lean Zucker (strain 371; age 4–5

weeks; 110–130 g) rats were from Charles River Laboratory

(Canada) and maintained at UBC for at least 1 week prior to

treatment. For studies on STZ-induced diabetic rats, STZ (Sigma)

was dissolved in citrate buffer (pH 4.5) and administered to

animals via intraperitoneal (i.p.) injection within 15 min of

dissolution. Truncated human D-Ala2GIP1–30 was synthesized by

GenScript (Piscataway, NJ) and dissolved in 2% acetic acid +0.4%

BSA, diluted in PBS and pH adjusted to 7.2 for administration.

Identical solvent was used for control animals. During treatment

periods, peptide (D-GIP1–30) or control (PBS) was administered at

8–9 am and 4–5 pm. Morning blood glucose was determined at 7–

8 am. For glucose tolerance tests, rats were fasted for 16–17 h,

challenged with 1 g glucose/kg bodyweight and blood glucose

levels determined at 0, 10, 20, 30, 60, and 120 min time points.

Mice were fasted for only 6 h, challenged with 2 g glucose/kg

bodyweight, and blood glucose levels determined at 0, 7.5, 15, 30,

60, and 120 min time points. For all animals, blood was collected

from the tail vein and glucose levels measured with a glucometer

and test strips (Abbott Park, IL). Insulin levels were determined

from serum samples via radioimmunoassay (RIA; MilliporeTM,

Cat# RI-13K).

Pancreatic Perfusions
VDF rats were deprived of food for at least 12 h, anesthetized,

and pancreata isolated as previously described [58]. Arterial

perfusion was achieved by cannulation of the abdominal aorta at a

level adjacent to the superior mesenteric artery, while venous

effluent was collected via cannulation of the portal vein. Perfusate

consisted of modified Krebs-Ringer bicarbonate buffer containing

3% dextran (Sigma), 0.2% BSA (Sigma) plus 3 mM or 16.7 mM

glucose gassed with 95% O2/5% CO2 and was kept at 37uC with

heating units. Following a 30 min equilibration period with

16.7 mM glucose, gradients of D-Ala2GIP1–30 or GIP1–42 (0 to

1 nM) were administered, as described in the text. Portal vein

effluent was collected in 3 min intervals at 3 ml/min with a

peristaltic pump and stored at 220uC. Insulin levels were

determined via RIA.

Cell Culture for INS-1 Cells and Islet Isolation
The INS-1 b-cell line (clone 832/13) was kindly provided by Dr.

C.B. Newgard (Duke University Medical Centre, North Carolina).

Cells were maintained in 11 mM glucose RPMI 1640 and treated

with staurosporine 6 GIP1–42 or D-GIP1–30 (0–100 nM) for 6 h

and % cell death determined as the number of Propidium Iodide

positive cells divided by the number of Hoechst positive cells, as

described in [29]. Mouse islets were isolated from pancreatic

digests as previously described [59]. Islets were maintained in

RPMI 1640 supplemented with 5 mM glucose, 0.25% HEPES

(pH 7.4), 10% FBS, 100 units/ml penicillin G-sodium, and

100 mg/ml streptomycin sulphate. Prior to determining insulin

secretion, islets (25 per well) were cultured in serum starved 3 mM

glucose RPMI for 4 h and then transferred to fresh serum starved

media containing 3 or 11 mM glucose 6 10 nM D-GIP1–30 for

2 h. Insulin secreted from islets into media was determined via

RIA. For Lean and obese VDF rats, islets were isolated from

pancreatic digests as previously described [60], immediately lysed,

and protein samples collected for Western blot analysis.

Cell Culture of 3T3-L1 Adipocytes and LPL Assays
3T3-L1 cells were cultured onto 96-well culture plates and

induced to differentiate into adipocytes as previously described

[37]. LPL enzyme activity assays were performed using the

manufacturers protocol (Roar Biomedical Inc.) and presented as

relative activity normalized to protein concentration.

Western Blotting
Cell lysates were subjected to 15% SDS/PAGE and electro-

blotted onto nitrocellulose membrane (Bio-Rad). Antibodies used

to probe membranes were all from Cell Signaling Technology

(Beverly, MA) as follows: anti-beta-actin (antibody 4967), anti-bad

(antibody 9292), anti-bax (antibody 2772), anti-bcl-2 (antibody

2876), anti-bim (antibody 2819), anti-caspase-3 (rabbit mAb 9665;

8G10), and anti-CHOP (mouse mAb 2895; L63F7). Immunore-

active bands were visualized by enhanced chemiluminescence

(Amersham Biosciences) using horseradish peroxidase-conjugated

IgG secondary antibodies. For quantification of band density,

films were analyzed using densitometric software (Eagle Eye;

Stratagene).

Histological Analysis
Animals were sacrificed and pancreas samples fixed overnight at

4uC in 4% paraformaldehyde. Paraffin embedding, sectioning

(5 mm), and hematoxylin and eosin (H&E) staining of samples was

performed by Wax-it services (Vancouver, Canada). For immu-

nofluorescent staining, deparaffinized and rehydrated slides

underwent heat induced epitope retrieval at 95uC for 10 min in

citrate buffer (10 mM citrate, 0.05% Tween 20, pH 6.0) using an

EZ-RetrieverTM Microwave (BioGenex, USA), and then incubat-

ed overnight at 4uC with guinea pig anti-insulin (1:1000;

Millipore), mouse anti-glucagon (1:1000; Sigma), and/or mouse

anti-PCNA (1:200; BD Biosciences). Apoptotic cell staining with

TUNEL was according to manufacturers protocol (Roche).

Primary antibodies were visualized following 1 h incubation at

Figure 6. Cultured 3T3-L1 adipocytes differentially respond to
D-GIP1–30 and GIP1–42. 3T3-L1 adipocytes were serum starved in
3 mM glucose DMEM containing 0.1% BSA overnight and then treated
for 24 h with increasing concentrations (0–1000 nM) of GIP1–42, D-
GIP1–42, GIP1–30, or D-GIP1–30 in the presence of 1 nM insulin and then
LPL activity determined. Mean 6 SEM (n = 7); significance as shown.
doi:10.1371/journal.pone.0009590.g006
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room temperature with secondary antibodies conjugated to

AlexaFluor 488 or 594 (1:500; Molecular Probes Eugene) and

then mounted in VECTASHIELD HardsetTM mounting medium

with DAPI (Vector Laboratories; Cat# H-1500). Images were

captured using an Axiovert 200 microscope (Carl Zeiss, Toronto,

Canada) and a Retiga 2000R camera (QImaging, Burnaby,

Canada) in monochrome and pseudo-coloured (fluorescent

images) or in RGB format (H&E images) using the OpenLab

v5.2 software (ImproVision, Lexington, USA). Following staining

with 3,39-diaminobenzidine, pancreas sections were digitally

scanned using a ScanScope CS digital slide scanner and analyzed

using the ImageScope positive pixel count, version 9 algorithm

(Aperio Technologies Inc., USA).

Statistical Analysis
Data, expressed as mean 6 SEM, were analyzed using the non-

linear regression analysis program PRISM (GraphPad, San Diego,

CA). The HOMA SI was determined using the methods

specifically developed for ZDF rats [36]. Statistical significance

of differences in mean value was tested using ANOVA with

bonferroni post hoc test. A p value of ,0.05 was considered

significant.

Supporting Information

Figure S1 Representative sections of pancreases collected from

untreated rats and rats treated with PBS or D-GIP1–30 + STZ.

Insulin positive (beta-cell) area was stained via peroxidase

catalyzed reaction with 3,39-Diaminobenzidine.

Found at: doi:10.1371/journal.pone.0009590.s001 (0.46 MB JPG)

Figure S2 D-GIP1–30 treatment reduces weight gain in VDF

rats. Bodyweights of VDF rats treated as described in Figure 3

were monitored every 2 days. Absolute body weights before and

after (day 0 and 10) are shown in A and relative increases in body

weight from day 0 are shown in B. Mean 6 SEM (n = 6); *,

p,0.05 vs VDF rats treated with PBS.

Found at: doi:10.1371/journal.pone.0009590.s002 (0.30 MB JPG)

Figure S3 Representative sections of pancreases collected from

Lean and obese ZDF treated with PBS or D-GIP1–30. Insulin

positive (beta-cell) area were stained via peroxidase catalyzed

reaction with 3,39-Diaminobenzidine.

Found at: doi:10.1371/journal.pone.0009590.s003 (0.44 MB JPG)
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